[1] H. Liu and F. Capasso, Intersubband transitions in quantum wells: Phy- sics and device applications I. No. v. 1;v. 62 in Semiconductors and semimetals, Academic Press, (1999).
[2] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y.
Cho, Quantum cascade laser, Science, vol. 264, no. 5158, pp. 553556, (1994).
[3] C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Recent progress in quantum cascade lasers and applications, Reports on Progress in Physics, vol. 64, no. 11, p. 1533, (2001).
[4] B. Williams, S. Kumar, Q. Hu, and J. Reno, Operation of teraher- tz quantum-cascade lasers at 164 k in pulsed mode and at 117 k in continuous-wave mode, Opt. Express, vol. 13, pp. 33313339, (2005).
[5] B. S. Williams, Terahertz quantum-cascade lasers, Nature, vol. 1, no. 9, pp. 517525, (2007).
[6] R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Lineld, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Teraher- tz semiconductor-heterostructure laser, Nature, vol. 417, no. 6885, pp. 156159, (2002).
[7] R. Kazarinov and R. Suris, Possibility of amplication of electroma- gnetic waves in a semiconductor with a superlattice, Fizika i Tekhnika Poluprovodnikov, vol. 5, no. 4, pp. 797800, (1971).
[8] F. Rossi, Theory of Semiconductor Quantum Devices: Microscopic Mo- deling and Simulation Strategies. Nanoscience and Technology, Springer, (2010).
[9] G. Grosso and G. Parravicini, Solid state physics. Academic Press, (2000).
[10] A. Wittmann, High-performance quantum cascade laser sources for spectroscopic applications. ETH, (2009).
[11] H. C. Liu, M. Buchanan, and Z. R. Wasilewski, How good is the po- larization selection rule for intersubband transitions?, Applied Physics Letters, vol. 72, no. 14, pp. 16821684, (1998).
[12] S. Kohen, B. S. Williams, and Q. Hu, Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators, Journal of Applied Physics, vol. 97, no. 5, p. 053106, (2005).
[13] D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonic, Mechanisms of tem- perature performance degradation in terahertz quantum-cascade lasers,
Applied Physics Letters, vol. 82, no. 9, pp. 13471349, (2003).
[14] L. Mahler and A. Tredicucci, Photonic engineering of surface-emitting terahertz quantum cascade lasers, Laser & Photonics Reviews, vol. 5, no. 5, pp. 647658, (2011).
[15] L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, High-power surface emission from terahertz distri- buted feedback lasers with a dual-slit unit cell, Applied Physics Letters, vol. 96, no. 19, p. 191109, (2010).
[16] N. W. Ashcroft and D. N. Mermin, Solid State Physics. Toronto:
Thomson Learning, 1 ed., (1976).
[17] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Pho- tonic Crystals: Molding the Flow of Light (Second Edition). Princeton University Press, 2 ed., (2008).
[18] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase wi- th long-range orientational order and no translational symmetry, Phys.
Rev. Lett., vol. 53, pp. 19511953, (1984).
[19] M. V. Jari¢, Diraction from quasicrystals: Geometric structure factor,
Phys. Rev. B, vol. 34, pp. 46854698, (1986).
[20] N. d. Bruijn, Algebraic theory of penrose's non-periodic tilings of the plane. i, ii:dedicated to g. pólya, (1981).
[21] M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice, Phys. Rev. Lett., vol. 92, p. 123906, (2004).
[22] M. Qiu, Eective index method for heterostructure-slab-waveguide- based two-dimensional photonic crystals, Applied Physics Letters, vol. 81, no. 7, pp. 11631165, (2002).
[23] M. Bahriz, V. Moreau, R. Colombelli, O. Crisafulli, and O. Painter,
Design of mid-ir and thz quantum cascade laser cavities with complete tm photonic bandgap, Opt. Express, vol. 15, pp. 59485965, (2007).
[24] P. Ciarlet, S. for Industrial, and A. Mathematics, The Finite Element Method for Elliptic Problems. Classics in applied mathematics, North Holland, (1978).
[25] J. Volakis, A. Chatterjee, and L. Kempel, Finite Element Method for Electromagnetics: Antennas, Microwave Circuits, and Scattering Appli- cations. IEEE/OUP series on electromagnetic wave theory, IEEE Press, (1998).
[26] J. Jin, The Finite Element Method in Electromagnetics. A Wiley-Interscience publication, Wiley, (2002).
[27] A. Bossavit, Computational electromagnetism: variational formula- tions, complementarity, edge elements. Academic Press series in electromagnetism, Academic Press, (1998).
[28] P. Monk and P. Monk, Finite Element Methods for Maxwell's Equations.
Numerical Mathematics and Scientic Computation, Clarendon Press, (2003).
[29] F. Gross, Frontiers in Antennas: Next Generation Design &
Engineering. McGraw-Hill, (2010).
[30] J.-P. Berenger, A perfectly matched layer for the absorption of elec- tromagnetic waves, Journal of Computational Physics, vol. 114, no. 2, pp. 185 200, (1994).
[31] F. L. Teixeira and W. C. Chew, Perfectly matched layer in cylindrical coordinates.
[32] A. Mekis, M. Meier, A. Dodabalapur, R. Slusher, and J. Joannopoulos,
Lasing mechanism in two-dimensional photonic crystal lasers, Applied Physics A: Materials Science & Processing, vol. 69, pp. 111114, (1999).
10.1007/s003390050981.
[33] M. Notomi, H. Suzuki, and T. Tamamura, Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps, Applied Physics Letters, vol. 78, no. 10, pp. 13251327, (2001).
[34] K. Srinivasan and O. Painter, Momentum space design of high-q photonic crystal optical cavities, Opt. Express, vol. 10, pp. 670684, (2002).
[35] Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Lineld, and A. G. Davies, Electri- cally pumped photonic-crystal terahertz lasers controlled by boundary conditions., Nature, vol. 457, no. 7226, pp. 174178, (2009).
[36] J. T. Verdeyen, Laser electronics. Solid state physical electronics series, Prentice Hall, (1995).
[37] A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino,
Band gap formation and multiple scattering in photonic quasicrystals with a penrose-type lattice, Phys. Rev. Lett., vol. 94, p. 183903, (2005).
[38] A. D. Villa, S. Enoch, G. Tayeb, F. Capolino, V. Pierro, and V. Galdi,
Localized modes in photonic quasicrystals with penrose-type lattice,
Opt. Express, vol. 14, pp. 1002110027, (2006).
[39] Y. S. Chan, C. T. Chan, and Z. Y. Liu, Photonic band gaps in two dimensional photonic quasicrystals, Phys. Rev. Lett., vol. 80, pp. 956
959, (1998).
[40] M. Florescu, S. Torquato, and P. J. Steinhardt, Complete band gaps in two-dimensional photonic quasicrystals, Phys. Rev. B, vol. 80, p. 155112, (2009).
[41] J. E. S. Socolar, Simple octagonal and dodecagonal quasicrystals,
Phys. Rev. B, vol. 39, pp. 1051910551, (1989).
[42] G. Gumbs and M. K. Ali, Dynamical maps, cantor spectra, and locali- zation for bonacci and related quasiperiodic lattices, Phys. Rev. Lett., vol. 60, pp. 10811084, (1988).
[43] K. Niizeki and T. Akamuatsu, The reciprocal space properties of the electronic wave functions of the penrose lattice, Journal of Physics:
Condensed Matter, vol. 2, no. 33, p. 7043, (1990).
[44] M. Rochat, J. Faist, M. Beck, U. Oesterle, and M. Ilegems, Far- infrared (lambda = 88 mu m) electroluminescence in a quantum casca- de structure, Applied Physics Letters, vol. 73, no. 25, pp. 37243726, (1998).
[45] L. Ajili, G. Scalari, J. Faist, H. Beere, E. Lineld, D. Ritchie, and G. Da- vies, High power quantum cascade lasers operating at lambda = 87 and 130 mu m, Applied Physics Letters, vol. 85, no. 18, pp. 39863988, (2004).
[46] J. Nedelec, Mixed nite element in 3d in h(div) and h(curl), in Equa- di 6 (J. Vosmanský and M. Zlámal, eds.), vol. 1192 of Lecture No- tes in Mathematics, pp. 321325, Springer Berlin / Heidelberg, (1986).
10.1007/BFb0076088.