The inner
magnetosphere:
- auroras
- radiation belts - plasmasphere - ionosphere
- polar wind
Viviane Pierrard
Belgian Institute for Space Aeronomy
Université Catholique de Louvain
The inner
magnetosphere
The magnetic field of the Earth and other planets
Auroras
Radiation belts
Motion in the terrestrial magnetic field
Plasmasphere
Ionosphere
Polar wind
Kinetic models
Geomagnetic activity
Space weather
B quasi-dipolar
liquid core
Angle 11° with rotation axis
Magnetic North Pole in Arctic Canada (1700 km)
N
Paleomagnetism: Magnetic poles
inversion Macedonio Melloni (1850).
normal polarity yellow inverse in blue
Magnetic dipole:
ˆ ) ˆ cos
sin 2
3
(
r
r B M
M magnetic moment
M=8 1015 T m3 =0.304 G RT3
magnetic latitude r radial distance
nT RB r
r B M
T
2 3
2 3
sin 3 ) 1
/ (
31000
sin 3 1
=0° B=31000 nT
=90° B=62000 nT
cos
2r
er
International Geomagnetic Reference Field (IGRF)
cos sin (sin )
8 1
1 1
nm nmm n n
n
n m
P m
h m
r g a a
V
gradV B
geographic latitude
geographic longitude
Pnm () associated Legendre polynomials gnm et hnm coefficients (80 terms)
r>4Rt: magnetospheric currents (magnetopause, neutral sheet, ring current) modify Z, H, B
Tsyganenko
Compression
Elongation
Mercure
Saturn
Jupiter
Uranus
Aurora
Auroras Photos:
Jan Curtis Alaska
6 Nov 2000, et 1 April 2000
Auroral
oval
Magnetic storm 15 July,
2000
21 October 2001 Aurora in Belgium
Saturn
Jupiter
VAN ALLEN belts
Van Allen belts Discovered 1958 Explorer 1
inner: p+ (100 keV-500 MeV) outer: p+ (<10 MeV)
e- (10 keV-10 MeV) e- (10 keV-5 MeV)
4 Rt 10 Rt
Thermonuclear bombs in 1958 and 1962
Sources:
Inner belt
CRAND (Cosmic Ray Albedo Neutron Decay) SPAND (Solar proton Albedo Neutron Decay) Outer belt
SW, radial diffusion, wave-particle interactions…
Losses :
atmospheric collisions, charge exchange, angular diffusion
) /
( f T losses
sources t
f
AP8 Max J(E>10 MeV) AE8 Max J(E >1 MeV)
L (Re) L (Re)
Empirical models NASA
SPENVIS www.spenvis.oma.be
South Atlantic Anomaly (500 km)
2.5 km/y
0.3°/y (westward)
Temporal variations
Benck et al., Ann. Geophys., 28, 848, 2010.
Decay times
SAC-C/ICARE diff. F:
LEO 700 km inclin.:98.2°
0.19-4.11 MeV, 18 channels,
Dec 2000- Sep 2006 DEMETER/IDP:
LEO: 710 km Inclin.: 98°
0.07-2.34 MeV, 27 channels,
Aug 2004-Mar 2006
Dynamic model: SSA
Evolution in time of the flux
(in cm-2/sr-1/s-1) for E=0.2-0.3 MeV in geographic
coordinate system.
The left upper graph shows the steady state at the onset of the storm (t=0 days).
SACC,
DEMETER CLUSTER
Dynamic simulation of radiation belts for SWIFF based on CLUSTER/RAPID (see poster of Kris Borremans)
Quiet Disturbed
Motion of particles
trapped in the Earth’s
magnetic field
Adiabatic invariants Magnetic moment
conservation (bêtatron) Conservation of mirror points separation (Fermi) Magnetic flux
conservation along azimutal drift
Motion T (1MeV e-) T (10 MeV p+)
Giration 7 10-6 s (r=320 m) 5 10-3 s (r=30 km)
Oscillation 0.1 s 0.65 s
Azimutal drift 50 min. 3.2 min.
Giration
Uniform magnetic field (no external force)
Centrifugal force = Lorentz force:
B v qv
m
G
2
qB mv
G
Giration radius
Angular frequency de Larmor
m qB v
G L
Giration period
qB T m
L L
2
2
Oscillation:
Faraday
Conservation of the magnetic moment and of the magnetic flux in the giration circle:
L B
q m B
v q
B m
2 22 2 2 constant
Conservation of energy: constantv v2 v//2
v= v sin
e
e m
m
B v B
v2 2 constant
e e m
m
B B
2
2 sin
sin
Mirror point:
m=90°, sin m =1
v//=v cos m=0 constant
Azimutal drift
Motion equation: ma F q(v B) Decomposition in v=vF+vL
vL giration velocity around guiding center vF drift velocity
qB
2B v
FF
) (
n q vF n q vF ne vF vF
J
Current density:
Drift forces:
g m F
qB
2B v
FF
E q F
B F B
B B mv
2
2
R n F mv
c
//2
dt v m d
F D
Gravitation Electric force
Magnetic force (gradient)
Curvature of magnetic field line
Inertia (polarisation)
Energetic particles (keV)
B B
v qB v
vB m ( 2 ) 2
2 //
2 3
Electrons East Ions West Ring current
Plasmasphere (1 eV)
0 )
(
ne vF vF
J
2
2
B
B E
B B E
q v q
v
F E
p
E e
E
v
v
3D dynamic plasmaspheric model (Pierrard and Stegen, JGR, 113, 2008)
www.spaceweather.eu ccmc.gsfc.nasa.gov
Temperatures of protons (same as electrons dayside, lower nightside)
Temperatures of electrons
Coupled to ionosphere (IRI model) Light ion trough
Plasmapause due to interchange instability
Kp=1
Kp=6
Volland-Stern E5D
Electric potential in the geomagnetic equatorial plane Erotation + Econvection (Kp)
Before substorm 9 June 2001 8h00
After substorm 10 June 2001 7h00
Comparison with EUV/IMAGE
observations
He+ ions at 30.4 nm
Pierrard and Cabrera, Ann.
Geophys., 23, 7, 2635, 2005.
Pierrard and Cabrera, Space Science Rev., 122, 119, doi:
10.1007/s11214-005-5670-8, 2006.
Ionosphere: UV, X, RC, solar particles
F (F1 et F2 (max)):
106 ions/
cm3
150-1000km
E:
103-105 ions/
cm3
90-150 km D:
102-104 ions/
cm3
60-90 km
ground: 100 ions/
cm3
IRI:
International Reference Ionosphere
Radio waves reflexion on the ionosphere
Marconi 1901
D: 30-300 kHz (LF)
E: 300 khz-3 MHz (FM)
F: 3-300 Mhz (HF)
VHF: not reflected
Wave attenuation
Oscillating electrons
Collisions with other constituants
High attenuation when N high (D), low frequency
Electrojet ionospheri c current:
in regions D and E of the auroral ionosphere
(high
conductivity)
Resistivity
implicates heating of the upper
atmosphere
Polar wind
www.spaceweather.eu e- +++ O+….. H+ diamonds
Based on the velocity
distribution function of the particles
f(r, v, t) dr dv
number of particles with a velocity in [ v, v+dv ] and a position in [ r, r+dr ] at an instant t
Maxwellian VDF in regions dominated by collisions
’ ’
’ ’ ’
’
’ ’
’ ’
The kinetic approach
Evolution equation
Exosphere: mfp>>H
( )[ 1 ]
2
1 D f WPI
f v v A
v a f
r v f
t
f
Exobase: MFP=H
(between 1.1 and 6 Rs)
Barosphere: mfp<<H Pierrard V., in “Exploring the solar wind”, 221-240, Intech, Edited by M.
Lazar, ISBN 978-953-51-0339-4, 2012
Vlasov: no interaction term (exosphere)
Fokker-Planck: Coulomb collisions MHD
P(): Legendre polynomials S(y): Speed polynomials
L(z): Modified Legendre polynomials
Advantages: Derivatives are linear function of f calculated at the quadrature points
and integrals (moments) are related to the coefficients.
i = 1,…,10 j=1,…16 k=1,…,10
At each radial distance, f(v,) is represented by 2*10*16=320 points.
Other methods: finite differences, Monte Carlo, …
) ( )
( )
( )
exp(
) , , (
1 1 1
2 ijk y z
y y
z
f l a P S j Lk
i m
j n
k i
) (
1
j m
j ij y
y
y f y D
f
i
) ( )
( ) (
1
i n
i i b
a
y G w dy
y G y
W
Spectral numerical method
Pierrard V., Numerical Modeling of Space Plasma Flows, ASP, 444, 166-176, 2011.
The moments of f
f r v dv
r
n() (, )
) (
) ) (
( n r
r r F
u
f r v v dv r
F )
, ( )
(
Number density [m-3] Particle flux [m-2 s-1] Bulk velocity [m s-1]
Energy flux [Jm-2 s-1] Pressure [Pa]
Temperature [K]
v d u v u v v r f m r
P ) )(
)(
, ( )
(
v d u v v r r f
n k r m
T
( , ) 2
) ( ) 3
(
v d u v u v v r m f
r
E
( , ) ( )
) 2
( 2
MHD approach
Continuity equation
Momentum eq.
Energy eq.
v d [1]
v d v m [1]
v mv d [1] 2
2
In each equation of order n appears the moment of order n+1.
Assumptions to close the MHD system
The moments obtained from the kinetic solutions fulfill the transport equations.
( )[1]2
1 Df WPI
f v v A
v a f r
v f t
f
4 classes of orbits Escaping
Ballistic Trapped Incoming
Quasi-neutrality: n+=n-
Determination of V (electric potential):
Plasmasphere: Incoming=escaping F=0 Hydrostatic equilibrium Polar (and solar wind): Incoming=0 F+=F- Hydrodynamic equilibrium Auroral regions (plasmasheet): F(V) Current
Current-Voltage relationship
Pierrard et al., JASTP 69, 12, 2007.
Results of the Fokker-Planck model for polar wind protons
Pierrard and J. Lemaire, JGR, 103, 11701, 1998.
Barghouthi, Pierrard, Barakat, Lemaire, Astr. Sp. Sci., 277, 427, 2001.
Geomagnetic
storms
Magnetic storms: problem for space missions 1. Orbits modifications
2. MeV protons: Single Event Upset (micro-electronic devices, solar cells…)
3. MeV electrons: internal charging (satellite failures)
4. KeV electrons: surface charging (discharges, parasite signals…)
Limit dose of Radiation (milliSieverts = mSv
for astronauts) Time Eyes Skin
30 days 1000 1500 1 year 2000 3000 Life 4000 6000
Electricity
failures
Pipelines corrosion
Pipeline in Alaska
Image Credit:
Courtesy of Donald D. Rice
Storms
F10.7NswUsw
Bx By Bz
Kp Dst
Daily variations of magnetic field
Geomagnetic activity indices
Kp Planetary geomagnetic activity Bartels index Kp.
1939 13 stations (11N, 2S 44-60°)
AE Auroral Electrojet
1966 12 stations N (aur.)
Dst (Disturbed storm time)
1964 4 stations (eq.)
PC Polar Cap
1991 1 station (pol.)
Substorms B sud
Reconnexion
Reconnexion
Magnetosphere
CLUSTER
4 satellites lancés en juillet et août 2000
Orbite polaire elliptique Périgée: 19000 km (4 Re) Apogée: 119000 km (19 Re) Période: 57 h
8h00 16h00 23h00
7h00 9h00 13h00
IMAGE/UV 30.4 nm 9-6-2001 A 23 h, Kp=5.3
10-6-2001
07 mai 2002 Plume
Effet Forbush (1937)
Rayons cosmiques 85% H+, 10% He++
Solaires: protons et ions de 1 à 100 MeV (augmente avec activité solaire)
Galactiques (hors système solaire: supernovae, pulsar, noyaux actifs de galaxies…): >1 MeV (diminue avec activité solaire)
Influence sur le climat:
comparaison des températures et du nombre de
taches solaires:
minimum de
Maunder associé au petit âge
glaciaire
Minimum de
Dalton
Kp Dst
Sunspot F10.7 Nsw Vsw Tsw Psw Bz
Magnetopause
Champ électrique de convection de Weimer:
Latit=90 (pôle) Equateur
Les indices d'activité aurorale (Auroral Electrojet)
1966
H en nT dans 12 stations aurorales N
AU (upper): max variations
électrojet Est, côté jour, courant magnétopause (variations du milieu interplanétaire)
AL (lower): min variations
Électrojet Ouest, côté nuit, sous-orage
AE: AU-AL, puissance dissipée dans l’ionosphère aurorale
AO: moyenne de AU et AL, asymétries entre les électrojets, courant auroral.
Indices d'activité du courant annulaire
1964
Dst (Disturbed storm time): courant annulaire équatorial de 3 à 5 Re
H (moyenne) de 4 observatoires régulièrement répartis en longitude
Variation séculaire+diurne
Variations séculaires obtenues des moyennes annuelles pendant les 5 jours les plus calmes de chaque mois
L’équation d’une ligne de force magnétique dipolaire est donnée par :
cos
2r
er
re = L Rt est la distance équatoriale exprimée en nombre de rayons terrestres.
L est le paramètre de McIlwain
La latitude invariante d’une ligne de force correspond à la latitude à laquelle la ligne de force magnétique traverse la surface de la Terre :
L arccos 1
0
Indices planétaires
d'activité magnétique
Kp (Bartels, 1939): Indice tri-horaire, résolution 1/3, basé sur H dans 13 stations de 44 à 60° (11 N, 2 S), table de conversion pour unités [0-9]
Subauroraux: électrojets auroraux+ courant annulaire
an (Nord), as (Sud), am (moyen)=(an+as)/2 en nT, depuis 1968
21 stations (12 N et 9 S) à 50°
aa: 2 observatoires antipodaux (Angl/Austr)
Indice de flux radio solaire (1969)
F10.7: intensité du flux radio solaire à = 10.7 cm
en unités 10-22 Watts m-2 Hz-1
Résolution temporelle de 1 jour
Activité solaire