• Non ci sono risultati.

506380100125160200250315400500630800100012501600200025003150400050006300800010000ALSound Power Level (dB re 1pW)

N/A
N/A
Protected

Academic year: 2021

Condividi "506380100125160200250315400500630800100012501600200025003150400050006300800010000ALSound Power Level (dB re 1pW)"

Copied!
28
0
0

Testo completo

(1)

D. Commins (1) , R. Pompoli (2) , A. Farina (3) , P. Fausti (2) , N. Prodi (2) Acoustics of the

Teatro Arcimboldi in Milano.

Part 2:

Scale model studies, final results

(1) Commins Acoustics Workshop (2) University of Ferrara

AUDITORIUM ACOUSTICS 2000

Imperial College (London), 19-21 July 2002

(2)

Teatro degli Arcimboldi: shape and dimensions

Volume N. seats RTocc. mid Paris, Opéra Garnier 10000 2131 1.15 Milano, La Scala, 11250 2135 1.2 Wien, Staatsoper 11600 1658 1.3

London, Royal Opera House 12250 2120 1.1 Milano, Arcimboldi 19500 2385 1.7

Buenos Aires, Teatro Colon 20570 2487 1.8

Paris, Opéra Bastille 21000 2700 1.5

New York, Metropolitan 24724 3816 1.8

(3)

Comparison between Teatro La Scala and Teatro degli Arcimboldi

La Scala Arcimboldi

Volume V 11252 m 3 19500 m 3

N. of seats N 2282 2385

Ratio V/N 5 m 3 /seat 8 m 3 /seat Average height in stalls 19 m 15 m Lenght of stalls in plan 32 m 32 m distance of listener more far 37 m 39 m

Total internal surface (in plan) 1635 m 2 1980 m 2

Surface of the orchestra pit 125 m 2 130 m 2

La Scala Arcimboldi

(4)

Scale Model

1:16 wood scale model

MLSSA system running at a sampling rate of 125 kHz

Piezoelectric “omnidirectional” source (freq, response 1-50 kHz)

Poliurethan foam dummies Binaural ¼” microphones

Real Room

Aurora system running at 48 kHz, 24 bits (Digigram sound card)

Wide-band dodechaedron loudspeaker (equalized to flat sound power between 60

- 16k Hz)

Sennheiser MKE2002 binaural microphone

Soundfield ST-250 microphone

Measurements

(5)

Scale Model of Teatro degli Arcimboldi

Goals:

•Study of early reflections

•Research of echoes, focalizations and shadows

•Optimal alignment of reflective panels.

Technical details:

•The model is in scale 1:16

•Plywood, 20 mm thick

•Reflectors are built in plexiglass

•The seats are completely full of

audience – the dummies are made of

poliurethan foam, with wooden spherical

(6)

•Source in orchestra pit, curtain closed

•Source on the stage, with orchestra shell

•7 binaural receivers, (blu dots)

Scale Model measurements

(7)

•First Sound Source: 6-ways piezoelectric tweeter

Equipment employed – sound sources

(8)

•Second Sound Source: piezoelectric tweeter with pipe adaptor

Equipment employed – sound sources

Copper Pipe

Plasticine

Tweeter Plexiglass adaptor

Cavity

(9)

Directivity of the second sound source

4000 Hz (250 Hz)

-20 -15 -10 -5 0 5 10 15

+0°

+15°

+30°

+45°

+60°

+75°

+90°

+105°

+120°

+135°

+150°

+165°

±180°

-165°

-150°

-135°

-120°

-105°

-90°

-75°

-60°

-45°

-30°

-15°

3150 4000 5000 2000 Hz

(125 Hz)

-20 -15 -10 -5 0 5 10 15

+0°

+15°

+30°

+45°

+60°

+75°

+90°

+105°

+120°

+135°

+150°

+165°

±180°

-165°

-150°

-135°

-120°

-105°

-90°

-75°

-60°

-45°

-30°

-15°

1600 2000 2500

8000 Hz (500 Hz)

-20 -15 -10 -5 0 5 10 15

+0°

+15°

+30°

+45°

+60°

+75°

+90°

+105°

+120°

+135°

+150°

+165°

±180°

-165°

-150°

-135°

-120°

-105°

-90°

-75°

-60°

-45°

-30°

-15°

6300 8000 10000

16000 Hz (1000 Hz)

-20 -15 -10 -5 0 5 10 15

+0°

+15°

+30°

+45°

+60°

+75°

+90°

+105°

+120°

+135°

+150°

+165°

±180°

-165°

-150°

-135°

-120°

-105°

-90°

-75°

-60°

-45°

-30°

-15°

12500 16000 20000

(10)

•Binaural microphone (1/4” capsules)

•MLSSA board in an Epson portable PC

•Home-made software for computing IACC

Equipment employed

binaural measurement system

(11)

Typical impulse responses in the scale model

(12)

Measurements in the real room

Session Source Position n.

receivers

Audience and musicians

Reflectin g panels

G map

A Orchestra Pit, curtains closed 7 (62) no yes Si

B Orchestra Pit, curtains closed 7 (62) no no si

C Stage, orchestra shell 7 no yes no

D Stage, orchestra shell 2 si yes no

E Stage, opera scenery 7 no yes no

(13)

Measurements in the real room

Signal generation and emission

Notebook PC with PCMCIA sound board (Digigram VX Pocket V2, 24 bits, 48 kHz)

CoolEdit with Aurora plugins (log sine sweep signal)

Dodechaedron loudspeaker with integrated power amplifier and wireless remote control (LookLine D300) Binaural recording

2 Sennheiser MKE 2002 dummy heads

1 Tascam DAP1 DAT recorder

1 Sony TCD-D100 DAT recorder

Waveterminal U2A SPDIF-to-USB interface B-format recording

Soundfield ST250 microphone

Notebook PC with PCMCIA sound board (Digigram VX Pocket 4404 bits, 48 kHz, 4 channels)

Sound Pressure Level measurement

Real-time, hand-held 1/3 octave spectrum analyzer (B&K 2260 Investigator)

Post processing software Cool Edit Pro with Aurora plugins

(14)

Sound Source

The loudspeaker on the stage

Measurement of the sound power with the Sound Intensity method (ISO-9614-

II)

(15)

Sound Power Spectrum

Sound Power Level - Look Line D300 Dodechaedron loudspeaker

60 65 70 75 80 85 90 95 100 105 110

50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000 A L

Sound Power Level (dB re 1pW)

(16)

Microphones

Soundfield ST-250 (B format)

Sennheiser MKE-2002

(binaural)

(17)

Measurement of the directivity of the Soundfield ST-250 microphone

Microphone on the automated rotating table

CoolEditPro generating the MLS test signal, the pulses for the rotating table, and simultaneously

recording channels W (omni) and X (figure of

(18)

Polar plots of the ST-250 directivity

125 Hz

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0 5 10 1520

2530 35

40 45

50 55

60 65

70 75

80 85 90 95 100 105 110 115 120 125 130 135 140 150145 160155 170165 180 175 190185 200195 210205 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290

295 300

305 310

315 320

325330335340345350355

Pressure Velocity

250 Hz

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0 5 10 1520

2530 35

40 45

50 55

60 65

70 75

80 85 90 95 100 105 110 115 120 125 130 135 140 150145 160155 170165 180 175 190185 200195 210205 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290

295 300

305 310

315 320

325330335340345350355

Pressure Velocity

4000 Hz

0 0.5 1 1.5 2 2.5 3 3.5

0 5 10 1520

2530 35

40 45

50 55

60 65

70 75

80 85 90 95 100 105 110 115 120 125 130 135 225

230 235 240 245 250 255 260 265 270 275 280 285 290

295 300

305 310

315

320325330335340345350355

Pressure Velocity

8000 Hz

0 0.2 0.4 0.6 0.8 1 1.2

0 5 10 152025

3035 40

45 50

55 60

65 70

75 80 85 90 95 100 105 110 115 120 125 130 135 225

230 235 240 245 250 255 260 265 270 275 280 285 290

295 300

305 310

315

320325330335340345350355

Pressure Velocity

(19)

Measured acoustical parameters (averages)

Acoustical parameter Measured Designed Rev. Time T30 1.7 s 1,8 s Early Decay Time EDT 1.75 s 1,7 – 1,9 s

Clarity C80 0.5 dB –1 to +3 dB Strenght 0 to 4 dB –2 to + 4 dB

I.A.C.C. 0.24 < 0.70

I.T.D.G. 25 ms 25 ms

Teatro Degli Arcimboldi - Strenght - 1000 Hz

Reverberation Time T30 (empty)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

T30 [s]

Max Avg Min

(20)

Other acoustical parameters

Clarity C80

-12 -6 0 6 12

63 125 250 500 1000 2000 4000 8000

Frequency [Hz]

C80 [dB]

Max Med Min

Center Time ts

0 20 40 60 80 100 120 140 160 180 200

63 125 250 500 1000 2000 4000 8000

Frequency [Hz]

ts [s]

Max Med Min

Clarity C50

-24 -18 -12 -6 0 6 12

63 125 250 500 1000 2000 4000 8000

Frequency [Hz]

C50 [dB]

Max Med Min

EDT (without audience)

0.0 0.5 1.0 1.5 2.0 2.5

63 125 250 500 1000 2000 4000 8000

Frequency [Hz]

EDT [s]

Max Med Min

(21)

Research of possible echoes

Wall in back of the stalls

Barron’s Echo criterion

Session C. center of stalls Session B2, center of stalls

(1)

(2)

(22)

Comparison between measurements performed with and without lateral reflective panels

G with panels - G without panels

Reverberation Time T30

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

63 125 250 500 1000 2000 4000 8000

Frequency [Hz]

T30 [s]

Panels No panels

IACC with and without reflecting panels

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

250 500 1000 2000 4000 8000

IACC

Panels No Panels

(23)

Comparison between measurements with and without audience

Reverberation Time T30

0,00 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00

125 250 500 1000 2000 4000

[Hz]

[s]

M4 senza pubblico M4 con pubblico

Variation of T30 in various theatres

0,00 0,20 0,40 0,60 0,80 1,00

[s]

Teatro degli Arcimboldi Teatro alla Scala New National Opera House, Tokyo Staatsoper, Vienna Segerstrom hall, Costa Mesa

Sydney Opera House

Absorption of seats

0,20 0,40 0,60 0,80 1,00 1,20 1,40

coefficiente d'assorbimento alfa

(24)

Comparison between scale model and real room

Center of rear stalls Upper Balcony Center of front stalls Model

Real Room

Reflection from the ceiling in three seats, source in the orchestra pit

(25)

Comparison between scale model and real room

Source inside the orchestra pit, curtain closed: T20

0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10 2.30 2.50

250 500 1000 2000

Frequency [Hz]

T20 [s]

(26)

Comparison between scale model and real room

Source on stage, with orchestra shell: T20

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

125 250 500 1000 2000

T20 [s]

Real room Model Model (compensated for air absorption)

(27)

Conclusions

• The scale model was used mainly for studying the early reflections and for orienting properly the lateral reflectors

• Reverberation time and clarity measured in the model were coincident with the real room only in two octave bands (500 and 1000 Hz)

• The measurements performed in the real hall resulted in acoustical parameters strictly close to the design goal

• The presence of the reflecting panels revealed to be strongly beneficial for the sound field in the stalls, even if they were not optimally oriented

• The effect of seat occupance revealed to be very little, confirming that the

chosen seats give an absorption almost independent of the presence of the

listener

(28)

Riferimenti

Documenti correlati

The sound source is the object where energy generates and is transformed, usually mechanical energy is transformed into acoustic energy.. To hear sound far from

In its result window the user can see the equivalent sound pressure level Leq of the analyzed sound, its maximum SPL values with different time constants, its fluctuations over

This last kind of materials can be really useful in order to reduce sound pressure level inside a room by reducing the amount of reflected energy.. Let’s consider a wall for

Is a process whereby structures and materials are arranged to reduce the transmission of sound from one room or area of a building to another or from the exterior to the interior of

So to avoid aliasing, before sampling an analog signal with small sample rate, we need to apply a steep anti-aliasing filter so that the high frequency portion of the spectrum

structures and materials are arranged to reduce the transmission of sound from one room or area of a building to another or from the exterior to the interior of a building..

The SLM contains a preamplifier for adjusting the full scale value, a weighting network or a bank of pass-band filters, a “true RMS” detector which can

A sound generated in a closed room produces an acoustic field that results from the superposition of direct waves and reflected waves.. Direct waves come directly