• Non ci sono risultati.

Index of /files/CoursesDev/public/2018/Deep Learning

N/A
N/A
Protected

Academic year: 2021

Condividi "Index of /files/CoursesDev/public/2018/Deep Learning"

Copied!
1
0
0

Testo completo

(1)

Introduction to Deep Learning and Tensorflow

7-9 November 2018

Cineca – Rome, Sala Corsi, Via dei Tizii 6, Rome

Teachers: Marco Rorro, Stefano Tagliaventi, Luca Ferarro, Francesco Salvadore, Sergio Orlandini, Isabella Baccarelli

AGENDA

The program could be subject to changes during the course.

Wednesday 7th November 2018

09:30 - 09:30 Registration

09:30 - 13:00 Introduction to machine learning 13:00 - 14:00 Lunch break

14:00 - 18:00 Introduction to tensorflow with exercises

Thursday 8th November 2018

09:30 - 13:00 Topics on machine learning 13:00 - 14:00 Lunch break

14:00 - 18:00 Introduction to keras with exercises

Friday 9th November 2018

09:00 - 13:00 Autoencoders + GAN 13:00 - 14:00 Lunch break

14:00 - 18:00 Topics + machine learning on clusters

Riferimenti

Documenti correlati

You may also get a “conflict error” if you load a module not suited for working together with other modules you already loaded (e.g. different compilers). Unload the

Contattare referente di Dipartimento POLIMI chiedendo di essere inserito come collaboratore nel progetto di interesse. • Referente si connette allo userDB sotto myprojects ed edita il

• Scaricare il client corretto per la propria workstation (solo al prima volta). • Selezionare il servizio di interesse (Xterm

 When different objects are mixed in a vector, coercion occurs so that every element in the vector is of the same class.  Objects can be explicitly coerced from one class to

● Dynamic linking means that the library references are resolved at run time, so the executable searches for them in the paths provided. It means a lighter executable and no need

● Pass è una generica istruzione che non fa niente,  e può stare in qualsiasi posizione del codice. È 

 Both are 2 layer neural networks that learn to model their inputs. 

 Keras is a high-level neural networks API, written in Python and capable of running on top of. TensorFlow, CNTK,