• Non ci sono risultati.

gasoline prices in the U.S. Differential demand response to gasoline taxesand Resource and Energy Economics

N/A
N/A
Protected

Academic year: 2021

Condividi "gasoline prices in the U.S. Differential demand response to gasoline taxesand Resource and Energy Economics"

Copied!
21
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Resource and Energy Economics

jo u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / r e e

Differential demand response to gasoline taxes and gasoline prices in the U.S.

Silvia Tiezzi

a,∗

, Stefano F. Verde

b

aDepartmentofEconomicsandStatistics,UniversityofSiena(I),Italy

bFlorenceSchoolofRegulationClimate,EuropeanUniversityInstitute,Italy

a r t i c l e i n f o

Articlehistory:

Received23February2015

Receivedinrevisedform10February2016 Accepted14February2016

Availableonline22February2016

JELclassification:

C3 D1 H3 Q4 Keywords:

Gasolinetaxation Taxsignaleffect

Differentialdemandresponse

a b s t ra c t

This paper offers new evidence concerning the difference in consumers’ reactions to changes in gasoline taxes relative to market-inducedchangesingasolineprices.Usingmicrodatafrom the2007to2009roundsoftheU.S.ConsumerExpenditureSurvey, weestimateacompletesystemofdemandaugmentedwithinfor- mationongasolineexcisetaxes.Byrelyingonacompletesystem ofdemand,weareabletoestimateelasticitiesthattakebehavioral responsesintoaccount.Crucially,themodelallowsgasolinetaxes toaffectdemandintwodistinctways:throughrelativepricesand aslong-runpolicysignals.Differentincreasesingasolinetaxesare consideredforsimulation.A13.2¢/gallontaxincrease,correspond- ingtoa$15/tCO2carbontax,isfoundtocause,inthelongrun,a reductioningasolinedemandthatisaboutseventimesasbigasthat inducedbyanequalmarket-inducedpriceincrease.Thesamemea- sureofdifferentialdemandresponseisderivedfortaxincreases differentinsizeaswellasbyincomequintileandbyregion.We discusstheimplicationsofourfindingsforthedesignofcorrective taxationintheprivatetransportsector.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Agrowingliteraturequestionsthestandardassumptioninpublicfinancethatconsumersrespond tocommoditytaxchangesin thesamewayastheydo topricechangescausedbymarketforces (Chetty,2009;Chettyetal.,2009;Finkelstein,2009;Congdonetal.,2009;GoldinandHomonoff,2013;

∗ Correspondingauthor.Tel.:+390577233029;fax:+390577232661.

E-mailaddresses:[email protected](S.Tiezzi),[email protected](S.F.Verde).

http://dx.doi.org/10.1016/j.reseneeco.2016.02.003 0928-7655/©2016ElsevierB.V.Allrightsreserved.

(2)

DavisandKilian,2011;Lietal.,2014;RiversandSchaufele,2015).Thesestudiesvaryinthegoods considered,theapproachesused,butalsointheexplanationsgivenforsuchdifference.Behavioral economicscontributionsfocusonthevisibility,orsalience,oftaxesasadeterminantofconsumer choice.Forexample,Finkelstein(2009)showsthatthedemandcurvefordrivingismoreinelastic whentollsarechargedelectronicallyascomparedtomanualcollection.Inasimilarvein,Chettyetal.

(2009)demonstratethatmakingsalestaxesmoresalientbyincludingtheminpostedpricesincreases demandresponsiveness.1 Anotherperspectiveisthattaxpaymentsassuchmaybeperceivedasa greaterburdenthanequivalentnon-taxpayments, aphenomenoncalledtaxaversion(McCaffery andBaron,2006).2Butexplanationsmoreconsistentwithrationalbehaviorarealsoprovided.With referencetogasolinedemand,DavisandKilian(2011)andLietal.(2014)suggestthatdifferentdemand responsestochangesingasolinetaxesandtomarket-inducedchangesingasolinepricesmaybedue tothedifferenceinpersistencebetweenthetwotypesofvariations.Astaxchangesarelongerlasting, theyaremorelikelytoinfluencepriceexpectationsand,thereby,long-rundecisionsthathavean impactongasolineconsumption,suchaspurchasingamorefuel-efficientcar,changingtransport modeormovingclosertowork.Thesameauthors,however,allowthateffectsrelatedtosubjective perceptionsoftaxationmayalsoplayarole.Indeed,thesedifferentexplanationsarenotmutually exclusive.Theydescribemechanismsthatinsomemeasuremayallunderliethedifferencesobserved betweendemandresponsestotaxchangesandtomarket-inducedpricechanges.

ThepresentstudyspecificallydealswiththedifferentresponsesofU.S.consumerstochanges ingasolinetaxesandequalchangesingasolinepricescausedbymarketforces.Gasolinetaxesinthe U.S.areverylowcomparedtoothercountries,notablyEuropeanones(OECD,2013).Nonetheless,they generatemorerevenuethananyothercommoditytax,bothatStateandfederallevels.Inrecentyears, growingconcernsrelatedtodecliningfiscalrevenuesandhighCO2emissionsmeantthattheoption ofraisinggasolinetaxeshasreceivedincreasingconsiderationinthepublicpolicydebate.Raising gasolinetaxes,however,isanythingbutapopularmeasure,allthemoresoinaneconomyheavily dependentonprivatetransportation.Thus,thehypothesisthatconsumersmaybemoreresponsive togasolinetaxesthantogasolinepricesisofspecialinterest.Fromanenvironmentalstandpoint,it wouldimplythatataxincreasewouldinducelowergasolineuse–andhenceloweremissions–than standardpriceelasticities(estimatedwithoutdistinguishingbetweenthepricechangesinducedby taxationorbythemarket)wouldindicate.Ofcourse,itwouldalsomeanlessrevenuewouldberaised thanexpected.

Growingempiricalevidence showsthatindeed consumersresponddifferentlytogasolinetax changesascomparedtopricechangesunrelatedtotaxation(DavisandKilian,2011;Lietal.,2014;

RiversandSchaufele,2015).Thepresentpaperofferscorroboratingevidenceofthisphenomenon andcontributestotheliteratureinthreefundamentalrespects.First,theestimatedmodelpositsthat changesingasolinetaxesimpactongasolineconsumptionintwodistinctways.Taxesbeingaprice component,gasolinetaxchangesalterrelativepricesand,consequently,expenditureallocation.At thesametime,astaxesareafiscalpolicyinstrument,gasolinetaxchangesconstitutepolicysignals affectinglong-runconsumerdecisionswhichinturnimpactongasolineconsumption.Therefore,in thelongrun,theeffectivenessofgasolinetaxesinreducinggasolineuseisgivenbythesumofthetwo effects:thepriceeffectandthesignaleffect,respectively.Second,theanalysisiscarriedoutwithin acompletedemandsystemframework.Thismeansthatcomplementaritiesandsubstitutionrela- tionshipsamongthegoodsconsideredareaccountedfor,thusimprovingidentificationoftheeffects understudy.Third,wesimulatedifferentialdemandresponsesfordifferentmagnitudesofthetax- andpricechanges,aswellasacrossdifferentincomelevelsandU.S.regions.Notleast,weprovide newestimatesofdemandelasticitiesforabundleofenergygoods,includinggasoline.Onlyafew studiesongasolinedemandintheU.S.usemicro-foundeddemandsystemswhilealsotakingaccount ofhouseholdheterogeneity(Nicol,2003;Oladosu,2003;WestandWilliams,2004,2007).

1TverskyandKahneman(1974)areprecursorsofthisconceptualstrandinstressingthatconsumers,whenmakingdecisions, heavilyrelyoninformationthatisprominentorreadilyavailable.

2Experimentalevidenceoftaxaversionisgrowing(Kallbekkenetal.,2010,2011;BlaufusandMöhlmann,2014),butthere isnoempiricalevidenceofsuchaframingeffectbasedonchoice,ratherthanexperimental,data.

(3)

Therestofthepaperisorganizedasfollows.Section2illustratestheestimatedmodelandthe simulationofdemandresponsestotaxchangesandtoequalmarket-inducedpricechanges.Section 3describesthedata.Section4isdevotedtotheestimationresultsandsimulationresults.Section5 concludes.

2. Methodology

2.1. TheQAIDSmodel

ThefunctionalformchosenforourmodelistheQuadraticAlmostIdealDemandSystem(QAIDS, Banksetal.,1997),whichgeneralizesthepopularAIDS(DeatonandMuellbauer,1980a,b)byaddinga non-linearincometermtothebudgetshareequations.TheQAIDSallowsforflexibleincomeandprice responsesthatdependontheleveloftotalexpenditure,thusprovidingapracticalspecificationfor demandsacrossmanycommodities.Bycontrast,theAIDSimposesthatallgoodshaveEngelcurves varyinglinearlywiththelogoftotalexpenditure.Thismaybeareasonablespecificationfordemand systemswithfewcommodities(e.g.,WestandWilliams,2004,2007,intheliteraturerelevantto thispaper).However,empiricalstudieshaveoftenfoundnonlinearEngelcurves(Banksetal.,1997), especiallywhendealingwithratherdisaggregateddemandsystemsandbundlesofenergygoods,asin ourcase.Moreover,whenusingsurveydata,anadditionaladvantageofrank-threedemandsystems,3 suchastheQAIDS,isthattheyeasilyallowforhouseholdheterogeneity,thusenrichingthedemand modelandleavinglessspaceformisspecification(Nicol,2001;Labandeiraetal.,2006).

TheQAIDSspecificationisobtainedstartingfromthefollowingindirectutilityfunction:

lnV(p,yh)=



B(p)

lnyh−lnA(p)+G(p)



−1

(1)

whereyhisthetotalexpenditureofhouseholdh;pisapricevector;thetermB(p)/[lnyh−lnA(p)]

istheinverseoftheindirectutilityfunctionofaPIGLOGdemandsystem;andA,B,andGarethree functionsofprices.

Specifically,lnA(p)hasaTranslogformandislinearhomogeneous;B(p)isaCobb–Douglasprice index,homogeneousofdegreezerointhepricevectorp;andG(p)=



iilnpiishomogeneousof degreezerointhepricevectorp.ThecorrespondingsystemofMarshalliandemandfunctionsfor householdhandgoodsi=1,...,nexpressedastotalexpendituresharesisgivenby:

whii+



k

˛ikdhk+



j

cij lnpjiln



yh A(p)



+ i

B(p)



ln



yh A(p)



2

(2)

where˛ikarethecoefficientsofasetofdemographicvariablesenteringthemodelastranslating interceptsdh=dih,...,dhk.

Thetranslatingtechnique(PollakandWales,1992),aspecialcaseofthemodifyingfunctiontech- niqueproposedbyLewbel(1985),consistsinpositinganadditionalsetoflinear,auxiliaryrelationships betweenthe˛iintheshareequations(2)anddemographiccharacteristicsorotherconditioningvari- ables.Thedemandfunctions(2)satisfyintegrability,i.e.areconsistentwithutilitymaximization, ifthefollowingparametricrestrictionshold:



i˛i=1,



iˇi=



icij=



ii=0,



i˛ik=0∀k(adding up);



jcij=0(homogeneity);andcij=cji∀i,j(symmetry).ComparedtotheAIDS,theQAIDSaddsa quadraticterminthelogoftotalexpenditurewhichallowsfornonlinearchangesinthebudgetshares followingapriceorincomechange.Asimplewaytotestforthepresenceofsuchnonlineareffectsis totestthenullhypothesisthati=0.4

3I.e.demandmodelsdependingonthreeindependentpricefunctions.

4Weranalikelihoodratiotesttotestthehypothesisi=0.Thetestrejectedthenullhypothesis(teststatistic2(6)=713.6375, p-value=0.000),thuswechosetheQAIDSspecificationratherthantheAIDSone.

(4)

Todealwiththepresenceofzeroesinthedependentvariables,weusethetwo-stepestimator proposedbyShonkwilerandYen(1999).5Theprocedureinvolvesaprobitestimationinthefirststep andaselectivity-augmentedequationsysteminthesecondstep.6Thesystemofequations(2)isthus estimatedinthefollowingform(subscripthisomittedforeaseofnotation):

si=˚(zii)wi(p,y,)+ıi(zii)+i (3) wheresiistheobservedexpenditureshareforgoodi;ziisavectorofexogenousvariables;iisa parametervector;isavectorcontainingallparametersinthedemandsystem(˛iiki,iandcij);

i=si−E(si)is theheteroscedasticerrorterm; and˚arethestandardnormal probabilityden- sityfunction(pdf)anditscumulativedistributionfunction(cdf),respectively;andıiistheunknown coefficientofthecorrectionfactoroftheithequationinthesecondstep.

Thesystemofequations(3)isestimatedintwosteps:(i)MaximumLikelihood(ML)probitestimates ˆiofiareobtainedusingbinaryoutcomessi=0andsi>0;(ii)˚(ziˆi)and˚(ziˆi)arecomputedfor alli,and,ı12,...,ınareestimatedintheaugmentedsystem(3)byML.Thistwo-stepestimator isconsistent,buttheerrorterms areheteroscedastic.Theestimatedelementsof thesecond-step conventionalcovariancematrixarethereforeinefficient.For thisreason,weempiricallycalculate thestandarderrorsoftheelasticitiesusingnonparametricbootstrapping(with500replications).The dependentvariableinthefirst-stepprobitestimatesisthebinaryoutcomedefinedbytheexpenditure ineachgood.Thepredictedpdfandcdffromthesixprobitequationsareincludedinthesecondstep oftheprocedure(seeYenetal.,2003,p.464).Theexogenousvariablesusedinthefirst-stepprobit estimatesarequarterlydisposableincome(alsoavailableintheCEsurvey)andasetofdemographic andgeographicvariables,whicharedescribedinthenextsection.Asforthesecond-stepestimates,we imposehomogeneityandsymmetrythroughparametricrestrictions,whileadding-upisaccomodated bydroppingoneoftheequations.EconomictheoryalsorequiresthatthematrixofSlutzkysubstitution effectsbenegativesemi-definite,aconditionthatishereimposedusingtheCholeskydecomposition.

Furthermore,toaddressconcernsofendogeneityoftotalexpenditure,weusequarterlydisposable incomeinsteadoftotalexpenditure.

DifferentiationofEq.(3)givesdemandelasticitiesforthefirstn−1goods,whiletheelasticities forthenthgoodarerecoveredexploitingtheCournotandEngelrestrictions(DeatonandMuellbauer, 1980a,b,p.16).Thecorrespondinguncompensated(U),compensated(C)andexpenditureelasticities forgoodiare,respectively:

eUij = ij

wi −ıij (4)

eCij=eUij−eiwi (5)

ei= i

wi+1 (6)

where

ıijistheKroneckerdelta;

i=∂wi/∂lny=ˇi+B(p)2i

ln

y

A(p)

;

ij=∂wi/∂lnpj=cij−i



˛i+



k˛ikdk+



jcijlnpj



ˇB(p)ji

ln

y

A(p)

2

.

5ShonkwilerandYen(1999),Yenetal.(2003),andYenandLin(2006)provideusefulliteraturereviewsonestimation proceduresforcensoreddemandsystems.

6Adifferenttwo-stepprocedure,developedbyHeienandWessells(1990),hasoftenbeenusedinapplieddemandanalysis toaddresstheproblemofestimatingsystemsofequationswithlimiteddependentvariables.WestandWilliams(2004,2007) aretwostudiesadoptingthisprocedure.However,asstatedbyShonkwilerandYen(1999,p.972),“theHeinandWessells procedureisbuiltuponasetofequationswhichdeviatefromtheunconditionalmeanexpressionfortheconventionalcensored dependentvariablespecification”.Instead,theprocedurebyShonkwilerandYen(1999)adoptedinthisstudyprovidesa consistenttwo-stepestimator.

(5)

2.2. Incorporatinggasolinetaxesinthedemandsystem

Whiletheliterature offersa few plausibleexplanationsfor observeddifferentialresponsesto changesingasolinetaxesandmarket-inducedchangesingasolineprices,suchargumentsdonot informthemodelspecification.BothLietal.(2014)andRiversandSchaufele(2015)entergasoline taxesandtax-exclusivegasolinepricesseparatelyinsingleequationmodelsforgasolinedemand.

However,noparticularroleoftaxesinrelationtoconsumerchoicesistestedorassumed.Thesameis trueforthestudybyDavisandKilian(2011),whoidentifythetaxeffectbyinstrumentingtax-inclusive gasolinepriceswithgasolinetaxes.Wefundamentallydepartfromtheliteratureinthisrespect,as wepositspecificrolesforgasolinetaxes.

Ourapproachhingesonthepresumptionofadualeffectofchangesingasolinetaxesongasoline demand:thepriceeffectandthesignaleffect.Thefirstisthechangeingasolinedemandcausedby thechangeinrelativepricesfollowingataxchange.Thepriceeffectofataxchangeondemandis perfectlyequivalenttothatofanequalchangeinthefinalprice.Thesecondeffectistheadditional change,oradjustment,ingasolinedemandcausedbylong-runconsumerdecisions,suchasbuyinga morefuel-efficientcarorchangingtransportmode,whichgasolinetaxchangesaspolicysignalsare expectedtoinfluence.Ingeneral,anytaxchangesshouldsignalthewillofthegovernmentconcerning thegivenpolicies.Gasolinetaxchanges,inparticular,areusuallystrongpolicysignals,astheytend tobeinfrequentandalsotoreceivemediaattention(e.g.,Lietal.,2014).Theyarethuslikelytoaffect theexpectationsoffuturegasolineprices.7

Accordingly,gasolinetaxesenterourmodelintwodistinctways.First,asapricecomponent,they areembeddedinthegasolinepriceindex.Second,togetherwiththeothertranslatingintercepts(thed’s in(2)),gasolinetaxes(specifiedincentspergallon,¢/gallon)enterthemodelexplicitlyasconditioning variablesadjustinglong-runequilibriumdemands(Pollak,1969).Thesameapproachhasbeenusedin otherdemandsystemstudiestoanalysetheeffectsofnon-price,non-incomevariablessuchasquality information(Jensenetal.,1993;Chernetal.,1995),innovation(Moroetal.,1996)andadvertising (Duffy,1995;BrownandLee,1997).Suchaspecificationimpliesthattaxesasapricecomponent donothaveaspecialrole(i.e.,theyarenodifferentfromotherpricecomponents)indetermining gasolinedemand.Thatis,whenchoosingthequantityofgasolinetoconsume,consumersareassumed toconsiderthelevelofthefinalprice,notitscomposition.Evenifdriverswerewellinformedabout theleveloftaxation,orhadagoodestimationofit,8itisdifficulttoimaginetheywouldrefillthe tankdependingonthecompositionofthepricetheypayandnotjustitslevel.Conversely,itseems tousplausiblethatgasolinetaxesaspolicysignalscaninfluencelong-rundecisionswhichinturn determinegasolinedemand.

2.3. Simulatingdemandresponsestotaxincreasesandtomarket-inducedpriceincreases

Themodelin(3),inclusiveofgasolinetaxesamongtheintercepts,canbeusedtoseparatelysimulate demandresponsestochangesingasolinetaxesandtomarket-inducedchangesingasolineprices.In otherterms,definingtax-inclusivegasolineprices(pG)asthesumoftax-exclusiveprices(G)and taxes(tG),pG=G+tG,distinctdemandresponsesto tGandto G,respectively,canbesimulated.

Inthefirstcase,theoveralllong-runimpactondemandisgivenbythesumofthepriceeffectand thesignaleffect,aspreviouslydefined.Inthesecond,onlythepriceeffectisinplay.Inparticular,we areinterestedincomparingtheresponsesingasolinedemandto tGandto Gwhenthesetwo variationsarepositiveandequalinmagnitude.Insuchacase,theratioofthetwopredicteddemand variations, ,measuresthelong-runeffectivenessofthetaxincreaseinreducinggasolinedemand relativetothatofanequalpriceincreasecausedbymarketforces.IftheestimatedcoefficientoftGin

7Andersonetal.(2013)seemnottosupportthisparticularhypothesis,astheyfindthatconsumers’expectationsofgasoline pricesarerathersimplistic.However,arguablytheirtestwarrantsfurtherinvestigation.Itisnotinconceivablethattherespon- dentstothesurveyusedbytheauthorsexpressedtheirexpectationsongasolinepricesfiveyearsintothefutureconsidering onlymarketforcesandnottaxation.Thismaybethecasesincefuturetaxchangeswithinafive-yearhorizonarevirtually impossibletopredict.

8Postedpricesonbigsignsatgasolinestationsaretax-inclusive.

(6)

thegasolineequationisnegative(andstatisticallysignificant),thesignaleffectaddstothepriceeffect (alsonegative)and,ifso, tGturnsouttobemoreeffectivethan Ginreducinggasolinedemand.

Thefirststepforthesimulationofthetax-increasescenarioisderivingthenewgasolinepricepGB resultingfrom tG.Atagivenpoint0,

pGB,0=pGA,0



1+ tG PGA,0



(7)

wherepGA,0istheinitialpriceindexandpGA,0istheinitial(tax-inclusive)priceinlevels.

Similarly,thenewlevelofthegasolinetaxiscomputedbyadding tGtotheinitialtax,

tGB,0=tA,0G + tG (8)

Feedingboththenewpriceandthenewtaxtotheestimatedmodel,thenewpredictedbudgetshares areobtained,includingtheoneforgasoline, ˆwGB,0.Finally,holdingtotalexpenditureyA,0asfixed,the percentagechangeingasolinedemandisderivedas

ˆqG0 ˆqG0 =



B,0G yA,0

pGB,0− ˆwA,0G yA,0

pGA,0



/ ˆwA,0G yA,0

pGA,0 (9)

Thesameprocedureappliesforthesimulationofthemarket-inducedprice-increasescenario,with thefollowingtwodifferences:(a) tGisreplacedby Gin(7)(althoughpGB,0isunchangedsince tG and G areequalinsize),and(b) tG=0in(8),asnopolicysignalisactive.The aboveisthen computedbycomparingtheresultingpercentagechangeingasolinedemandwiththatobtainedfor thetax-increasescenario,

0= ˆqG0/ˆqG0( tG)

ˆqG0/ˆqG0( G) (10)

Aresult 0=nindicatesthat,inthelongrun,atthegivenpoint0,anincreaseingasolinetaxesis n-timesaseffectiveinreducinggasolinedemandasanequal-in-sizemarket-inducedpriceincrease.

3. Data

3.1. Householdbudgetshares,totalexpenditureanddemographics

TheU.S.ConsumerExpenditureSurvey(CEX)producedbytheBureauofLabourStatistics(BLS) isthemaindatasourceforourapplication.Weusemicrodataof thequarterlyInterviewSurvey (IS)fromthe2007,2008and2009roundsoftheCEX.9EachCEXroundhasfiveIScross-sections:

onepercalendarquarter,includingthefirstofthefollowingyear.10Wedrawon15cross-sections and about90,000observations, as each cross-section hasapproximately6000 observations.The model,however,isestimatedonasubsetof43,457observations,thoseforwhichinformationon theMetropolitanStatisticalArea(MSA)isgiven.Weusesuchasubsetbecausemorepricevariation isobtainedwithpriceindicesthatvarybyMSAthanwithState-levelindices.Theresultingsam- plespans39months,fromJanuary2007toMarch2010,and20MSA(seeTablesA1andA2,inthe Appendix).

In the IS, each household’s expenditures, which refer to thethree monthsbefore the inter- view, are classified into 60 consumption categories. Our system of demand only considers current expenditures (durables and occasional purchases are ignored), corresponding to 40 of the60 categories. Specifically, themodel is estimated for the following shares of total current expenditure:

9SeeChapter16oftheBLSHandbookofMethodsforadescriptionoftheCEX.

10TheISisapanelrotationsurvey.Eachpanelisinterviewedforfiveconsecutivequartersandthendroppedfromthesurvey andreplacedwithanewone.

(7)

Table1

Summarystatisticsoftotalcurrentexpenditureshares.

Variable Observations Mean Standarddeviation Coeff.ofvariation Min Maxa Zeros

Foodathome 43,457 22.8% 13.7% 0.60 0.0% 100.0%(15) 0.9%

Electricity 43,457 5.8% 5.3% 0.92 0.0% 100.0%(3) 8.5%

Naturalgas 43,457 2.9% 4.3% 1.50 0.0% 63.4% 38.5%

Otherhomefuels 43,457 0.7% 3.1% 4.59 0.0% 72.8% 91.2%

Motorfuels 43,457 9.1% 7.7% 0.84 0.0% 100.0%(2) 12.9%

Publictransport 43,457 2.0% 5.4% 2.63 0.0% 81.4% 73.4%

Allotherexpend. 43,457 56.7% 17.5% 0.31 0.0% 100.0%(128) 0.1%

aInbracketsisthenumberofobservationswith100%budgetshare.

Table2

Summarystatisticsofdemographicsandtotalcurrentexpenditure.

Variable Obs.(#) Mean Standarddeviation Min Max

Single 43,457 0.28 0.45 0 1

H&W 43,457 0.19 0.40 0 1

H&W,child(ren)<6 43,457 0.05 0.21 0 1

H&W,child(ren)<18 43,457 0.14 0.34 0 1

H&W,child(ren)>17 43,457 0.08 0.27 0 1

Otherhouseholds 43,457 0.26 0.44 0 1

Northeast 43,457 0.31 0.46 0 1

Midwest 43,457 0.20 0.40 0 1

South 43,457 0.24 0.43 0 1

West 43,457 0.26 0.44 0 1

Compositionincomeearners 43,457 0.23 0.42 0 1

Educationreferencepersona 43,457 5.44 1.82 1 9

Numberofcars 43,457 0.91 0.89 0 15

Totalcurrentexpenditure,$ 43,457 7178 7298 35 321,316

a1“Neverattendedschool”,2“1stthrough8thgrade”,3“9ththrough12thgrade”,4“Highschoolgraduate”,5“Somecollege, lessthancollegegraduate”,6“Associate’sdegree”,7“Bachelor’sdegree”,8“Master’sdegree”,9“Professional/Doctoratedegree”.

1)Foodathome 2)Electricity 3)Naturalgas 4)Otherhomefuels 5)Motorfuels(gasoline) 6)Publictransport 7)Allotherexpenditures

whereFoodathomeisthetotalexpendituresforfoodatgrocerystores(orotherfoodstores)and foodpreparedbytheconsumerunitontrips;Otherhomefuelsisthesumofexpendituresonfueloil, non-pipedgasandotherfuels(heatingfuels);Publictransportisthesumoffarespaidforallformsof publictransport,includingbuses,taxis,coaches,trains,ferriesandairlines.

Table1showsthesummarystatisticsoftheseexpendituresharesastheyappearinthesample.

Onaverage,expenditureonfoodconsumedorpreparedathomeaccountsfor22.8%oftotalcurrent expenditure,followedbymotorfuelsandelectricity,whichrepresent9.1%and5.8%,respectively;the residualcategory,Allotherexpenditures,represents56.7%oftotalcurrentexpenditure.Thecoefficients ofvariationindicatethatvariabilityisgreatestforOtherhomefuels,PublictransportandNaturalgas,in thatorder.Largeproportionsofhouseholdsreportedzeroexpenditurefortheseexpenditureaggre- gates(seethesharesinthelastcolumnofTable1).Consumptionoftherespectivegoodsorservices isindeedconditionaloncertainprerequisites,suchasthepossessionofspecificappliancesandhigh substitutabilitybetweenprivateandpublictransport,whichmaynotholdformanyhouseholds.

DifferenttypesofdemographiccharacteristicsarealsoextractedfromtheISdataset.Descriptive statisticsofthoseandoftotalcurrentexpenditurearereportedinTable2.Thehouseholdprofileis categorizedthroughsixdummyvariablesidentifyingthefollowingtypes:(a)Single;(b)Husband

(8)

3540455055

2007 2008 2009 2010

year

GA FL

DC

ME MD MN

NY WA WV

c$/gallon

Federal- plus state gasoline excise taxes

Fig.1. Gasolinetaxesinstates(insample)whererateschangedatleastonce.

andwife;(c)Husbandandwife,witholdestchildunder6;(d)Husbandandwife,witholdestchild under18;(e)Husbandandwife,witholdestchildover17;(f)Otherhouseholds.Geographiclocation isrenderedthroughfourdummyvariables,oneforeachoftheCensus-definedregions:Northeast, Midwest,SouthandWest.Adummyvariablebringsininformationonthecompositionofearnersin thehousehold:ittakesthevalue1ifboththereferencepersonandthespouseareincomeearners;0, otherwise.Acategoricalvariableclassifiestheeducationlevelofthereferencepersoninninelevels.

Moreover,themodelcontrolsforthenumberofcarsownedbythehousehold.

3.2. Priceindicesandgasolinetaxes

Insufficientpricevariationisacommonproblemwhenestimatingdemandmodelswithcross- sectionaldataandpriceindices.WeavoidthisissuebyusingmonthlyindicesvaryingbyMSA,which exhibitsufficienttimeandspatialvariation.11Anotherpotentialproblemissomedegreeofinaccuracy inthecorrespondencebetweendemandandpricedata.Inourapplication,thisissuedoesnotarise becausepriceindices,alsoproducedbytheBLS,followthesameclassificationashouseholdexpen- diture.TheBLSusestheCEXtoperiodicallyrevisetheexpenditureweightsoftheConsumerPrice Index(CPI).Thereis,therefore,perfectcorrespondencebetweenISandCPIstatisticswithrespectto theexpenditureaggregates.IntheAppendix,TableA3showsthesummarystatisticsofpriceindices;

also,Fig.A1showstheevolutionovertimeofpriceindicesaveragedbyregion.

IntheU.S.,threelayersoftaxesapplytotheconsumptionofgasolineandautodiesel,namely, federaltaxes,Statetaxesandlocaltaxes.Thefederaltaxrateongasolineiscurrently18.4¢/gallonand hasnotchangedsince2006.12Bycontrast,StatetaxescandiffersignificantlyfromoneStatetoanother andtheyareoccasionallysubjecttorevisions.ThedatausedonthemonthlyratesofStatetaxesare publishedbytheFederationofTaxAdministrators(FTA).13Localtaxesarenotconsideredduetoa lackofinformation.InourestimatesgasolinetaxesareadjustedforinflationusingthenationalCPI.14

11Only,aspriceindicesbyMSAarenotavailableforOtherhomefuelsnorforPublictransport,nationallevelindicesareused inthesecases.

12Source:U.S.EnergyInformationAdministration.

13Tworatesareaddedup:“Statemotorgasolinetaxes”and“OtherStatetaxes”.

14Estimatesobtainedusingtaxesunadjustedforinflationwereverysimilar.

(9)

-30-20-1001020304050

2007 2008 2009 2010

year

Taxes Price index

Maine (ME)

-30-20-1001020304050

2007 2008 2009 2010

year

Taxes Price index

Washington (WA)

%

Volatility of gasoline taxes and gasoline prices: distance from mean

Fig.2.Gasolinetaxesandpriceswithinstates:MaineandWashington.

Fig.1showsthesumoffederalandStategasolinetaxesintheStateswherethetaxratechangedat leastonce(9Statesoutof23inthesample)overthemonthscoveredbythesample.Itisapparent thatchangesingasolinetaxesarerelativelyrareeventsandthatvariationbetweenStatesismuch greaterthanvariationwithinStates.Fig.2focusesonthetwoStateswheregasolinetaxesvariedmost intheyearsconsidered,namelyMaine(MA)andWashington(WA).15Inbothcases,taxesremain withinadistanceof5%fromthemeanoftheperiod,withoneexceptionforWashington,inearly 2007.Bycontrast,pricesroseashighasalmost50%abovethemeanoftheperiodandthenfellto aslowas30%belowthemean.Ingeneral,priceandtaxchangesveryclearlydifferbothinsizeand persistence.

4. Results

In this section, we first discuss estimation results concerning the demand system and its derived parameters (elasticities). We then focus on the simulation results of gasoline demand responsestothegivenincreasesingasolinetaxesandtoequalmarket-inducedincreasesingasoline prices.

4.1. Estimationresults:QAIDScoefficientsandelasticities

Theestimatedcoefficientsofthefirst-stepprobitmodelsunderShonkwilerandYen’sprocedure arereportedinTableA4,intheAppendix.Incomeissignificantinallprobitequationsandtakeson theexpectedpositivesign.Focusingontheequationforgasoline,comparedtolivingintheMidwest (thereferencelocation),livingintheNortheasthasanegativeimpactontheprobabilityofpurchasing gasoline,whereaslivingintheSouthorintheWesthasapositiveimpactontheprobabilityofbuying gasoline.Havingchildrenhasapositiveimpactontheprobabilityofbuyinggasolinecomparedtoa

15ThegraphsfortheotherStates,whicharesimilar,arenotshownforspacereasons.Theyareavailablefromtheauthors uponrequest.

(10)

Table3

EstimatedQAIDScoefficients.

Coefficient i=1 i=2 i=3 i=4 i=5 i=6

Food Electricity Naturalgas Otherfuels Gasoline Pub.transp.

˛i 0.197 0.043 0.046 0.049 0.108 0.090

0.002 0.002 0.002 0.011 0.001 0.010

ˇi −0.038 −0.004 −0.007 −0.008 −0.008 −0.006

0.001 0.001 0.002 0.002 0.001 0.002

i −0.004 −0.001 −0.001 −0.002 −0.001 −0.001

0.001 0.000 0.000 0.000 0.000 0.000

˛i,NE 0.030 −0.000 −0.006 0.045 0.008 −0.003

0.002 0.001 0.001 0.00 0.001 0.004

˛i,SO 0.020 0.034 −0.023 −0.005 0.015 0.005

0.002 0.001 0.001 0.009 0.001 0.004

˛i,WE 0.043 −0.008 −0.039 −0.009 0.019 0.019

0.002 0.001 0.001 0.011 0.001 0.004

˛i,NCAR −0.017 −0.001 0.001 0.009 0.009 −0.008

0.001 0.000 0.000 0.001 0.001 0.001

˛i,TWOE −0.004 −0.000 −0.000 0.015 0.010 0.003

0.001 0.001 0.001 0.004 0.001 0.003

˛i,N1 −0.039 −0.012 0.008 0.048 0.018 −0.011

0.003 0.002 0.001 0.005 0.002 0.004

˛i,N3 0.032 −0.004 −0.003 0.016 0.013 −0.015

0.003 0.001 0.002 0.006 0.001 0.005

˛i,N4 0.043 0.006 −0.002 −0.007 0.012 −0.009

0.002 0.001 0.001 0.004 0.001 0.004

˛i,N5 0.039 0.008 −0.004 −0.008 0.014 −0.014

0.002 0.001 0.001 0.005 0.001 0.004

˛i,N6 0.033 0.002 0.003 0.005 0.020 −0.015

0.002 0.001 0.001 0.004 0.001 0.003

˛i,EDUC −0.009 −0.003 −0.002 −0.004 −0.008 0.005

0.000 0.000 0.000 0.001 0.000 0.001

˛i,TAX −0.053 0.013 −0.013 0.176 −0.062 0.035

0.006 0.003 0.003 0.010 0.004 0.008

Loglikelihood 337.700

R2 0.19 0.13 0.10 0.07 0.12 0.03

Nobs 43,308

Note:Standarderrorsbelowcoefficients.BoldentriesindicaterejectionofH0:e=0atthe5%significancelevelforatwo-tailed test.

childlesscouple(thereferencehouseholdtype).Beingsinglehasinsteadanegativeimpactonthe probabilityofconsuminggasolinerelativetoachildlesscouple.

Table3reportstheresultsofsomeofthesecond-stepQAIDSparameters.16Heretoowefocus onthecoefficientsofthegasolinebudgetshareequation.Allgeographicdummyvariables(˛NESO,

˛WE)arestatisticallysignificant.Theirvalues indicatethat,relativetotheMidwest(thereference category),livingintheWesthasapositiveimpactongasolineconsumption,followedbytheSouthand theNortheast(indescendingorder).Asexpected,thenumberofcarsownedbyahousehold(˛NCAR) hasapositiveimpactongasolineconsumption.Thesameistrueforthepresenceoftwoincome earnersinthehousehold(˛TWOE),possiblyduetocumulativelylongerdistancesbetweenhomeand therespectiveworkplaces.Thedummyvariablesforhouseholddemographics(˛N1N3N4N5,

˛N6)areallstatisticallysignificant.Thesizeofthecoefficients,whosevaluesarerelativetothatofthe

“Householdandwife”basecategory,seemstoreflectthenumberofhouseholdmembersoldenough toholdadrivinglicense.17Ahighereducationleveloftheheadofhousehold(˛EDUC)turnsouttohave anegativeimpactongasolineconsumption.Importantlyforouranalysis,thesameistrueforhigher gasolinetaxes(˛TAX),asonewouldexpect.

16Forspacereasons,pricecoefficientsandcdfcoefficientsarenotreported.Theseparametersareavailablefromtheauthors uponrequest.

17IntheU.S.,theminimumageforobtainingadrivinglicenseis16yearsold.

(11)

Table4

Estimatedbudgetshares,income-andcompensatedpriceelasticities.

j=1 j=2 j=3 j=4 j=5 j=6 j=7

Food Electricity Naturalgas Otherfuels Gasoline Pub.transp. Othergoods

wj 0.223 0.057 0.028 0.007 0.090 0.021 0.576

ej 0.860 0.942 0.855 0.919 0.938 0.929 1.080

0.004 0.007 0.009 0.023 0.006 0.021 0.002

eC1j −0.445 −0.139 0.076 −0.100 0.081 −0.008 0.535

0.037 0.012 0.009 0.022 0.015 0.027 0.050

eC2j −0.443 −0.876 0.058 −0.013 −0.359 −0.500 2.129

0.041 0.026 0.015 0.032 0.027 0.049 0.061

eC3j 0.504 0.089 −0.160 0.115 −0.296 −0.167 −0.086

0.045 0.022 0.037 0.034 0.031 0.041 0.072

eC4j −0.131 0.028 0.075 −0.477 0.207 0.118 0.180

0.055 0.025 0.019 0.165 0.040 0.038 0.123

eC5j 0.214 −0.220 −0.142 0.107 −0.435 −0.447 0.923

0.033 0.016 0.013 0.030 0.027 0.037 0.058

eC6j 0.003 −0.382 −0.113 0.087 −0.563 −0.385 1.353

0.080 0.041 0.023 0.038 0.051 0.145 0.134

eC7j 0.160 0.183 −0.002 0.021 0.104 0.142 −0.607

0.020 0.007 0.005 0.011 0.010 0.015 0.030

Note:Standarderrorsbelowcoefficients.BoldentriesindicaterejectionofH0:e=0atthe5%significancelevelforatwo-tailed test.

Concerningtheelasticities,compensatedown-andcross-priceelasticities(ecij),alongwithincome elasticities(ei)andthepredictedbudgetshares( ˆwi),areshowninTable4.Alloftheseareevaluated atthesamplemeansofexogenousvariables.Onaverage,18.2%oftotalcurrentoutlayisspenton energyrelatedproducts(thesumofthebudgetsharesofElectricity,Naturalgas,Otherhomefuels andGasoline),withGasolineonitsownmakingup9.0%oftotalcurrentexpenditure.Withregardto incomeelasticities,allthecommoditiesbutOthergoodsturnouttobenecessities.Ingeneral,allown- priceelasticitiesseemplausible,rangingbetween−0.876and−0.160,thesebeingtheelasticitiesfor ElectricityandNaturalgas,respectively.18ForGasoline,wefindanown-priceelasticityof−0.435,which isinlinewiththeU.S.literatureestimatingcompletesystemsofdemand(e.g.,WestandWilliams, 2004,2007;Nicol,2003;Oladosu,2003).Table5showssomerecentestimatesofown-priceelasticities ofU.S.householddemandforgasoline,distinguishingbetweendemandsystemsandsingleequation models.Singleequationstudiestendtofindlowerpriceelasticities.Thisisprobablyduetosystemsof demandaccountingforbehavioralresponsesafterapricechange,i.e.forhowhouseholdsreallocate theirbudgetafterachangeinoneoftheprices.Thenatureofthedatausedmayalsoplayarole, inasmuchastime-seriesdatatendtoyieldshort-runresponsesandcross-sectionstendtoyieldlong- runresponses,especiallyinthecaseofenergydemand(BaltagiandGriffin,1984;PesaranandSmith, 1995).

Cross-priceelasticitiesmeasurethedegreeofsubstitutionorcomplementaritybetweenthegoods considered.EachentryofTable4shows thepercentage changeinthequantitydemandedofthe goodslistedintherowsfollowinga1%changeinthepriceofthegoodslistedinthecolumns.For Gasoline,relationshipsofcomplementarityarisewithNaturalgas,ElectricityandPublicTransport.Inall thesecases,therelationshipissymmetric,meaningecijandeCjihavethesamesign(eC35=−0.295and eC53=−0.142;eC25=−0.359andeC52=−0.220;eC65=−0.563andeC56=−0.447).Apossibleinterpre- tationofthesefindingsisthatsuchcomplementaritiesmaybetheconsequenceofabudgetconstraint tighteningfollowinganincreaseinthepriceofanecessity(gasoline).Thecomplementaritybetween

18Alberinietal.(2011)estimatethepriceandincomeelasticitiesofU.S.householddemandbothforelectricityandgas.For electricity,own-priceelasticitiesrangebetween−0.860and−0.667;forgas,between−0.693and−0.566.

(12)

Table5

RecentestimatesofpriceelasticitiesofU.S.householdgasolinedemand.

Study Ownpriceelasticityofgasolinedemand Datatype

Systemofdemandmodels

WestandWilliams(2007) −0.75(largest);−0.27(smallest) Pooledcross-section

WestandWilliams(2004) −0.46 Pooledcross-section

Nicol(2003) −0.59(largest);−0.02(smallest) Pooledcross-section

Oladosu(2003) −0.70(largest);−0.36(smallest) Pooledcross-section

Singleequationmodels

Lietal.(2014) −0.10 Panel

Sentenac-Chemin(2012) −0.30 Time-series

Su(2011) −0.39 Cross-section

DavisandKilian(2011) −0.46(largest);−0.19(smallest) Panel

ManzanandZerom(2010) −0.35 Pooledcross-section

Hughesetal.(2008) −0.07 Time-series

SmallandVanDender(2007) −0.43 Pooledcross-section

GasolineandPublictransport(eC65=−0.563)isperhapsevenmoresurprising.Onetentativeexplana- tionisthatanincreaseinthepriceofGasolinemakesPublictransportmoreexpensivetoo.19Wefind insteadsubstitutionbetweenOther(home)fuelsandGasoline(e45=0.207).Noimmediateexplanation presentsitselfforthisresult,butthemeanbudgetshareforOther(home)fuelsisverysmall,0.7%, whichmakessuchsubstitutionnotacriticalfinding.Finally,wefindweaksubstitutionbetweenElec- tricityandNaturalgas(eC23=0.058).However,theelasticityisactuallyverysmall,implyingthata1%

increaseinthepriceofNaturalGaswouldcauseElectricitydemandtoincreaseby0.058%.

4.2. Simulationresults:demandresponsetotaxchangesandtomarket-inducedpriceschanges

Theestimationresultspresentedintheprevioussectionarehereusedtoquantifyandcompare responsesingasoline demandtogiven increasesin gasoline taxesand toequal market-induced increasesingasolineprices.Pairsoftax-andpriceincreasescenariosarethussimulatedintheway describedinSection2.3.Thecomparisonsoftherespectivepredictedvariationsingasolinedemand provideuswithasmanyvaluesforthe parameterdefinedin(10).Specifically,wederive fordiffer- enttaxincreasesandatdifferentpointsinoursample.Withaviewtoevaluatingthepotentialimpact ofcorrectivetaxation,gasolinetaxincreasesofdifferentmagnitudesareconsideredinrelationto differentlevelsofcarbontaxation.Forexample,a$15/tCO2carbontaxtranslatesintoa13.2¢/gallon gasolinetax.20SuchalevelofcarbontaxisinlinewiththeratesindicatedinrecentU.S.legislative proposalstoreducenationalCO2emissions.21Patternsof arethenderived,foragiven13.2¢/gallon taxincrease,bothacrossincomelevelsandacrossregions.

4.2.1. Differentialdemandresponsebysizeofthetaxincrease

Ourinvestigationofdifferentialdemandresponsesbeginswithexamininghow changeswiththe sizeofthetaxincrease.Fivetaxincreasesareconsidered,namely5,13.2,25,35,and40¢/gallon,which correspondtocarbontaxlevelsrangingfrom5.7to45.5$/tCO2,approximately.Inallthescenarios, demandresponsesaresimulatedatthesamplemeanvaluesofthemodel’sindependentvariables.

TheresultsobtainedareillustratedthroughthefourgraphsinFig.3.

19TheaggregatePublicTransportisthesumofbothintra-cityexpenditureitemsandinter-cityexpenditureitemsassupplied intheCEXsurvey.Specifically,intra-cityexpenditureitemsinclude:intra-citymasstransitfares;taxifaresandlimousine services;schoolbus.Inter-cityexpenditureitemsincludedinouraggregateare:airlinefares;intercitybusfares;localtransport ontrips;taxifaresontrips;intercitytrainfares;shipfares.

20GivenaCO2emissionfactorforgasolineof19.44lbs/gallon.

21Forexample,the2009CongressbillRaiseWages,CutCarbonAct(H.R.2380,111thCongress)setaninitialrateof$15/tCO2, in2010.The2013ClimateProtectionAct(S.332,113thCongress)setaninitialrateof$20/tCO2.

(13)

0%

5%

10%

15%

20%

0 5 10 15 20 25 30 35 40 45

Price increase, %

Tax increase, cents per gallon

Increase of sample mean gasoline price by tax increase

0%

2%

4%

6%

8%

10%

0 10 20 30 40 50

Gasoline budget share, %

Tax increase, cents per gallon

Predicted gasoline budget shares by scenario and tax increase

tax-incr.

price-incr.

-50%

-40%

-30%

-20%

-10%

0%

0 10 20 30 40 50

Demand change, %

Tax increase, cents per gallon

Gasoline demand change by scenario and tax increase

tax-incr.

price-incr.

0 2 4 6 8

0 5 10 15 20 25 30 35 40 45

θ

Tax increase, cents per gallon

Differential demand response (θ) by tax increase

Fig.3.Simulationresults:priceincreases,budgetshares,demandchanges,anddifferentialdemandresponses( ).

(14)

ThecurveinthetopgraphofFig.3showsthepercentageincreaseinthesamplemeangasolineprice, whichis$2.7/gallon,asafunctionoftheconsideredgasolinetaxincrease:a13.2¢/gallontaxincrease correspondstoanincreaseinthesamplemeangasolinepriceof4.9%;a25¢taxincreasecorresponds toa9.3%priceincrease;etc.Thefivepairsofgasolinebudgetsharespredictedbythemodel,under thetaxincreasescenarioandunderthepriceincreasescenario,arepicturedinthesecondgraph.Asit canbeseen,thedifferencebetweenthetwobudgetsharesgetslargerwiththesizeofthetaxincrease.

Thecorrespondingvariationsingasolinedemand,derivedasper(9),areshowninthenextgraph.A market-inducedpriceincreaseof13.2¢/gallonisfoundtoreducegasolinedemandby2.5%.However, thesamepriceincreasebroughtinthroughtaxationreducesdemandby18%.Similarly,a25¢/gallon market-inducedpriceincreasereducesgasolinedemandby4.7%,whileanequal-in-sizetaxincrease reducesdemandbyasmuchas30%.Theratiosofeachpairofthesefiguresarethecorresponding , whosevaluesarereportedinthebottomgraphofFig.3.Anegativerelationshipisobservedbetween andthesizeofthetaxincrease.Thismeansthatthesignaleffect,whilestillbeinga( −1)multiple ofthepriceeffect,declinesinrelativetermswithincreasinglylargetaxhikes.Indeed,thisiswhatone wouldexpectassumingsufficientlylargepriceincreasemayalsoaffectlong-runconsumerdecisions suchasinvestmentinmoreefficientcars.Takingthebiggestandthesmallestofthetax-andprice increasesconsidered, isequalto7.3fora5¢/gallonincreaseanditisequalto5.7fora40¢/gallon increase.

Themagnitudeoftheseresultsislargerthanthatoftheresultsfoundintheliterature,which areobtainedusingdifferentdataandeconometricapproaches.Forexample,RiversandSchaufele (2015)findthattheBritishColumbiacarbontaxreducedgasolinedemandbyanamount4.1times greaterthanthatwhichanequalmarket-inducedpriceincreasewouldhavecaused.The derived byDavisandKilian(2011)rangesbetween2.4and4.6,whileLietal.(2014)find isequalto3, bothinapplicationstoU.S.data.Thereasonforthisdiscrepancybetweenourresultsandthoseof theliteratureliesinthedifferenthorizonofthesimulateddemandresponses:itisthelongrunin ouranalysis,whileitistheshortrunintheotherstudies.Inthiscontext,thedifferencebetween thelong run and the shortrun consists in whetherthe dataand model specification allowfor effectsofgasolinetaxesonrelevantlong-runconsumerchoices,suchasbuyingamorefuel-efficient car,changingtransportmodeormovingclosertowork.Themodelcapturessuchlong-runeffects throughgasoline taxesasconditioningvariablesadjustinglong-runequilibrium demands(Pollak, 1969).

Aformalinvestigationofthemechanismsunderlyingdifferentialresponsestotaxchangesand market-induced price changes is beyond the scope of this study. However, it should be noted that our approach and interpretation are consistent with the findings of Li et al. (2014), who toourknowledgearetheonlyonesdirectlyaddressingthis question.Using U.S.household-level dataon vehicles purchased and miles travelled,the authorsconclude that (a) vehiclepurchase decisions,as reflected in miles per gallon, respond more strongly to tax changes than to price changes,and(b)nodifferentialeffectwithrespecttomilestravelledisfound.Theseresultssup- portourpresumptionthatspecificeffectsofgasolinetaxesunfoldmostly,ifnotentirely,inthelong run.

4.2.2. Differentialdemandresponsebyincomelevel

Incomelevelisalsoexpectedtoaffecthouseholds’demandresponsivenesstochangesingasoline taxes,especiallyinthelongrun.Thus,forthesametwoscenariosof13.2¢/gallontax-andmarket- inducedpriceincreases,wemeasure acrossfiveincomelevelscorrespondingtothequintilesofthe sampleincomedistribution.Toidentifyeffectsthatcanbeattributedonlytoincomedifferences,all independentvariablesotherthanincomeareheldatsamplemeanvalues.Theresultsobtainedare illustratedthroughthegraphsinFig.4.

Theuppergraphcontraststheestimatedelasticitiesofgasolinedemandwithrespecttothetax signal22andtotheownprice(Eq.(4)),atmeanvaluesofthesampleincomequintiles.Thedifferences betweentheseelasticitiesunderliethe resultsobtainedinthesimulations.Withtheexceptionof

22eit=∂wi/∂lntw−1i where∂wi/∂lnt=˛itˇi



j˛jtlnpj+2i/B(p){ln[y/A(p)]}.

Riferimenti

Documenti correlati

The paper presents the problem of the property estimation of commercial ecological gasoline. Biofuels are the components that are obtained from renewable sources and which are

Descrizione Description Note Q.ty Model 1 5015 0072 Kit Riparazione Valvola Valve Reparing Kit

The present paper contributes to this literature with a new approach and with new evidence confirming differential demand response to gasoline taxes and gasoline prices. It is

To highlight the importance of this methodological question relative to that – more often stressed – of differential demand response (that is, whether models allow for

The pyrolysis was carried out in 2 stages, where the first-stage was co-pyrolysis to produce non-polar bio-oil and the second-stage was pyrolysis of non-polar fraction from

The experimental using CFR engine and using fuel gasoline in the market with blended bioethanol start from 5% -20% and analysis the relationship octane number after

The modification of activated clinoptilolite zeolite by praseodymium oxide was expected to minimize the nature zeolite from mineral contents as dopants, to

Figure 4: Average water content in gasohols with different ethanol percentage during 6 months of storage gasoline mixture is far larger than that of ethanol-gasoline