• Non ci sono risultati.

Nuclear Structure and Nuclear Astrophysical Processes

N/A
N/A
Protected

Academic year: 2021

Condividi "Nuclear Structure and Nuclear Astrophysical Processes"

Copied!
34
0
0

Testo completo

(1)

Nuclear Structure and

Nuclear Astrophysical Processes

Toshio Suzuki Nihon University

Italy-Japan, Milan

Nov. 20, 2012

(2)

○ New shell-model Hamiltonians with proper spin-isospin interaction with tensor forces

Successful description of spin-degree’s of freedom in nuclei Gamow-Teller (GT) and spin-dipole (SD) strengths,

magnetic moments and M1 transitions *important roles of tensor force

○ Electron capture reactions in stellar environments ・e-capture rates in 56Ni, 58Ni and 60Ni

・synthesis of 56Ni, 58Ni in type-Ia supernovae

○ ν-nucleus reactions

・ν-12C and synthesis of 11B in type-II supernova explosions ・ν-13C by solar neutrinos

・ν-56Ni and synthesis of Mn in supernova explosions

○ β-decays of waiting-point nuclei at N=126 and r-process nucleosynthesis

(3)

n

e

n

mt

NS

R-process:

Heavy Nuclei

8

8

Explo. Si-burn.

Fe-Co-Ni,

60Co, 55Mn, 51V … Si

Layer

n-process:

6,7Li, 9Be, 10,11B … np-process:

92Mo, 96Ru ?

n-process

180Ta, 138La, 92Nb, 98Tc … n-n Scattering near Proto-Neutron☆

n-Collective Flavor Oscillation

MSW resonance at r~103 (g/cm3) n-Flavor Oscillation

Various roles of n’s in SN-nucleosynthesis

Kajino

(4)

1. New Shell-Model Hamiltonians in p-shell and Neutrino-Nucleus Reactions

p-shell(p-sd) Cohen-Kurath+Millener-Kurath → SFO [ p: CK (8-16)2BME, p-sd: MK, sd, p2-(sd)2: Kuo’s G-matrix]

Monopole terms in p1/2-p3/2 , T=0 enhanced:ΔV = -1.9 MeV SFO: Suzuki, Fujimoto, Otsuka, PR C67, 044302 (2003)

Systematic improvements in the description of magnetic moments, GT transitions in p-shell nuclei are obtained.

1 2 1 2

1 2

2 1

2 1

T J

M

J

( J ) j j ;JT | V | j j ;JT V ( j j )

( J )

present = SFO Space: up to 2-3 hw Magnetic moments

(5)

tensor force

G-matrix vs phenom. interactions

Shell evolution in N=8 isotone

Otsuka, Suzuki, Fujimoto, Grawe, Akaishi, PRL 69 (2005)

6 8

Li Be B

(6)

B(GT) for 12C →12N SFO*: gAeff/gA=0.95

B(GT: 12C)_cal = experiment

SFO

PR C55, 2078 (1997)

Suzuki, Chiba, Yoshida,Kajino, Otsuka, PR C74, 034307, (2006).

HT: Hayes-Towner, PR C62, 015501 (2000)

NCSM: Hayes- Navratil-Vary, PRL 91 (2003) CRPA: Kolb-

Langanke-Vogel, NP A652, 91 (1999)

(7)

Inclusive = Exclusive (1

+g.s.

) + Excited state

3

Exp:

LSND PR C64 (2001)

2: gAeff/gA = *0.75(MK2) *0.70 (SFO)

Cf. Gaarde et al.

q= 0.65 (CK)

Quenching of spin-dipole strength

2-

(8)

Nucleosynthesis processes of light elements

4 3

4 3

He( , 'p) H He( , 'n) He

n n n n

12 11

12 11

C( , 'p) B C( , 'n) C

n n n n

Enhancement of 11B and 7Li abun- dances in supernova explosions Inner O/C He/C He/H H

(9)

7Be, 11Li abundance

SN Nucleosynthesis with Neutrino Oscillations

Supernova nucleosynthesis (n-process)

16.2 M star supernova model corresponding to SN 1987A

Increase by a factor of 2.5 and 1.4 Increase in the rates of charged-current reactions

4He(ne,e-p)3He and 12C(ne,e-p)11C in the He layer Normal mass hierarchy, sin22q13 = 0.01

10-9 10-8 10-7 10-6 10-5

2 3 4 5 6

Mass Fraction

Mr / M

11B

11C

O-rich O/C He/C He/N

10-10 10-9 10-8 10-7 10-6

2 3 4 5 6

Mass Fraction

Mr / M

7Be

7Li

O-rich O/C He/C He/N

no mix

no mix mix no mix

mix mix

(10)

out SN core

ν

3

ν

2

ν

1

L-res

H-res

SN core out SN core

ν

3m

e

ν

2m

ν

1m

Normal hierarchy

ν

2

ν

1

ν

3

ν

2m

e

ν

1m

ν

3m

Inverted hierarchy

n

2

n

1

n

3

(11)

7

Li/

11

B Dependence on Mass Hierarchy and q

13

N(7Li)/N(11B) Good indicator for neutrino oscillation parameters

normal

inverte no mix d

(Tne, Tne, Tnm,t, En)

= (3.2, 5.0, 6.0, 3.0) , (3.2, 4.8, 5.8, 3.0)

, (3.2, 5.0, 6.4, 2.4) , (3.2, 4.1, 5.0, 3.5) , (4.0, 4.0, 6.0, 3.0) , (4.0, 5.0, 6.0, 3.0)

(MeV, MeV, MeV, ×1053ergs)

Including uncertainties

in neutrino temperatures

N(7Li)/N(11B) > 0.8

Normal mass hierarchy and sin22

q

13 > 0.002

Possibility for constraining mass hierarchy and lower limit of the mixing angle

q

13.

Neutrino experiments Constraining upper limit of q13

Yoshida et al., PRL 96 (2006)

(12)

Supernova X-grain constraints

T2K, MINOS (2011)

Double CHOOZ sin22θ=0.1 Daya Bay, RENO (2012)

First Detection of 7Li/11B in SN-grains

W. Fujiya, P. Hoppe, & U. Ott, ApJ 730, L7 (2011).

“Inverted Mass Hierarchy”

is statistically more preferred ! 74% ー Inverted

24% ー Normal

Mathews, Kajino, Aoki and Fujiya, Phys. Rev. D85,105023 (2012).

(13)

13C: attractive target for very low energy ν

(no contamonation of 12C below Eν=15 MeV)

ν-induced reactions on 13C

C ')

, (

C

N )

e , (

C

13 e

e 13

13 e

13

n n

n

GT transitions

Fukugita et al., PR C41 (1990) p-shell: Cohen-Kurath

gAeff/gA =0.69

Detector for solar ν GT

GT

GT+IAS

(14)

p-sd shell: SFO

Solar ν cross sections

folded over 8B ν spectrum

2 43

2 43

2 42

2 42

e

cm 10

23 . 2 : SFO

cm 10

16 . 1 : CK

) M eV 69

. 3 2 (

) 3 ' , (

cm 10

34 . 1 : SFO

cm 10

07 . 1 : CK

)]

M eV 50

. 3 2 (

.) 3 s . g 2 (

[1 ) e , (

n

n

n

Suzuki, Balantekin, Kajino, PR C 86, 015502 (2012).

(15)

2. New shell-model Hamiltonians in fp-shell and new

e-capture rates and ν-nucleues reactions cross sections:

GXPF1: Honma et al., PR C65 (2002); C69 (2004)

KB3: Caurier et al., Rev. Mod. Phys. 77, 427 (2005)

○ KB3G A = 47-52 KB + monopole corrections ○ GXPF1 A = 47-66

・ Spin properties of fp-shell nuclei are well described B(GT-) for 58Ni Fujita et al. gAeff/gAfree=0.74

8-13MeV

M1 strength (GXPF1J) gSeff/gS=0.75±0.2

(16)
(17)

KARMEN (DAR)

RQRPA vs Shell-model

SM(GXPF1J)+RPA(SGII) 259 x10 -42cm2 RHB+RQRPA(DD-ME2) 263

RPA(Landau-Migdal force) 240 QRPA(SIII) 352 QRPA(G-matrix formalism) 174

56 56

Fe( n

e

, e )

Co

GT

(18)

Sasano et al.

PRL 107, 202501 (2011) f7/2 -> f5/2

f7/2 -> f7/2 f7/2 -> f5/2

e-capture rates in stellar environments

7 10 3

e

9 9

Y 10 10 g / cm T T 10 K

r 

 

ρYe=109

108

107

(19)

58Ni → 58Co

Exp: Hagemann et al., PL B579 (2004) 60Ni → 60Co

Exp: Anantaraman et al., PR C78 (2008)

(20)

Type-Ia supernova explosion

Accretion of matter to white-dwarf from binary star

→ supernova explosion when white-dwarf mass is over Chandrasekhar limit

56Ni (N=Z)

56Ni (e-, ν) 56Co Ye =0.5 → Ye < 0.5 (neutron-rich) → production of neutron-rich isotopes; more 58Ni

Decrease of e-capture rate on 56Ni → less production of 58Ni.

e-capture rates:

GXPF1J < KB3G

←→

Ye (GXPF1J) > Ye (KB3G) Famiano

(21)

Problem of over-production of 58Ni

GXPF1 -> 58Ni/56Ni decreases

58Ni

54Cr

54Fe

56Fe

Famiano, Otsuka, Kajino

(22)

Neutral current reaction on

56

Ni

B(GT)=6.2 (GXPF1J) B(GT)=5.4 (KB3G)

cf:

HW02 gamma p

n

p-emission x-sections increse

p-emission BR increses

(23)

59 58 59 59 59

Co : Ni(p, ) Cu(e , ) n Ni(e , ) n Co

Suzuki et al., PR C79 (2009)

OBS: Cayrel et al., Astron. Astrophys.

416 (2004)

Yoshida, Umeda, Nomoto

56 55 55 55 55

Ni( ,n n' p) Co, Co(e , ) n Fe(e , ) n Mn

Synthesis of Mn in Population III Star

54 55

Fe(p, ) Co

(24)

3. Beta Decays of N=126 Isotones and R-Process Nucleosynthesis

Focus on the 3

rd

peak region

Waiting point nuclei

(25)

Moller, Pfeiffer, Kratz, PR C 67, 055802 (2003)

cf.

Q=gAeff/gA=0.7, ε=2.0 (0-)

Shell Model calculations

Neumann-Cosel et al, PRL 82 (1999) Q=gseff/gs=0.64: 2- in 90Zr (e-scatt.)

(26)

r-process nucleosynthesis

Constant Entropy Wind Model Lν=0.5x1051 erg/s

S=133 kB (γ, e-, e+) dm/dt=2.34x10-6 Msun

τ= 5.60 ms for T9=5 ->T9=2 T9f=0.8

Neutrino processes on n, p and 4He are included

Half-lives:

Standard (Moller et al.) Modified

(27)

gAeff/gA =0.34, gVeff/gV =0.67 + ΔQ =1.0 MeV

Large quenchings are favored in A =206

(gAeff/gA,gVeff/gV)=(0.34,0.67), (0.51, 0.30), (0.47, 0.64)

Warburton, PR C 44, 233 (1991) PR C42, 2479 (1990)

Rydstrom, NP A512, 217 (1990)

(28)

S. Nishimura et al.

(29)
(30)

Summary

56 56

Fe(ne,e ) Co

KARMEN (DAR)

Smaller e-capture rates

& larger (ν, ν’p) cross sections on 56Ni

Implications on nucleosynthesis smaller ratio for 58Ni/56Ni

larger 55Mn production

Shorter beta-decay half -lives at N=126 and Kr-Tc than FRDM

(31)

Summary

• A new shell model Hamiltonian SFO well

describes the spin responses in p-shell nuclei → new GT (SD) strengths in C isotopes and new ν-

12

C, ν-

13

C cross sections

Suzuki, Chiba, Yoshida,Kajino, Otsuka, PR C74, 034307, (2006).

Suzuki, Balantekin, Kajino, PR C 86, 015502 (2012).

• A new shell model Hamiltonian GXPF1J well

describes the spin responses in fp-shell niclei → new GT strengths in Ni isotopes which reproduce recent experimental data, ν-

56

Fe cross section

• Electron capture rates in

56

Ni,

58

Ni and

60

Ni are well described by GXPF1J.

Suzuki, Honma, Mao, Otsuka, Kajino, PR C83, 044619 (2011)

(32)

→ Abundance ratio of

58

Ni/

56

Ni in type Ia supernova explosions is improved

・ New ν-nucleus reaction cross sections in

56

Ni → enhancement of production rates of Mn and Co in supernova explosions

Suzuki, Honma et al., PR C79, 061603(R) (2009)

・ Short half-lives for beta decays of N=126 isotones compared to a standard model (FRDM)

→ The 3

rd

peak of the r-process element

abundances is shifted toward larger mass number region.

Suzuki, Yoshida, Kajino, Otsuka, PR C85, 015802 (2012)

(33)

Collaborators

M. Honma

a

,

T. Yoshida

b

, S. Chiba

c

, H. Mao

d

, K. Higashiyama

e

, T. Kajino

b,f

, T. Otsuka

g

B. Balantekin

h

, T. Umeda

b

, K. Nomoto

b,i

, Famiano

f,j

aUniversity of Aizu

bDepartment of Astronomy, University of Tokyo

cTokyo Institute of Technology dENSPS, Strasbourg

eChiba Institute of Technology

fNational Astronomical Observatory of Japan

gDepartment of Physics and CNS, University of Tokyo hUniversity of Wisconsin

iIPMU, jRIKEN

(34)

Riferimenti

Documenti correlati

Attraverso l’indice di mortalità si può evidenziare la bassa gravità degli incidenti che avvengono sulle strade urbane della provincia di Palermo (0,8 morti ogni cento incidenti) e

1-6 - Thin-section photomicrographs of chamositic ooids mostly around echinoderm fragments (2-5) and rarer trilobite fragments (1, in the centre). White bands are made

[r]

At these energies, nuclear reactions are dominated by fusion and transfer processes, and are strongly influenced by the structure of the interacting nuclear systems.

Neutron capture rates itself will be difficult if not impossible to measure but recent activities focus on the study of neutron transfer measurements on radioactive neutron rich

(left): A scheme of the adopted single block wire drawing process: 1: Mobile triboelement— Wire, 2: Stationary triboelement—Die, 3: Interface triboelement—Lubricant, 4:

Currently, the only management protocol for screening of women with threatened preterm labor shown by randomized trial data to decrease preterm birth has been that based mainly

The enriched GO term belonging to the biological process category found through the customized Singular Enrichment Analysis (SEA) performed with the down-regulated genes