• Non ci sono risultati.

New insight on the mechanism of the catalytic hydrogenation of nitrobenzene to 4-aminophenol in CH

N/A
N/A
Protected

Academic year: 2021

Condividi "New insight on the mechanism of the catalytic hydrogenation of nitrobenzene to 4-aminophenol in CH"

Copied!
10
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Applied Catalysis A: General

j o ur na l h o me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p c a t a

New insight on the mechanism of the catalytic hydrogenation of nitrobenzene to 4-aminophenol in CH

3

CN–H

2

O–CF

3

COOH as a reusable solvent system. Hydrogenation of nitrobenzene catalyzed by precious metals supported on carbon

GiuseppeQuartarone,LucioRonchin,AliceTosetto,AndreaVavasori

DepartmentofMolecularSciencesandNanosystems,UniversityCa’FoscariofVenice,Dorsoduro2137,30123Venezia,Italy

a r t i c l e i n f o

Articlehistory:

Received14November2013

Receivedinrevisedform9January2014 Accepted13January2014

Availableonline22January2014

PaperdedicatedtoProf.LuigiToniolofor celebratinghislongresearchandteaching activityinthefieldofCatalysisand IndustrialChemistryafterhismandatory retirement.

Keywords:

Nitrobenzenehydrogenation 4-aminophenol

Trifluoroaceticacid Reusablesolvent Hydrogenationmechanism

a b s t r a c t

Thepreparationof4-aminophenolvia hydrogenationofnitrobenzeneinasingle liquidphase has beencarriedinthepresenceofdifferentpreciousmetalcatalysts. Theliquidphaseiscomposedof CH3CN–H2O–CF3COOH,whichcanbeeasilydistilledatlowtemperature,thusavoidingwork-upopera- tion.Theyieldof4-aminophenolisintherange45%andinthepresenceofsulfolaneaspromoterreaches almost50%.ThebestresulthasbeenobtainedinthepresenceofPt/Cashydrogenationcatalyst.Therole ofthesolventisstrictlyrelatedtotheselectivityto4-aminophenol,sinceCH3CNdecreasesthehydro- genationactivitycomparedtoothersolvent,CF3COOHpromotestheformationofthedesiredproduct bothviaBambergerrearrangementinsolutionaswellbyasurfacecatalyzedreaction,whileH2Ois responsiblefor4-aminophenolformationinbothreactions.Eventhough,nitrosobenzeneandphenylhy- droxylaminehavenotbeenobserved,theirreactivitysuggestacomplexpatternofreactionsoccurring eitheronthecatalystsurfaceorinthesolution.Indeed,formationof4-aminophenolmayoccurbothin solution,viaacidcatalyzedBambergerrearrangementandonthecatalystsurfacebytheformationofa surfacePt-nitreniumcomplex,whichundergoessurfacenucleophilicattackbyH2O.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

4-Aminophenolisanimportantrawmaterialforseveralprod- ucts in the field of dyes, polymer and pharmaceutics [1–3].

For instance,paracetamol(N-acetyl-4-aminophenol)is awidely employedanalgesicandantipyreticwhoseproductionisincon- tinuousgrowth,particularlyintheFarEastregion[4–9].Industrial synthesis of paracetamol is based on 4-aminophenol, which is obtainedthroughfourdifferentroutes:(i)nucleophilicsubstitu- tionofthechlorineofthe4-chloronitrobenzene,(ii)reductionof 4-nitro-phenol,(iii)selectivehydrogenationofnitrobenzene,(iv) Beckmannrearrangementof4-hydroxyacetophenoneoxime.

Tillnow,theselectivehydrogenationofnitrobenzeneislikely tobethemostconvenientfrombotheconomicalandenvironmen- talpointofview[1,2,4–9].Themajorconcernofthisprocessis, however,theuseofH2SO4,whichposescorrosion,safety,purifi- cationand environmentalproblems.The reactioniscarried out

∗ Correspondingauthor.

E-mailaddress:ronchin@unive.it(L.Ronchin).

incontinuousstirredtankreactorinwhichthebiphasicreaction medium is usedtoaccomplish simultaneouslythePtcatalyzed hydrogenationofnitrobenzeneandtheacidcatalyzedBamberger rearrangementoftheintermediateN-phenylhydroxylamine(see Scheme1) [4–6,8,9]. Theaqueous solutionof H2SO4 is thekey for obtaining high selectivity to the 4-aminophenol. The suc- cessisdue totheeasyprotonationofthephenylhydroxylamine (pka=1.9 [10]), which is extracted from the organic phase. In the acidsolution (H2SO4 concentration 0.6–1molL−1), the sul- fateof theN-phenylhydroxylamine is formed and itundergoes fastrearrangementtothecorresponding4-aminophenolsalt[11].

Moreover,inaqueousphase,thecompetitivehydrogenationofthe phenylhydroxylamineisnegligible,beingthehydrogenationcata- lysthydrophobic.Infact,onlythefractionpresentintheorganic phaseishydrogenatedtoaniline[12].

Fromanenvironmentalpointofview,themajordrawbackof theprocessistheneutralizationoftheacidicphase,withthecon- sequentby-production ofsulfatesalts,whichareundesiredlow values productsand/orwastes.In addition,dilutedsulfuricacid causes huge corrosion concern, with theconsequent increased costs[1,2,4–6,8,9].

http://dx.doi.org/10.1016/j.apcata.2014.01.033 0926-860X/©2014ElsevierB.V.Allrightsreserved.

(2)

NO2

NHOH NH2

H2 Pt/C

aqueous H2SO4

H+

organic phase Pt/C

H2

NH2OH H+

NH3 HO

Scheme1. Hydrogenationofnitrobenzeneinbiphasicliquidsystem.

Therefore,removalofH2SO4useislikelytobethemostimpor- tanttargetfortheimprovementoftheprocess.Severalresearchers haverecentlyproposedtheuseofabiphasicliquidsystem(water- nitrobenzene)employingPtsupportedonsolidacidinthepresence ofsurfactantandpromoters,which,however,causeproblemsinthe recycleand/ordisposaloftheaqueousphase[13–15].

Besides,gasphasereactioncatalyzedbybifunctionalPt-zeolites catalystshasbeenproposed.Theyieldstothe4-aminophenolare interestingforpracticalpurposes,howeverextensivecatalystdeac- tivationlimitsitssyntheticutility[16].

Startingfromtheseconsiderations,asingleliquidphaseprocess couldbeacatwalktoamoresustainableprocessbyusingeasily reusablesolventsandcatalysts[17–20].Whenproductsaresolids orhighboilingpointliquidstheuseofamuchlowerboilingpoint solventcanbethekeytoimprovetheenvironmentalsustainability ofthewholeprocess,becauseofproductsseparation,catalystand solventsreuseismadeeasybyfiltrationandevaporation.Inthis way,thehighcostofCF3COOHiscounterbalancedbyitsrecycling, makingtheprocesssustainablealsofromaneconomicalpointof view.

ThebasesofthepresentresearcharetheresultsintheBeck- mannrearrangementofketoximestothecorrespondingamidesin CH3CN–CF3COOHassolventcatalyticsystem[17–20].Theanalogy between the Beckmann rearrangement with the process to 4- aminophenolvianitrobenzenehydrogenationoriginatesfromthe ideathattheN-phenylhydroxylamine(theintermediateofthepro- cess)(seeScheme1)mayundergoacidBambergerrearrangement veryeasilyinnon-aqueousCF3COOHsystem.

The rearrangement is well known from long time and the commonlyacceptedmechanismisvianitreniumionintermedi- atefollowedbynucleophilicattackofawatermolecule(Scheme2) [11,21,22].

Several solvents can be used for the hydrogenation reac- tion, but those to be considered in this research possess low nucleophilicityinordertoavoidsidereactionintheBamberger rearrangement[21,22].Inaddition,suitablesolvents(forinstance CH3CNand(CH3)2SO)havetolowerthehydrogenationactivityof

thepreciousmetalcatalystinordertodepressthereductionof N-phenylhydroxylaminetoaniline[23].

Here,we presentsomenewresultsonthehydrogenationof nitrobenzeneto4-aminophenolinasingleliquidphasecomposed ofsolvent-H2O–CF3COOHandin thepresencea preciousmetal hydrogenationcatalyst.Furthermore,weproposeareactionpath, whichallowsanexplanationfortheseveralfeaturesofthisreaction.

2. Experimental 2.1. Materials

Nitrobenzene,aniline,4-aminophenol,2-aminophenol,trifluo- roacetic acid, sulfolane were all Aldrich products, their purity werecheckedbytheusualmethods(meltingpoint,TLC,HPLC,GC andGC–MS)andemployedwithoutanypurification,acetonitrile HPLCgradientgradewassuppliedbyBDH,1,4-dioxane,methanol, nitromethane,dimethylformamideanddimethylsulfoxideareACS reagentsuppliedbyAldrich.

CatalystsusedwerecommercialmaterialssuppliedbyEngel- hard(nowBasfCatalysts):Pd/C5%:Escat10,Pt/C3%,Ru/C5%Escat 40andRh/C5%.

2.2. Equipment

Products were identified by gas chromatography (GC), gas chromatography coupledmassspectrometry (GC–MS)and high performanceliquidchromatography(HPLC).GCandGC–MSanal- ysiswerecarriedoutwithaAgilent7890AequippedwithFIDor MSdetector(Agilent5975CandaHP5column(I.D.320␮m30m long),heliumwasemployedascarrierunderthefollowingcondi- tions:injector523K,detector543K,flow1mLmin−1,oven333K for3min523K15Kmin−1and523Kfor15min.Duetothether- malinstabilityoftheproducts,routineanalysiswerecarriedout byHPLC(PerkinElmer250pump,LC235diodearraydetectorand aC8,5␮m,4mmi.d.25cmlongcolumn)analysiswerecarried outwithCH3CN–H2Oasmobilephaseinisocratic70%ofCH3CN at1mLmin−1.Conversionyieldandselectivityarecalculatedby thecalibrationwithstandardsolutionsofthepureproducts.N2

physisorptionandCOchemisorptionhasbeencarriedoutwitha MicromeriticsASAP2010Cautomaticadsorptionanalyzer.

2.3. Catalystcharacterization

Chemisorptionofcarbonmonoxidewascarriedat308Kwith thedoubleisothermmethodand1minofequilibrationtime[24].

Thechemisorptionstoichiometrywasset1(1moleculeofCOfor 1 surface atomof metal) only for comparativepurpose. Before theanalysis,thecatalyst waspretreated in a flow ofhydrogen (20mLmin−1)at473Kfor3handfor5hundervacuumatthesame temperatureinordertoensuretotalreductionofthepreciousmetal particlesaveragediameterofcatalystparticles(40␮m)andappar- entdensity(0.54gmL−1)weregivenbythesupplierandarethe sameforallthecatalysts(seeTable1).

2.4. Hydrogenationofnitrobenzene

Somepreliminaryreactionshavebeencarriedoutinseveralsol- vents(1,4-dioxaneCH3NO2,(CH3)2NCHOand(CH3)2SOCH3OH).

Thekineticrunswerecarriedoutin awellstirredglassreactor thermostattedbycirculationbathintherange323–353K,using CH3CN–H2Oasasolvent,CF3COOHasanacidcatalystandapre- ciousmetalcatalyst(Pt,Pd,Rh,Ru)supportedoncarbon.Hydrogen wasfedcontinuouslyatconstantpressure(c.a.0.12MPa)byagum balloon(see supplementaryinformation).Blankreactionsinthe absenceofnitrobenzenehavebeencarriedoutinordertoverify

(3)

NHOH2 NH NH2

OH H2O

-H+ H+

-H2O NHOH NH

Scheme2. Bambergerrearrangementofphenylhydroxylamine.

Table1

Propertiesofpreciousmetalcatalystssupportedoncarbonblack:metaldispersion, totalsurfacearea.

Catalyst Metal dispersion(%)

COuptake (mLgcat−1)

BETsurface area(m2gcat−1)

Pt/C3% 65 2.5 920

Pd/C5% 27 3.2 880

Rh/C5% 24 2.9 890

Ru/C5% 23 2.8 910

thestabilityofthesolvent.Allthesolventsemployeddidnotshow anyproductsofreductionatGCanalysis.

Inatypicalexperiment2.5mLofacetonitrile,withsuspended thePd/Ccatalyst(typically50mg),wasintroducedintothereac- tor.Afterthatthereactorwasclosed,purgedbeforewithnitrogen andthenwithhydrogen,pressurizedat121kPa,finallyheatedat 353Kunderstirringfor2hinordertoactivatethecatalyst.The temperatureofreaction(range 323–363K)wasleft tostabilize, thanthepreheatedsolutionof acetonitrilewatertrifluoroacetic acidandnitrobenzene(c.a.22.5mL,concentrationnitrobenzene 0.075molL−1, CF3COOH 0.2–0.8molL−1) was added toreactor.

Afterthe addition of this solution,the computing of the reac- tion time starts and the liquid phase is periodically sampled and analyzed byGC, GC–MSand HPLC,during reaction course.

Nitrobenzeneataconcentrationof0.075molL−1iscompletelysol- ubleintheH2O–CH3CN–TFAtill5gofwaterin25mLofsolution.

3. Resultsanddiscussion

3.1. Influenceofthesolventsystemontheactivityandselectivity

Thetypeofsolventandtheacidityofthesystemareparame- tersofparamountimportanceforactivity,selectivityandresistance todeactivationofthepreciousmetalphase inacatalyzedreac- tion. This is especially true in the nitrobenzene conversion to 4-aminophenol,sincebothreactionsoftheprocess(consecutive hydrogenationandBambergerrearrangement)aresensitivetothe natureofthesolvent[23,25].Forthisreasonascreeningofvarious solventsisimportantinordertoselectthebestoneforthereaction.

WetestedseveralsolventsinthepresenceofPt/C,however,CH3CN givesthebestresults(seeTable2andsupplementarymaterials).

Thereasonofthehigheryieldin4-aminophenolbyusingCH3CN asasolventislikelyduetoasimultaneousandsynergiceffectof CH3CNindeactivatingthestageofhydrogenationandinpromoting therearrangementoftheN-phenylhydroxylamine.Asamatterof fact,insinglephasereactionswhenCH3CNisnotthesolventmuch loweryieldin4-aminophenolisobtained.Forinstance,inthepres- enceof1,4-dioxane,methanolandnitromethanethereactionis selectivetoaniline,whileitshowsacomplexmixtureofproducts indimethylformamide.Onthecontrary,thereactionsarepracti- callyinhibitedbyusingdimethylsulfoxideorsulfolaneassolvents, sincetheyarebothdeactivatingsubstancesforhydrogenationpre- ciousmetalcatalysts[26].Moreover,thereactionhasbeentestedin thepresenceofHClandCH3SO3Hasacidsystems.Inthepresence ofHCl,asexpected,thereactionproceedtotheformationofaniline

andchloroanilines,whileinthepresenceCH3SO3Hweobserveani- lineandacomplexmixturesofnotidentifiedproducts.Inaddition, wefoundtheformationoftwoliquidphasesandprecipitationof saltsinbothreactions.

3.2. Influenceofthecatalysttypeonreactionrateandselectivity

Theresultsintheprevioussectionsuggestthat thebestsol- ventisCH3CN,coupledwithCF3COOHasacidcatalyst.Becauseof theseevidenceswewillexclusivelyshowresultsofexperiments carriedoutinthemixtureCF3COOH–CH3CN,whichisactuallya CF3COOH–H2O–CH3CNsystemsinceH2Oiscontainedeitherinthe solventorinthereagent.Inaddition,H2OisareagentintheBam- bergerrearrangementforthisreasonitsroleinthereactionpath willbestudied.

Thecomparisonofvariouspreciousmetalcatalystsisreported inTable2.Itisnoteworthythatthebestperformingone,interms ofbothcatalyticactivityandyieldto4-aminophenol,isPt/C.This givesthebestresultsalsowiththebiphasicsulfuricacidnitroben- zenesystem[1–6].BothPd/CandRh/Cshowhighhydrogenation activity,but4-aminophenolyields(inbothcases)islowerthan thatobservedinthepresenceofPt/C.Ru/Cshowsbothpoorhydro- genationactivityandnegligible4-aminophenolyield,becauseof itsintrinsiclowhydrogenationactivityobservedinthesereactions (Table3).

Fig.1showsthatthetrendsof4-aminophenol yieldvs.time are similar in the presence of different metal catalysts. These trendsshowthat theformation of 4-aminophenoldecreasesas thereactionproceedssuggestinganinfluenceoftheproductson the4-aminophenolyield.Asamatteroffact,aminesreducethe overallacidityofthesolution,thuslikely decreasingtherateof rearrangementoftheN-phenylhydroxylamineandtheoverallyield in4-aminophenol.Besides,itislikelythatthebetterperformance

0 200 400 600 800 1000 1200

0 10 20 30 40 50 60

yield (%)

time (minutes) Pt/C

Pd/C Rh/C Ru/C

Fig.1.Influenceofthecatalysttypeon4-aminophenolyield.Runconditions:T:

353K,kPa,PH2121kPa,nitrobenzene0.075molL−1,CF3COOH0.6molL−1,H2O2.2g, CH3CN22g,catalyst50mg.

(4)

Table2

Influenceofthesolventon4-aminophenolandanilineyieldafter20h.Runconditions:T:353K,PH2121kPa,nitrobenzene0.075molL−1,acidcatalyst0.6molL−1,H2O2.2g, solvent22g,catalystPt/C3%50mg.

Solvent-acid Conversion(%) Yield4-APa(%) YieldANb(%) Yieldothers(%) Notes

CH3CN–CF3COOH 65 42 13 10 Azoxy-azobenzene

CH3CN–HCl 20 traces 10 10 Azoxy-azobenzene,chloroanilines

CH3CN–CH3SO3H 20 traces 12 8 Azoxy-azobenzene

C4H4O2c–CF3COOH 98 5 90 3 trifluoroacetanilide

CH3NO2–CF3COOH 88 15 60 13 Azoxy-azobenzene,2-EtO-anilineand

anilides

(CH3)2NCHO–CF3COOH 92 10d 40 42 Unidentifiedproducts

(CH3)2SO–CF3COOH <1 Traces At378K1MPareactiondoesnot

proceed

(CH2)4SO2e–CF3COOH <1 Traces Traces Traces Practicallynoreaction

CH3OH–CF3COOH 96 5 60 31 Trifluoroacetanilides,2-EtO-aniline

andanilides,Azoxy-azobenzene

a4-AP=4-aminophenol.

b AN=aniline.

c 1,4-Dioxane.

d mainlyN-trifluoroacetyl-4-aminophenol.

eSulfolane.

Table3

Influenceofthecatalysttypeonnitrobenzeneconversion,4-aminophenolyieldminutesandinitialreactionrateafter180min.Runconditions:T:353K,PH2121kPa, nitrobenzene0.075molL−1,CF3COOH0.6molL−1,H2O2.2g,CH3CN22g,catalyst50mg.

Catalyst Conversion(%) Yield4-APa(%) YieldAN(%) Yieldothers(%) r0(molL−1min−1gmet−1)

Pt/C3% 41 26 2 12 0.13

Pd/C5% 42 14 26 1 0.078

Rh/C5% 46 16 29 1 0.080

Ru/C5% 0.4 Traces 0.19 0.2 0.0007

aTheseproductsareamixtureof4-aminophenolandtrifluoroacetylatedcompoundsof4-aminophenol.

ofPt/Ccatalystis duetoa specificselectivityofthecatalystto 4-aminophenol.

3.3. Timevs.concentrationprofiles

In Fig. 2 reaction shows time vs. concentration profiles of the species observed in the hydrogenation of nitrobenzene in CH3CN–H2O–CF3COOH. The concentrationof 4-aminophenol increasessmoothlywiththetime,onthecontrary,theyieldto aniline hasa significantincrease only after a long time. Other productshavebeen identified,but not preciselyquantified and aresignedas“other”.Themainsideproducts(inagreementwith the Haber reduction scheme of nitrobenzene [27]) are azoxy- benzeneandazo-benzene,whicharehydrogenatedtoanilineafter alongertime.Besides,therearetracesofN-phenylhydroxylamine

0 200 400 600 800 1000 1200

0 1 2 3 4 5 6 7 8

102 concentration (mol L-1)

time (minutes)

nitrobenzene 4-aminophenol aniline other

Fig. 2.Time concentration profile of nitrobenzene hydrogenation to 4- aminophenol.Runconditions:T:353K,PH2121kPa,nitrobenzene0.75molL−1, CF3COOH0.6molL−1,H2O2.2g,CH3CN22g,catalystPt/C50mg.

andnitrosobenzene,buttheseproductsarepresentinverysmall amountandonlyafterfewminutesofreaction.Itisnoteworthythat theproducts“other”passthroughamaximumandtheirdecrease isaccompaniedwiththesteepestanilineincrease.Thisbehavioris consistentwiththeHaberreductionschemeofnitrobenzenewhere azobenzeneandazoxybenzeneareintermediatestoaniline[27].

3.4. Influenceofcatalystamountontheinitialreactionrate

Fig.3showstheinfluenceofthecatalystamountontheinitial reactionrateandontheyieldof4-aminophenol.Itappears(Fig.3a) thatexternalmasstransferpoorlyinfluencesthereactionkinetics becauseofthesmallvalueoftheintercept[28].However,acom- pleteevaluationoftheinfluenceofrateofdiffusionofreagentsand productsonthereactionkineticsisbeyondthescopeofthepresent work,inwhichinitialreactionratedataaregivenonlyforcom- parativepurpose.Theyieldof4-aminophenolseemstobefaintly influencedbythecatalystamount(Fig.3b),furthermore,catalyst deactivationaffectstheoverallreactionkinetics,beingreacheda plateau,inanycase.

3.5. Influenceoftemperatureonreactionrateandselectivity

TheArrheniusplotoftheinitialreactionrate(seesupplemen- tarymaterials)presentsanalmostlineartrend,withatemperature coefficient (orapparent activation energy) of 91kJmol−1. Even though,kineticdataarereferredtoinitialreactionrate,thevalue oftheapparentactivationenergytogetherwiththeresultsofthe previoussectionsuggestthekineticofreactionispoorlyinfluenced ofbyexternaldiffusionlimitation[28].Inadditions,theinspection ofWheeler–Weiszcriterionimplieslittleinfluenceoftheinternal diffusion,sincevaluesintherangeof0.05–0.11arecalculatedfor hydrogenandnitrobenzene,respectively[28].Theseresultsarein agreementwithotherhydrogenationreactioncarriedoutunder similarconditionsbyusingPd/Ccatalystswithsimilarporosityand granulometry[24].

Riferimenti

Documenti correlati

This result strongly suggests that we are observing discrete shifts from part-time to full-time work, as conjectured by Zabalza et al 1980 and Baker and Benjamin 1999, rather

In particular, generational accounting tries to determine the present value of the primary surplus that the future generation must pay to government in order to satisfy the

In Section 3, we introduce our basic representation of BoD constraints with layered preferences, and provide a general constraint propagation algorithm grounded on

Here, to make up for the relative sparseness of weather and hydrological data, or malfunctioning at the highest altitudes, we complemented ground data using series of remote sensing

The values of pressure on the lateral surface of the cross duct obtained during experimental investigation are necessary for determination of the gas velocity

A novel hydrophonic probe (“Soundfish”) placed inside the WWF-Natural Marine Reserve of Miramare (Trieste, Italy) allowed for characterization of the underwater

(3) FINDINGS IN SUPPORT OF SENTENCE OF DEATH.—Notwithstanding the recommendation of a majority of the jury, the court, after weighing the aggravating and mitigating circumstances,

benzene and an aqueous solution of 0.6 mol l −1 ZnSO 4. A detailed kinetic measurement has been carried out in order to study the influence of the preparation procedure and of