• Non ci sono risultati.

62 in Semiconductors and semimetals, Academic Press, (1999)

N/A
N/A
Protected

Academic year: 2021

Condividi "62 in Semiconductors and semimetals, Academic Press, (1999)"

Copied!
5
0
0

Testo completo

(1)

[1] H. Liu and F. Capasso, Intersubband transitions in quantum wells: Phy- sics and device applications I. No. v. 1;v. 62 in Semiconductors and semimetals, Academic Press, (1999).

[2] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y.

Cho, Quantum cascade laser, Science, vol. 264, no. 5158, pp. 553556, (1994).

[3] C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Recent progress in quantum cascade lasers and applications, Reports on Progress in Physics, vol. 64, no. 11, p. 1533, (2001).

[4] B. Williams, S. Kumar, Q. Hu, and J. Reno, Operation of teraher- tz quantum-cascade lasers at 164 k in pulsed mode and at 117 k in continuous-wave mode, Opt. Express, vol. 13, pp. 33313339, (2005).

[5] B. S. Williams, Terahertz quantum-cascade lasers, Nature, vol. 1, no. 9, pp. 517525, (2007).

[6] R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Lineld, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Teraher- tz semiconductor-heterostructure laser, Nature, vol. 417, no. 6885, pp. 156159, (2002).

[7] R. Kazarinov and R. Suris, Possibility of amplication of electroma- gnetic waves in a semiconductor with a superlattice, Fizika i Tekhnika Poluprovodnikov, vol. 5, no. 4, pp. 797800, (1971).

(2)

[8] F. Rossi, Theory of Semiconductor Quantum Devices: Microscopic Mo- deling and Simulation Strategies. Nanoscience and Technology, Springer, (2010).

[9] G. Grosso and G. Parravicini, Solid state physics. Academic Press, (2000).

[10] A. Wittmann, High-performance quantum cascade laser sources for spectroscopic applications. ETH, (2009).

[11] H. C. Liu, M. Buchanan, and Z. R. Wasilewski, How good is the po- larization selection rule for intersubband transitions?, Applied Physics Letters, vol. 72, no. 14, pp. 16821684, (1998).

[12] S. Kohen, B. S. Williams, and Q. Hu, Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators, Journal of Applied Physics, vol. 97, no. 5, p. 053106, (2005).

[13] D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonic, Mechanisms of tem- perature performance degradation in terahertz quantum-cascade lasers,

Applied Physics Letters, vol. 82, no. 9, pp. 13471349, (2003).

[14] L. Mahler and A. Tredicucci, Photonic engineering of surface-emitting terahertz quantum cascade lasers, Laser & Photonics Reviews, vol. 5, no. 5, pp. 647658, (2011).

[15] L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, High-power surface emission from terahertz distri- buted feedback lasers with a dual-slit unit cell, Applied Physics Letters, vol. 96, no. 19, p. 191109, (2010).

[16] N. W. Ashcroft and D. N. Mermin, Solid State Physics. Toronto:

Thomson Learning, 1 ed., (1976).

[17] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Pho- tonic Crystals: Molding the Flow of Light (Second Edition). Princeton University Press, 2 ed., (2008).

[18] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase wi- th long-range orientational order and no translational symmetry, Phys.

Rev. Lett., vol. 53, pp. 19511953, (1984).

[19] M. V. Jari¢, Diraction from quasicrystals: Geometric structure factor,

Phys. Rev. B, vol. 34, pp. 46854698, (1986).

(3)

[20] N. d. Bruijn, Algebraic theory of penrose's non-periodic tilings of the plane. i, ii:dedicated to g. pólya, (1981).

[21] M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice, Phys. Rev. Lett., vol. 92, p. 123906, (2004).

[22] M. Qiu, Eective index method for heterostructure-slab-waveguide- based two-dimensional photonic crystals, Applied Physics Letters, vol. 81, no. 7, pp. 11631165, (2002).

[23] M. Bahriz, V. Moreau, R. Colombelli, O. Crisafulli, and O. Painter,

Design of mid-ir and thz quantum cascade laser cavities with complete tm photonic bandgap, Opt. Express, vol. 15, pp. 59485965, (2007).

[24] P. Ciarlet, S. for Industrial, and A. Mathematics, The Finite Element Method for Elliptic Problems. Classics in applied mathematics, North Holland, (1978).

[25] J. Volakis, A. Chatterjee, and L. Kempel, Finite Element Method for Electromagnetics: Antennas, Microwave Circuits, and Scattering Appli- cations. IEEE/OUP series on electromagnetic wave theory, IEEE Press, (1998).

[26] J. Jin, The Finite Element Method in Electromagnetics. A Wiley-Interscience publication, Wiley, (2002).

[27] A. Bossavit, Computational electromagnetism: variational formula- tions, complementarity, edge elements. Academic Press series in electromagnetism, Academic Press, (1998).

[28] P. Monk and P. Monk, Finite Element Methods for Maxwell's Equations.

Numerical Mathematics and Scientic Computation, Clarendon Press, (2003).

[29] F. Gross, Frontiers in Antennas: Next Generation Design &

Engineering. McGraw-Hill, (2010).

[30] J.-P. Berenger, A perfectly matched layer for the absorption of elec- tromagnetic waves, Journal of Computational Physics, vol. 114, no. 2, pp. 185  200, (1994).

[31] F. L. Teixeira and W. C. Chew, Perfectly matched layer in cylindrical coordinates.

(4)

[32] A. Mekis, M. Meier, A. Dodabalapur, R. Slusher, and J. Joannopoulos,

Lasing mechanism in two-dimensional photonic crystal lasers, Applied Physics A: Materials Science & Processing, vol. 69, pp. 111114, (1999).

10.1007/s003390050981.

[33] M. Notomi, H. Suzuki, and T. Tamamura, Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps, Applied Physics Letters, vol. 78, no. 10, pp. 13251327, (2001).

[34] K. Srinivasan and O. Painter, Momentum space design of high-q photonic crystal optical cavities, Opt. Express, vol. 10, pp. 670684, (2002).

[35] Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Lineld, and A. G. Davies, Electri- cally pumped photonic-crystal terahertz lasers controlled by boundary conditions., Nature, vol. 457, no. 7226, pp. 174178, (2009).

[36] J. T. Verdeyen, Laser electronics. Solid state physical electronics series, Prentice Hall, (1995).

[37] A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino,

Band gap formation and multiple scattering in photonic quasicrystals with a penrose-type lattice, Phys. Rev. Lett., vol. 94, p. 183903, (2005).

[38] A. D. Villa, S. Enoch, G. Tayeb, F. Capolino, V. Pierro, and V. Galdi,

Localized modes in photonic quasicrystals with penrose-type lattice,

Opt. Express, vol. 14, pp. 1002110027, (2006).

[39] Y. S. Chan, C. T. Chan, and Z. Y. Liu, Photonic band gaps in two dimensional photonic quasicrystals, Phys. Rev. Lett., vol. 80, pp. 956

959, (1998).

[40] M. Florescu, S. Torquato, and P. J. Steinhardt, Complete band gaps in two-dimensional photonic quasicrystals, Phys. Rev. B, vol. 80, p. 155112, (2009).

[41] J. E. S. Socolar, Simple octagonal and dodecagonal quasicrystals,

Phys. Rev. B, vol. 39, pp. 1051910551, (1989).

[42] G. Gumbs and M. K. Ali, Dynamical maps, cantor spectra, and locali- zation for bonacci and related quasiperiodic lattices, Phys. Rev. Lett., vol. 60, pp. 10811084, (1988).

(5)

[43] K. Niizeki and T. Akamuatsu, The reciprocal space properties of the electronic wave functions of the penrose lattice, Journal of Physics:

Condensed Matter, vol. 2, no. 33, p. 7043, (1990).

[44] M. Rochat, J. Faist, M. Beck, U. Oesterle, and M. Ilegems, Far- infrared (lambda = 88 mu m) electroluminescence in a quantum casca- de structure, Applied Physics Letters, vol. 73, no. 25, pp. 37243726, (1998).

[45] L. Ajili, G. Scalari, J. Faist, H. Beere, E. Lineld, D. Ritchie, and G. Da- vies, High power quantum cascade lasers operating at lambda = 87 and 130 mu m, Applied Physics Letters, vol. 85, no. 18, pp. 39863988, (2004).

[46] J. Nedelec, Mixed nite element in 3d in h(div) and h(curl), in Equa- di 6 (J. Vosmanský and M. Zlámal, eds.), vol. 1192 of Lecture No- tes in Mathematics, pp. 321325, Springer Berlin / Heidelberg, (1986).

10.1007/BFb0076088.

Riferimenti

Documenti correlati

3 Upper panel: Room T pressure evolution of the angle a (red) and atomic position u (blue) of the rhombohedral cell (R%3m) in the A7 and p-sc structures of P, with the magenta

Furthermore, traditional opinions held by women regarding the role of women in the labor market are shown to be developed in youth and to result in reductions in their human

In chaotic networks the cycle length sharply increases with the network size, and nearby initial states are likely to lead to different attractors, while in ordered systems the

Library, Azienda Unità Sanitaria Locale - IRCCS of Reggio Emilia, Italy; 4 Epidemiology Unit, Azienda Unità Sanitaria Locale - IRCCS of Reggio Emilia, Italy; 5 Medical