• Non ci sono risultati.

The inner magnetosphere: - auroras - radiation belts - plasmasphere - ionosphere - polar wind

N/A
N/A
Protected

Academic year: 2021

Condividi "The inner magnetosphere: - auroras - radiation belts - plasmasphere - ionosphere - polar wind"

Copied!
104
0
0

Testo completo

(1)

The inner

magnetosphere:

- auroras

- radiation belts - plasmasphere - ionosphere

- polar wind

Viviane Pierrard

Belgian Institute for Space Aeronomy

Université Catholique de Louvain

(2)

The inner

magnetosphere

The magnetic field of the Earth and other planets

Auroras

Radiation belts

Motion in the terrestrial magnetic field

Plasmasphere

Ionosphere

Polar wind

Kinetic models

Geomagnetic activity

Space weather

(3)
(4)

B quasi-dipolar

liquid core

Angle 11° with rotation axis

Magnetic North Pole in Arctic Canada (1700 km)

N

(5)

Paleomagnetism: Magnetic poles

inversion Macedonio Melloni (1850).

normal polarity yellow inverse in blue

(6)

Magnetic dipole:

ˆ ) ˆ cos

sin 2

3

(   

   r

r B M

M magnetic moment

M=8 1015 T m3 =0.304 G RT3

 magnetic latitude r radial distance

 

nT R

B r

r B M

T

2 3

2 3

sin 3 ) 1

/ (

31000

sin 3 1

=0° B=31000 nT

=90° B=62000 nT

cos

2

r

e

r

(7)

International Geomagnetic Reference Field (IGRF)

cos sin (sin )

8 1

1 1

nm nm

m n n

n

n m

P m

h m

r g a a

V

gradV B

 

 

 



geographic latitude

geographic longitude

Pnm () associated Legendre polynomials gnm et hnm coefficients (80 terms)

r>4Rt: magnetospheric currents (magnetopause, neutral sheet, ring current) modify Z, H, B

Tsyganenko

(8)
(9)

Compression

Elongation

(10)

Mercure

(11)

Saturn

(12)

Jupiter

(13)

Uranus

(14)
(15)

Aurora

(16)

Auroras Photos:

Jan Curtis Alaska

6 Nov 2000, et 1 April 2000

(17)

Auroral

oval

(18)
(19)

Magnetic storm 15 July,

2000

(20)

21 October 2001 Aurora in Belgium

(21)
(22)
(23)

Saturn

(24)

Jupiter

(25)

VAN ALLEN belts

(26)

Van Allen belts Discovered 1958 Explorer 1

(27)

inner: p+ (100 keV-500 MeV) outer: p+ (<10 MeV)

e- (10 keV-10 MeV) e- (10 keV-5 MeV)

4 Rt 10 Rt

(28)

Thermonuclear bombs in 1958 and 1962

(29)

Sources:

Inner belt

CRAND (Cosmic Ray Albedo Neutron Decay) SPAND (Solar proton Albedo Neutron Decay) Outer belt

SW, radial diffusion, wave-particle interactions…

Losses :

atmospheric collisions, charge exchange, angular diffusion

) /

( f T losses

sources t

f  

(30)

AP8 Max J(E>10 MeV) AE8 Max J(E >1 MeV)

L (Re) L (Re)

Empirical models NASA

(31)

SPENVIS www.spenvis.oma.be

(32)
(33)

South Atlantic Anomaly (500 km)

2.5 km/y

0.3°/y (westward)

(34)

Temporal variations

Benck et al., Ann. Geophys., 28, 848, 2010.

(35)

Decay times

SAC-C/ICARE diff. F:

LEO 700 km inclin.:98.2°

0.19-4.11 MeV, 18 channels,

Dec 2000- Sep 2006 DEMETER/IDP:

LEO: 710 km Inclin.: 98°

0.07-2.34 MeV, 27 channels,

Aug 2004-Mar 2006

(36)

Dynamic model: SSA

Evolution in time of the flux

(in cm-2/sr-1/s-1) for E=0.2-0.3 MeV in geographic

coordinate system.

The left upper graph shows the steady state at the onset of the storm (t=0 days).

SACC,

DEMETER CLUSTER

(37)

Dynamic simulation of radiation belts for SWIFF based on CLUSTER/RAPID (see poster of Kris Borremans)

(38)

Quiet Disturbed

(39)

Motion of particles

trapped in the Earth’s

magnetic field

(40)

Adiabatic invariants Magnetic moment

conservation (bêtatron) Conservation of mirror points separation (Fermi) Magnetic flux

conservation along azimutal drift

Motion T (1MeV e-) T (10 MeV p+)

Giration 7 10-6 s (r=320 m) 5 10-3 s (r=30 km)

Oscillation 0.1 s 0.65 s

Azimutal drift 50 min. 3.2 min.

(41)

Giration

Uniform magnetic field (no external force)

Centrifugal force = Lorentz force:

B v qv

m

G

2

qB mv

G

Giration radius

Angular frequency de Larmor

m qB v

G L

Giration period

qB T m

L L

2

2 

(42)

Oscillation:

Faraday

Conservation of the magnetic moment and of the magnetic flux in the giration circle:

L B

q m B

v q

B m

2 22 2 2 constant

Conservation of energy: constantv v2 v//2

v= v sin

    e

e m

m

B v B

v2 2 constant

e e m

m

B B

2

2 sin

sin

Mirror point:

m=90°, sin m =1

v//=v cos m=0 constant

(43)

Azimutal drift

Motion equation: ma F q(v B) Decomposition in v=vF+vL

vL giration velocity around guiding center vF drift velocity

qB

2

B v

F

F

  

) (

n q vF n q vF ne vF vF

J

Current density:

(44)

Drift forces:

g m F  

qB

2

B v

F

F

  

E q F  

B F   B

B

B mv

2

2

R n F mv

c

//2

dt v m d

F D

Gravitation Electric force

Magnetic force (gradient)

Curvature of magnetic field line

Inertia (polarisation)

(45)

Energetic particles (keV)

B B

v qB v

vBm (  2 )    2

2 //

2 3

Electrons East Ions West Ring current

(46)

Plasmasphere (1 eV)

0 )

(

ne vF vF

J

2

2

B

B E

B B E

q v q

v

F E

 

 

 

p

E e

E

v

v   

(47)

3D dynamic plasmaspheric model (Pierrard and Stegen, JGR, 113, 2008)

(48)

www.spaceweather.eu ccmc.gsfc.nasa.gov

(49)

Temperatures of protons (same as electrons dayside, lower nightside)

Temperatures of electrons

(50)

Coupled to ionosphere (IRI model) Light ion trough

Plasmapause due to interchange instability

(51)

Kp=1

Kp=6

Volland-Stern E5D

Electric potential in the geomagnetic equatorial plane Erotation + Econvection (Kp)

(52)

Before substorm 9 June 2001 8h00

After substorm 10 June 2001 7h00

Comparison with EUV/IMAGE

observations

He+ ions at 30.4 nm

Pierrard and Cabrera, Ann.

Geophys., 23, 7, 2635, 2005.

Pierrard and Cabrera, Space Science Rev., 122, 119, doi:

10.1007/s11214-005-5670-8, 2006.

(53)

Ionosphere: UV, X, RC, solar particles

F (F1 et F2 (max)):

106 ions/

cm3

150-1000km

E:

103-105 ions/

cm3

90-150 km D:

102-104 ions/

cm3

60-90 km

ground: 100 ions/

cm3

(54)

IRI:

International Reference Ionosphere

(55)
(56)

Radio waves reflexion on the ionosphere

Marconi 1901

D: 30-300 kHz (LF)

E: 300 khz-3 MHz (FM)

F: 3-300 Mhz (HF)

VHF: not reflected

(57)

Wave attenuation

Oscillating electrons

Collisions with other constituants

High attenuation when N high (D), low frequency

(58)

Electrojet ionospheri c current:

in regions D and E of the auroral ionosphere

(high

conductivity)

Resistivity

implicates heating of the upper

atmosphere

(59)

Polar wind

(60)
(61)

www.spaceweather.eu e- +++ O+….. H+ diamonds

(62)

Based on the velocity

distribution function of the particles

f(r, v, t) dr dv

number of particles with a velocity in [ v, v+dv ] and a position in [ r, r+dr ] at an instant t

Maxwellian VDF in regions dominated by collisions

’ ’

The kinetic approach

(63)

Evolution equation

Exosphere: mfp>>H

  ( )[ 1 ]

2

1 D f WPI

f v v A

v a f

r v f

t

f

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Exobase: MFP=H

(between 1.1 and 6 Rs)

Barosphere: mfp<<H Pierrard V., in “Exploring the solar wind”, 221-240, Intech, Edited by M.

Lazar, ISBN 978-953-51-0339-4, 2012

Vlasov: no interaction term (exosphere)

Fokker-Planck: Coulomb collisions MHD

(64)

P(): Legendre polynomials S(y): Speed polynomials

L(z): Modified Legendre polynomials

Advantages: Derivatives are linear function of f calculated at the quadrature points

and integrals (moments) are related to the coefficients.

i = 1,…,10 j=1,…16 k=1,…,10

At each radial distance, f(v,) is represented by 2*10*16=320 points.

Other methods: finite differences, Monte Carlo, …

) ( )

( )

( )

exp(

) , , (

1 1 1

2 ijk y z

y y

z

f l a P S j Lk

i m

j n

k i



) (

1

j m

j ij y

y

y f y D

f

i





) ( )

( ) (

1

i n

i i b

a

y G w dy

y G y

W

Spectral numerical method

Pierrard V., Numerical Modeling of Space Plasma Flows, ASP, 444, 166-176, 2011.

(65)

The moments of f

f r v dv

r

n() (, )

) (

) ) (

( n r

r r F

u

f r v v dv r

F )

, ( )

(

Number density [m-3] Particle flux [m-2 s-1] Bulk velocity [m s-1]

Energy flux [Jm-2 s-1] Pressure [Pa]

Temperature [K]

v d u v u v v r f m r

P ) )(

)(

, ( )

(

v d u v v r r f

n k r m

T

( , ) 2

) ( ) 3

(

v d u v u v v r m f

r

E

( , ) ( )

) 2

( 2

(66)

MHD approach

Continuity equation

Momentum eq.

Energy eq.

v d  [1]

v d v m [1]

v mv d [1] 2

2

In each equation of order n appears the moment of order n+1.

Assumptions to close the MHD system

The moments obtained from the kinetic solutions fulfill the transport equations.

 

( )[1]

2

1 Df WPI

f v v A

v a f r

v f t

f





(67)

4 classes of orbits Escaping

Ballistic Trapped Incoming

(68)

Quasi-neutrality: n+=n-

Determination of V (electric potential):

Plasmasphere: Incoming=escaping F=0 Hydrostatic equilibrium Polar (and solar wind): Incoming=0 F+=F- Hydrodynamic equilibrium Auroral regions (plasmasheet): F(V) Current

Current-Voltage relationship

Pierrard et al., JASTP 69, 12, 2007.

(69)

Results of the Fokker-Planck model for polar wind protons

Pierrard and J. Lemaire, JGR, 103, 11701, 1998.

(70)

Barghouthi, Pierrard, Barakat, Lemaire, Astr. Sp. Sci., 277, 427, 2001.

(71)
(72)

Geomagnetic

storms

(73)

(74)

Magnetic storms: problem for space missions 1. Orbits modifications

2. MeV protons: Single Event Upset (micro-electronic devices, solar cells…)

3. MeV electrons: internal charging (satellite failures)

4. KeV electrons: surface charging (discharges, parasite signals…)

(75)

Limit dose of Radiation (milliSieverts = mSv

for astronauts) Time Eyes Skin

30 days 1000 1500 1 year 2000 3000 Life 4000 6000

(76)
(77)

Electricity

failures

(78)

Pipelines corrosion

Pipeline in Alaska

Image Credit:

Courtesy of Donald D. Rice

(79)

Storms

F10.7Nsw

Usw

Bx By Bz

Kp Dst

(80)

Daily variations of magnetic field

(81)

Geomagnetic activity indices

Kp Planetary geomagnetic activity Bartels index Kp.

1939 13 stations (11N, 2S 44-60°)

AE Auroral Electrojet

1966 12 stations N (aur.)

Dst (Disturbed storm time)

1964 4 stations (eq.)

PC Polar Cap

1991 1 station (pol.)

(82)

Substorms B sud

(83)

Reconnexion

(84)

Reconnexion

(85)
(86)
(87)

Magnetosphere

(88)
(89)

CLUSTER

4 satellites lancés en juillet et août 2000

Orbite polaire elliptique Périgée: 19000 km (4 Re) Apogée: 119000 km (19 Re) Période: 57 h

(90)

8h00 16h00 23h00

7h00 9h00 13h00

IMAGE/UV 30.4 nm 9-6-2001 A 23 h, Kp=5.3

10-6-2001

(91)

07 mai 2002 Plume

(92)
(93)

Effet Forbush (1937)

Rayons cosmiques 85% H+, 10% He++

Solaires: protons et ions de 1 à 100 MeV (augmente avec activité solaire)

Galactiques (hors système solaire: supernovae, pulsar, noyaux actifs de galaxies…): >1 MeV (diminue avec activité solaire)

(94)

Influence sur le climat:

comparaison des températures et du nombre de

taches solaires:

minimum de

Maunder associé au petit âge

glaciaire

Minimum de

Dalton

(95)

Kp Dst

Sunspot F10.7 Nsw Vsw Tsw Psw Bz

Magnetopause

(96)
(97)
(98)

Champ électrique de convection de Weimer:

Latit=90 (pôle) Equateur

(99)

Les indices d'activité aurorale (Auroral Electrojet)

1966

H en nT dans 12 stations aurorales N

AU (upper): max variations

électrojet Est, côté jour, courant magnétopause (variations du milieu interplanétaire)

AL (lower): min variations

Électrojet Ouest, côté nuit, sous-orage

AE: AU-AL, puissance dissipée dans l’ionosphère aurorale

AO: moyenne de AU et AL, asymétries entre les électrojets, courant auroral.

(100)

Indices d'activité du courant annulaire

1964

Dst (Disturbed storm time): courant annulaire équatorial de 3 à 5 Re

H (moyenne) de 4 observatoires régulièrement répartis en longitude

Variation séculaire+diurne

Variations séculaires obtenues des moyennes annuelles pendant les 5 jours les plus calmes de chaque mois

(101)

L’équation d’une ligne de force magnétique dipolaire est donnée par :

 cos

2

r

e

r

re = L Rt est la distance équatoriale exprimée en nombre de rayons terrestres.

L est le paramètre de McIlwain

La latitude invariante d’une ligne de force correspond à la latitude à laquelle la ligne de force magnétique traverse la surface de la Terre :

L arccos 1

0

(102)
(103)

Indices planétaires

d'activité magnétique

Kp (Bartels, 1939): Indice tri-horaire, résolution 1/3, basé sur H dans 13 stations de 44 à 60° (11 N, 2 S), table de conversion pour unités [0-9]

Subauroraux: électrojets auroraux+ courant annulaire

an (Nord), as (Sud), am (moyen)=(an+as)/2 en nT, depuis 1968

21 stations (12 N et 9 S) à 50°

aa: 2 observatoires antipodaux (Angl/Austr)

(104)

Indice de flux radio solaire (1969)

F10.7: intensité du flux radio solaire à = 10.7 cm

en unités 10-22 Watts m-2 Hz-1

Résolution temporelle de 1 jour

Activité solaire

Riferimenti

Documenti correlati

Uno degli aspetti peculiari del romanzo consiste nel conflitto fra due livelli di appresentazione inconciliabili: quello facile della vita quotidiana e quello derivante da

– To check the spin-related nature of the measured IREE signal, we investigate the dependence of ΔV , as a function of the degree of circular polarization (DCP) and of the power of

[r]

If the injection chain cannot provide the limit value, the bunch brightness can be increased by beam cooling application in the collider, for instance stochastic cooling realized

Table 7 - data from the rheometric curves of composites based on different poly1,4-cis-isoprene samples crosslinked with sulfur-based system Rubber HNR GR-P GR-R IR... Figure 2

It is possible to observe in Figure 9, that in most severe solid fault, even if the first peak of short circuit current touches 15pu and the deep voltage sag reaches only 75%,

In this paper, we present subarcsecond images of the nuclear starburst in M82 at central frequencies of 118 MHz (λ = 2.5 m) and 154 MHz (λ = 1.9 m), made using international

Time variations of proton flux in Earth inner radiation belt during 23/24 solar cycles based on the PAMELA and the ARINA data.. View the table of contents for this issue, or go to