• Non ci sono risultati.

Floristic and structural variability of the central apennines beech forests in relation to natural and anthropogenic determinants

N/A
N/A
Protected

Academic year: 2021

Condividi "Floristic and structural variability of the central apennines beech forests in relation to natural and anthropogenic determinants"

Copied!
96
0
0

Testo completo

(1)DOCTORALSCHOOLI NBI OLOGY. Sec t i on: Bi odi ver s i t yandEc os ys t emsAnal ys i s. XXVI ICyc l e A. A. 2013/2014. Fl or i s t i cands t r uc t ur alv ar i abi l i t yoft he c e nt r alApe nni ne sbe e c hf or e s t si n r e l at i ont onat ur alandant hr opoge ni c de t e r mi nant s Var i abi l i t àl or i s t i c aes t r ut t ur al ede l l ef agge t ec e nt r oappe nni ni c hei nr e l az i oneaide t e r mi nant inat ur al i eant r opoge ni c i. Andr e aS c ol a s t r i. Tut or : Dr . Ma ur i z i oCut i ni.

(2) DOCTORAL SCHOOL IN BIOLOGY Section Biodiversity and ecosystems analysis. XXVII cycle. Floristic and structural variability of the central Apennines beech forests in relation to natural and anthropogenic determinants Variabilità floristica e strutturale delle faggete centroappenniniche in relazione ai determinanti naturali e antropogenici. Andrea Scolastri Tutor: Dr. Maurizio Cutini. A.A. 2013/2014.

(3) Thesis defense on the 24th February 2015 in front of the following jury:. Prof.ssa Angela Stanisci Prof. Francesco Spada Dott. Giandiego Campetella.

(4) Table of contents. Abstract. I. Riassunto. IV. Papers published or prepared in the course of the PhD. VII. General introduction. 1. Chapter 1 Patterns of floristic variation on a montane beech forest in the central Apennines (central Italy). 5. Chapter 2 Old Coppice vs High Forest: the impact of beech forest management on plant species diversity in central Apennines (Italy). 21. Chapter 3 Old Coppice vs High Forest: effects of two management types on understory functional composition. 45. General conclusions. 72. References. 76. Ringraziamenti. 81.

(5)

(6) Abstract. Forests are complex ecosystems, in which the floristic composition is the result of the combined effect of several factors, acting at different levels. Climate, lithology, geomorphology act at a broader scale, driving the forest's communities differentiation while, at a finer scale, the understory species composition is shaped by the forest stand structure that directly influences the environmental conditions (light, temperature, moisture) at the ground level. Fagus sylvatica forests are the most abundant broadleaved communities in central and southern Europe; in Italy they represent the typical montane vegetation in the Apennine chain, where these coenoses reach the highest elevations of their whole distributional range. Beech forests have been managed for centuries, prevalently as coppice, or coppicewith-standards (CWS), and high forest (HF). However, in recent decades deep socio-economical changes have led to the progressive abandonment of coppice cut and its conversion to high forest management. These two systems differ in cut intensity and severity (both higher in CWS): given that forest management impacts upon overstory structure and therefore determines the understory composition, management changes are likely to affect understory species composition and diversity. In this thesis I have analyzed the effect of the main environmental drivers on beech forests communities: I then focused on the management effects on understory species and 9210* Habitat diagnostic species richness and composition (sensu Habitat Directive 92/43 EEC), in order to understand the possible implications of the old CWS conversion on the floristic composition. The study was conducted in central Apennines, on the Montagne della Duchessa massif, where beech forests occupy a surface of more than 1200 ha; these forests have ceased to be managed since '60s, so the CWS have become older, and are destined to be converted to the HF cut. I studied the role of the environmental factors in differentiating the beech forests communities by using a dataset of 40 relevés randomly selected. The dataset obtained has been analyzed through a cluster analysis and a Indicator Species Analysis (ISA), in order to obtain groups of relevés and to characterize them in floristic terms; the groups obtained were then compared in terms of environmental and topographic variables, Ellenberg indicator values, life forms, Social Behaviour Types (SBT) and structural parameters. Results showed that the floristic and coenological variability is. I.

(7) shaped by a climatic and edaphic gradient, that both contribute to define two main communities: a microthermal one, placed at higher altitudes and cooler aspects (Cardamino kitaibelii - Fagetum sylvaticae), and a termophilous one, lying at lower altitudes and warmer aspects (Lathyro veneti - Fagetum sylvaticae). Social Behaviour Types and structural parameters were useful for detecting the effects of the progressive reforestation process occurring inside the microthermal community at higher elevation. In order to investigate the differences between old CWS and HF stands in terms of understory richness and composition, I used 66 relevés, selected through a random-stratified method, so as to have a comparable number of relevés for each management category; old CWS and HF stands were compared in terms of structural attributes and floristic richness through a U Mann-Whitney test: the results showed how management is the main factor responsible for differences in the tree layer's spatial aggregation pattern and vertical layering, and that therefore determines the amount of surface available for understory species. HF stands showed a higher mean richness of both understory and diagnostic species, these latter being more evenly distributed (higher species equitability) inside the community. This leads to the consideration that in HF stands the cut regime provided a constant canopy cover over time, and then maintained more stable microclimatic conditions favoring a higher abundance and evenness of the shade-tolerant and vernal species. Conversely, in old CWS the dense canopy negatively affected the understory richness by reducing the light-demanding species pool, while the shade-tolerant species have not yet had time to spread. In order to understand the implications of the old CWS conversion on beech forests ecosystem's ecological functions, the same dataset was analyzed through plant functional traits, by creating a relevés x traits matrix. A Redundancy Analysis (RDA) was performed to assess the relationship between traits states and management, while a U Mann-Whitney test was used to assess differences in traits states richness between the management types. The results were consistent with the previous findings based on habitat diagnostic species, as HF stands showed a higher affinity to traits typical of mature forests, while old CWS were more related to traits related to managed stands. Moreover, HF stands showed a higher abundance of those traits related to the natural forest's seasonal change, this indicating a good species distribution among the functional niches. Even in this case, old CWS was shown to be in a transitional stage, still represented by some traits related to management, where the mature forest traits are also present, but with lower abundance.. II.

(8) Finally, given that in a forest ecosystem understory represent more than 90% of species richness, and is the most sensitive to disturbance, the modern silvi-cultural strategies should take into account the management effects on forest biodiversity, and adopt sustainable interventions able to favor the typical biodiversity of the ecosystems we want to manage. This thesis provides useful information for management purposes, as our findings show that, in the forests studied, the old CWS conversion to HF could be a good management strategy if our aim is the conservation over time of the species typically related to mature forest conditions.. III.

(9) Riassunto. Le foreste sono ecosistemi complessi, la cui composizione floristica è il risultato dell'effetto combinato di diversi fattori, che agiscono a vari livelli. Il clima, la litologia e la geomorfologia agiscono a scala più ampia, determinando la differenziazione delle comunità forestali, mentre, a scala più fine, la composizione floristica del sottobosco è selezionata dalla struttura del popolamento forestale, che ha una influenza diretta sulle condizioni ambientali (luce, temperatura , umidità) a livello del suolo. Le foreste a Fagus sylvatica sono le più abbondanti comunità di latifoglie in Europa centrale e meridionale ed in Italia rappresentano la tipica vegetazione montana della catena appenninica, dove queste cenosi raggiungono le quote più elevate dell'intero areale. Le foreste di faggio sono state gestite per secoli, prevalentemente come cedui, o cedui matricinati, e come fustaie ma negli ultimi decenni, profondi cambiamenti socioeconomici hanno portato al progressivo abbandono del taglio ceduo e al successivo avviamento all' altofusto. Questi due sistemi si differenziano sia per intensità che severità del taglio, entrambi di maggiore entità nel ceduo; dato che la gestione forestale agisce direttamente sulla struttura del popolamento forestale, cambiamenti nella gestione del taglio possono avere effetti sulla composizione e sulla diversità floristica del sottobosco. In questa tesi ho analizzato gli effetti dei principali fattori ambientali sulle comunità di faggeta, concentrandomi poi sugli effetti della gestione forestale sulla composizione e ricchezza specifica sia delle specie del sottobosco che delle specie diagnostiche dell' Habitat 9210* (sensu Direttiva Habitat 92/43 CEE), al fine di comprendere le possibili implicazioni della conversione dei cedui invecchiati sulla composizione floristica. Lo studio è stato condotto in Appennino centrale, sul massiccio delle Montagne della Duchessa, dove le faggete occupano una superficie di più di 1200 ettari; queste foreste non sono state più gestite a partire dagli anni '60, quindi i cedui, ormai invecchiati, sono ora destinati all'avviamento all'altofusto. Ho studiato il ruolo dei fattori ambientali nella differenziazione delle comunità di faggeta utilizzando 40 rilievi, selezionati in maniera casuale. Il set di dati ottenuto è stato analizzato attraverso una Cluster Analysis ed una Indicator Species Analysis (ISA) al fine di ottenere gruppi di rilievi, e di caratterizzarli in termini floristici; i gruppi ottenuti sono stati confrontati sulla base delle variabili ambientali e topografiche, dei valori di indicazione. IV.

(10) di Ellenberg, forme biologiche, Social Behaviour Types (SBT) e parametri strutturali. I risultati hanno mostrato che la variabilità floristica e cenologica delle faggete studiate è modellata da due gradienti, uno climatico ed uno edafico, che contribuiscono entrambi nel definire due comunità principali: una microtermica, posta a quote maggiori ed esposizioni più fredde (Cardamino kitaibelii - Fagetum sylvaticae), ed una termofila, posta a quote più basse ed esposizioni più calde (Lathyro Veneti - Fagetum sylvaticae). L'utilizzo dei Social Behaviour Types, ed il loro incrocio con i dati sui parametri strutturali, ha permesso inoltre di rilevare gli effetti del processo di riforestazione che sta avvenendo all'interno della comunità microtermica, alle quote maggiori. Al fine di indagare le differenze tra cedui invecchiati e fustaie in termini di ricchezza e composizione floristica del sottobosco, ho utilizzato 66 rilievi, selezionati attraverso un metodo random-stratificato in modo da avere un numero paragonabile di rilievi per ciascuna categoria di gestione;. I cedui invecchiati e le fustaie sono state confrontate sia in termini di attributi strutturali che di ricchezza floristica attraverso un test U di MannWhitney. I risultati hanno mostrato come la gestione sia il principale responsabile delle differenze nella distribuzione spaziale e nella stratificazione verticale dello strato arboreo, che determinano quindi la quantità di superficie disponibile per le specie del sottobosco. Le fustaie hanno mostrato una maggiore ricchezza media per rilievo sia delle specie del sottobosco che di quelle diagnostiche, le quali hanno inoltre mostrato una maggiore eterogeneità ed equiripartizione all'interno della comunità. Questo porta a considerare che nelle fustaie il regime di taglio ha assicurato una copertura costante nel tempo, favorendo quindi il mantenimento di condizioni microclimatiche più stabili, che hanno determinato una maggiore abbondanza sia delle specie sciafile che primaverili. Al contrario, nei cedui invecchiati la densa copertura della volta arborea sembra avere influenzato negativamente la ricchezza del sottobosco riducendo le specie più eliofile, mentre le specie più sciafile, tipiche di foreste mature, sono presenti, ma con abbondanze minori. Al fine di comprendere le implicazioni della conversione dei cedui invecchiati sulle funzioni ecologiche dell'ecosistema di faggeta, lo stesso gruppo di rilievi è stato analizzato sulla base dei plant functional traits, creando una matrice di rilievi x traits. Attraverso una Redundancy analysis (RDA) è stata valutata la relazione tra traits e gestione selvicolturale, mentre è stato utilizzato un test U di Mann-Whitney per analizzare le differenze in ricchezza dei traits tra i due sistemi selvicolturali. I risultati emersi sono coerenti con quelli precedentemente ottenuti, relativi alle specie. V.

(11) diagnostiche dell' Habitat; le fustaie hanno mostrato infatti una maggiore affinità per i traits tipici di foresta matura, mentre i cedui invecchiati si sono rivelati maggiormente legati a caratteri relativi a foreste gestite. Inoltre, nelle fustaie è stata rilevata una maggiore abbondanza di traits legati al naturale cambiamento stagionale delle foreste, indice di una migliore ripartizione delle specie tra le nicchie funzionali. Anche in questo caso, i cedui invecchiati hanno dimostrato di essere in una fase transitoria, ancora rappresentata da caratteri legati alla gestione, in cui i traits legati ad aspetti maturi sono comunque presenti, ma con minore abbondanza. In conclusione, considerando che in un ecosistema forestale il sottobosco rappresenta più del 90% della ricchezza specifica, le moderne strategie selvicolturali devono tenere in considerazione gli effetti della gestione sulla biodiversità forestale, in modo da adottare interventi sostenibili, in grado di favorire la biodiversità tipica degli ecosistemi che si vogliono gestire. Questa tesi fornisce indicazioni utili per la gestione in quanto i risultati ottenuti mostrano che, nelle foreste studiate, la conversione del ceduo invecchiato può essere una buona strategia di gestione, se il nostro obiettivo è la conservazione nel tempo delle specie tipicamente legate a condizioni di foresta matura.. VI.

(12) Papers published or prepared in the course of the PhD. Paper 1 Scolastri A., Cancellieri L., Iocchi M., Cutini M., 2014. Patterns of floristic variation on a montane beech forest in the central Apennines (central Italy). Plant Sociology 51 (2): 69-82.. Paper 2 Scolastri A., Cancellieri L., Iocchi M., Cutini M. Old Coppice vs High Forest: the impact of beech forest management on plant species diversity in central Apennines (Italy). Biodiversity & Conservation, submitted.. Paper 3 Scolastri A., Bricca A., Cancellieri L., Cutini M. Old Coppice vs High Forest: effects of two management types on understory functional composition. Plant Ecology, submitted.. VII.

(13) VIII.

(14) General introduction. Forests as complex biological systems In broadleaved forest communities, the floristic composition is the result of the combined effect of several factors, acting at different levels: at a broader scale, environmental variables such as climate, lithology, geomorphology, and also successional dynamics, are great drivers of the forests' coenological differentiation (Van der Maarel, 2005). Moreover, at a finer scale, the major factor shaping the biotic and abiotic conditions is the forest stand, as it creates the specific microclimate and governs carbon and nutrient cycling, dictating habitat conditions for countless organisms (Durak, 2012). In fact, overstory structural features play an important role in modulating floristic composition and ecosystem functions (Neumann & Starlinger, 2001): tree canopy and size, age, stem diameters and density, have a direct influence on the environmental conditions (light, temperature, moisture) at the ground level, and can impact on understory species composition and competition processes (e.g. Thimonier et al.,1992, 1994; Du Bus de Warnaffe and Lebrun, 2004). Growing under the trees canopy for most of the year, understory species are well adapted to the short light supply and show adaptations that are reflected into vegetative and reproductive strategies, that allow them to persist, compete, grow, and reproduce under shady conditions. Understory species represent more than 90% of the floristic diversity in forest ecosystems (Gilliam, 2007) and, by the reasons mentioned above, they are also the most sensible to changes in overstory structure and composition.. Beech forests: an overview Among broadleaved forests, those dominated by Fagus sylvatica are the most abundant in central and southern Europe, thanks to the beech's physiological characteristics, allowing it to spread over a wide range of habitats, soil types and climatic conditions (Peters, 1997; Ellenberg, 1988). As well as in the Eastern Europe (Willner et al., 2009), beech forests in Italy also represent the typical montane vegetation in the Apennine chain and, more generally, in the Mediterranean area (Di Pietro, 2009), as beech is found continuously throughout the whole Peninsula, from the southern Alps. 1.

(15) to Sicily, with the exception of Sardinia and the smaller islands (Jalas & Suominen, 1972-1999); within this range, Fagus sylvatica dominates in deciduous forests, forming both pure and mixed communities from (400) 800 up to 2000 m a.s.l.. Along the Apennine chain, it is the uppermost forest type, showing a pronounced aptitude for expansion in different environmental conditions, including those moderately altered by human activities. Given their key position, Apennine beech forests in many cases comprise a mixture of species belonging to different biogeographical districts; these biogeographical interrelations occur throughout the entire Apennine range, but are particularly represented in its central sector (Lazio and Abruzzo) where the central position, the higher altitude and the complex arrangement of the massifs, all contributed in creating a high degree of environmental heterogeneity (Di Pietro, 2009).. Forest management and its impact on understory Italian beech forests, as well as other European broadleaved forests, have been managed for centuries, since they represent the most common woody resource. The most common management types already existed in the 19th century, when many forests were managed as single coppice or coppicewith-standards (CWS), and some as high forests (HF) harvested tree by tree (Oldeman, 1990; Piussi, 1994), prevalently on the basis of the product needed: firewood, charcoal or poles. Moreover, the consequent disturbance regime has probably modified over time the understory floristic composition, creating communities well adapted to the recurrent disturbance. In a CWS system, young shoots are cut down during short rotations, and new shoots re-sprout from dormant buds on the cut stumps; single-stemmed trees (standards) are retained in a sparse canopy for one or more rotation, in order to ensure genetic diversity and a certain amount of canopy cover. By contrast, HF systems are characterized by single-stemmed trees stands which originate from seed and have prolonged rotation times. The tree stand is strongly affected by the forest management method, where the spatial structure of the forest is shaped by the management method implemented (Burton et al., 2009; Scheller and Mladenoff, 2002); therefore it has a potential role in determining species diversity and ecological stability (Humphrey et al., 2000; Decocq et al., 2004). The effects of forest management depend mainly on its intensity and extent, both of which could induce a disturbance regime in the understory (Van Oijen et al., 2005). Thus, the forest understory diversity and the ecosystem functioning are. 2.

(16) likely to be affected not only by forest management/its lack, but also by the type of the forest management implemented (Decocq et al., 2004, 2005; Schmidt, 2005).. Forest management: changes currently ongoing One significant, though largely overlooked, environmental change that has occurred in recent decades is the large-scale abandonment of CWS management (Baeten, et al., 2009): from '60s, the changing economical and societal demands, caused the progressive decline of CWS management in favor of modern HF management regimes in many parts of Europe (Van Calster et al., 2008; Baeten et al., 2009). These processes are also widespread in Italy, where progressive depopulation along the mountainous areas of the Apennine chain has led to a pronounced drop in local demand for small size timber, firewood and charcoal. As a consequence, many CWS have been almost completely abandoned and most of them are destined to HF conversion (Ciancio et al., 2006; Coppini and Hermanin, 2007). CWS and HF management differ in cut frequency and severity (both higher in CWS): as vegetation composition is partially the result of the environmental conditions created by this management form, the conversion to HF is likely to have caused significant changes in the herb layer (e.g. Barkham 1992; Decocq et al., 2004; Van Calster et al., 2008). In the last decades, the conservation of forest biodiversity has become a key topic in the discussion on the conservation and sustainability of natural resources, given the forests' role as carbon sinks, and the effects of the intense exploitation by man. Even though Fagus sylvatica forests have been intensely studied from several viewpoints, such as ecological (Bartha et al., 2008), functional (Campetella et al., 2011; Canullo et al., 2011), populational (Magri et al., 2006), biogeographical (Willner et al., 2009), we still know little about the effects of forest abandonment and coppice conversion on the understory plant communities. Modern management practices should also consider the forest ecosystem’s diversity, favoring the conditions for the persistence and abundance of the habitat's species.. 3.

(17) Aims Given these premises, in this thesis I aim to analyze differences in floristic richness and composition between old CWS and HF stands, trying to understand which management type most favors the abundance of the understory species typical of beech forest habitat. To do this, I have structured my project into three objectives:. 1. To study the floristic and coenological variability of the beech forests in a district of central Apennines, in relation to the main environmental determinants (chapter 1). 2. To analyze the differences in structural features and floristic richness between old CWS and HF stands, focusing on understory species and 9210* Habitat indicator species (sensu Habitat Directive 92/43 EEC)(chapter 2).. 3. To analyze the differences between old CWS and HF stands in terms of functional composition using plant functional traits, as they reflect the species' adaptations to the environment (chapter 3).. 4.

(18) CHAPTER 1. Patterns of floristic variation on a montane beech forest in the central Apennines (central Italy). 5.

(19) 3ODQW6RFLRORJ\9RO1R'HFHPEHUSS '2,SOV. 3DWWHUQVRIÁRULVWLFYDULDWLRQRQDPRQWDQHEHHFKIRUHVWLQWKHFHQWUDO$SHQ QLQHV FHQWUDO,WDO\

(20) $6FRODVWUL/&DQFHOOLHUL0,RFFKL0&XWLQL 'HSDUWPHQWRI6FLHQFHV8QLYHUVLW\RI5RPD7UH9OH0DUFRQL,5RPD,WDO\ $EVWUDFW &OLPDWHKLVWRU\DQGKXPDQODQGXVHKDYHDVWURQJLQÁXHQFHRQWKHGLVWULEXWLRQDQGÁRULVWLFFRPSRVLWLRQRIEHHFKIRUHVWFRPPXQLWLHV,QWKHODVW \HDUVWKHGHFUHDVHLQKXPDQDFWLYLWLHVKDVOHGWRWKHUHVXPSWLRQRIUHIRUHVWDWLRQG\QDPLFVVRDFHUWDLQYDULDELOLW\LQÁRULVWLFFRPSRVLWLRQLV H[SHFWHG:HDLPWRLGHQWLI\WKHFDXVHVRIORFDOÁRULVWLFYDULDELOLW\LQGLIIHUHQWVWDQGVRIEHHFKIRUHVWVLQWHJUDWLQJÁRULVWLFVWUXFWXUDODQGHFRORJLFDO DQDO\VLV &OXVWHUDQDO\VLVDQG,QGLFDWRU6SHFLHV$QDO\VLV ,6$

(21) ZHUHSHUIRUPHGWRKLJKOLJKWÁRULVWLFGLIIHUHQFHVWKHFOXVWHUVREWDLQHGZHUHFRPSDUHGWKURX JKHQYLURQPHQWDODQGWRSRJUDSKLFYDULDEOHV(OOHQEHUJLQGLFDWRUYDOXHVOLIHIRUPV6RFLDO%HKDYLRXU7\SHV 6%7

(22) DQGVWUXFWXUDOSDUDPHWHUV7KH VSHFLHVKHWHURJHQHLW\GHULYHVIURPDFOLPDWLFDQGHGDSKLFJUDGLHQW7ZRPDLQW\SHVRIEHHFKIRUHVWVZHUHUHFRJQL]HGDPLFURWKHUPDORQHSODFHG DWKLJKHUDOWLWXGHVDQGFRROHUDVSHFWV &DUGDPLQRNLWDLEHOLL)DJHWXPV\OYDWLFDH

(23) DQGWKHWHUPRSKLORXVRQHO\LQJDWORZHUDOWLWXGHVDQGZDUPHU DVSHFWV /DWK\URYHQHWL)DJHWXPV\OYDWLFDH

(24) 6%7DQGVWUXFWXUDOSDUDPHWHUVZHUHXVHIXOIRUGHWHFWLQJWKHHIIHFWVRIG\QDPLFSURFHVVHVRIUHIRUH VWDWLRQ7KHLQWHJUDWLRQRIWKHÁRULVWLFVWUXFWXUDODQGHFRORJLFDODQDO\VLVOHGWRDQDFFXUDWHFRHQRORJLFDORYHUYLHZRIWKHEHHFKIRUHVWFRPPXQLWLHV DQGWRWKHGHWHFWLRQRIWKHQDWXUDOUHIRUHVWDWLRQSURFHVVHVFXUUHQWO\RQJRLQJ .H\ZRUGV(OOHQEHUJ·V,QGLFDWRU9DOXHVÁRULVWLFFRPSRVLWLRQIRUHVWPDQDJHPHQWIRUHVWVWUXFWXUH,QGLFDWRU6SHFLHV$QDO\VLV6RFLDO%HKDYLRXU 7\SHV. ,QWURGXFWLRQ )DJXV V\OYDWLFD LV WKH PRVW DEXQGDQW EURDGOHDYHG IRUHVWWUHHLQFHQWUDODQGVRXWKHUQ(XURSHWKDQNVWRLWV SK\VLRORJLFDO FKDUDFWHULVWLFV DQG FDQ IRUP FRPPX QLWLHV WKDW GRPLQDWH LQ D ZLGH UDQJH RI KDELWDWV VRLO W\SHVDQGFOLPDWLFFRQGLWLRQV 3HWHUV(OOHQEHUJ 

(25) ,WUHSUHVHQWVWKHW\SLFDOPRQWDQHYHJHWDWLRQLQ WKH$SHQQLQH FKDLQ DQG PRUH JHQHUDOO\ LQ WKH 0H GLWHUUDQHDQ DUHD 'L 3LHWUR 

(26)  DV ZHOO DV LQ (D VWHUQ (XURSH :LOOQHU HW DO 

(27)  %HHFK LV IRXQG FRQWLQXRXVO\WKURXJKRXWWKH,WDOLDQ3HQLQVXODIURPWKH VRXWKHUQ$OSV WR 6LFLO\ ZLWK WKH H[FHSWLRQ RI 6DUGL QLDDQGWKHVPDOOHULVODQGV -DODV 6XRPLQHQ 

(28) :LWKLQWKLVUDQJH)DJXVV\OYDWLFDGRPLQDWHVLQ GHFLGXRXVIRUHVWVIRUPLQJERWKSXUHDQGPL[HGFRP PXQLWLHV IURP 

(29)   XS WR  P DVO LQ WKH $SHQQLQHVLWLVWKHXSSHUPRVWIRUHVWW\SHVKRZLQJD SURQRXQFHG DSWLWXGH IRU H[SDQVLRQ LQ GLIIHUHQW HQYL URQPHQWDO FRQGLWLRQV LQFOXGLQJ WKRVH PRGHUDWHO\ DO WHUHGE\KXPDQDFWLYLWLHV $SHQQLQLFEHHFKIRUHVWVKDYHEHHQLQWHQVHO\PDQD JHGIRUFHQWXULHVKRZHYHUWKHGHSRSXODWLRQDQGFKDQ JHVLQWKHVRFLRHFRQRPLFFRQGLWLRQVLQ,WDO\RYHUWKH ODVW  \HDUV KDYH ERWK OHG WR D SURJUHVVLYH GURS LQ ORFDOGHPDQGIRUVPDOOVL]HWLPEHUÀUHZRRGDQGFKDU FRDO DV LQ RWKHU 0HGLWHUUDQHDQ FRXQWULHV 5RPHUR &DOFHUUDGD 3HUU\0RWWHWHWDO*HULHW DO  %UDFFKHWWL HW DO 

(30) $V D FRQVHTXHQFH PDQ\ DUHDV KDYH EHHQ DOPRVW FRPSOHWHO\ DEDQGRQHG. &LDQFLRHWDO6LW]LDHWDO

(31) ZLWKQRPR QLWRULQJ RI WKHLU QDWXUDO HYROXWLRQ 7KHUH DUH PDQ\ SK\WRVRFLRORJLFDO VWXGLHV DQG UHYLHZV GHVFULELQJ WKH VLQHFRORJ\RIGLIIHUHQWEHHFKIRUHVWVWKURXJKRXWERWK WKH (XURSHDQ DQG 0HGLWHUUDQHDQ UHJLRQV 'LHUVFKNH 0DULQĀHNHWDO%HUJPHLHU 'LPRSRX ORV%LRQGLHWDO:LOOQHU

(32) UHFHQ WO\VRPHVWXGLHVKDYHDOVRVWDUWHGWRWDNHLQWRDFFRXQW IRUHVW VWUXFWXUH ZKHQ GHVFULELQJ IRUHVW·V ÁRULVWLF DQG FRHQRORJLFDOSDWWHUQV HJ%DUWKDHWDO%XUUD VFDQRHWDO&DQXOORHWDO6DEDWLQL HWDO

(33)  %\LQWHJUDWLQJERWKÁRULVWLFVWUXFWXUDODQGHFRORJLFDO DQDO\VLVWKLVVWXG\DLPVWRLGHQWLI\WKHFDXVHVRIWKH ÁRULVWLFYDULDELOLW\RIWKH'XFKHVVDEHHFKIRUHVWV:H VHWRXWWRWHVWLIWKHUHDUHGLIIHUHQWFRPPXQLWLHVLQWKH IRUHVWV VXUYH\HG LQ SDUWLFXODU ZH ZDQW WR DQVZHU WR WKHIROORZLQJTXHVWLRQV L

(34) $UHWKHUHGLIIHUHQWVSHFLHV DVVHPEODJHV LQ WKH ORFDO )DJXV V\OYDWLFDGRPLQDWHG FRPPXQLWLHVDQGFDQZHGLVWLQJXLVKGLIIHUHQWW\SHVRI IRUHVWV" LL

(35) :KLFKHQYLURQPHQWDOSDUDPHWHUVGHWHUPL QHWKHFRQVWLWXWLRQRIWKHVHFRPPXQLWLHV" $V WKH 'XFKHVVD EHHFK IRUHVWV DUH LQFOXGHG LQ WKH SULRULW\ KDELWDW   ¶$SHQQLQH EHHFK IRUHVWV ZLWK 7D[XV DQG ,OH[· VHQVX ((& 'LUHFWLYH ((& 

(36) XQGHUVWDQGLQJWKHLUÁRULVWLFGLIIHUHQWLDWLRQDQG LQFUHDVLQJWKHNQRZOHGJHRIWKHLUFRHQRORJLFDOSHFX OLDULWLHVFRXOGKHOSWRSUHVHUYHWKHVHFRPPXQLWLHVDQG LPSURYHWKHLUPDQDJHPHQWVWUDWHJLHVIRUDEHWWHUKDEL WDWFRQVHUYDWLRQ. &RUUHVSRQGLQJDXWKRU$QGUHD6FRODVWUL'HSDUWPHQWRI6FLHQFHV8QLYHUVLW\RI5RPD7UH9OH0DUFRQL, 5RPD,WDO\HPDLODQGUHDVFRODVWUL#XQLURPDLW.

(37) . $6FRODVWULHWDO. 0HWKRGV 6WXG\DUHD 7KHVWXG\ZDVFDUULHGRXWLQWKH0RQWDJQHGHOOD'X FKHVVD PDVVLI ZKLFK LV ORFDWHG ZLWKLQ WKH QRUWKHUQ SRUWLRQ RI WKH 9HOLQR6LUHQWH FKDLQ EHWZHHQ WKH UH JLRQV RI /D]LR DQG $EUX]]R FHQWUDO ,WDO\

(38)  )LJ 

(39)  7KLV PRXQWDLQRXV VLWH LQFOXGHV KLJK DOWLWXGH SHDNV VXFK DV 0RQWH 0RUURQH  P DVO

(40)  0RQWH &R VWRQH P

(41) DQG0RQWH0XUROXQJR P

(42) 7KH VXUURXQGLQJDUHDLVPDLQO\PRXQWDLQRXVFKDUDFWHUL]HG E\DOLPHVWRQHVXEVWUDWH $FFRUGLHWDO

(43) DQGFDQ EHUHIHUUHGWRWHPSHUDWHUHJLRQVHQVX5LYDV0DUWLQH] FODVVLÀFDWLRQ %ODVL

(44) ,QSDUWLFXODUWKHELRFOLPD WHIHDWXUHVGHÀQHGXVLQJUDLQIDOODQGWHPSHUDWXUHGDWD IURP 5RVFLROR  P DVO

(45)  PHWHRURORJLFDO VWDWLRQ 

(46)  )LJ 

(47)  VKRZV WKDW WKH DQQXDO DYHUDJH UDLQIDOOLVPPWKHZHWWHVWPRQWKLV1RYHPEHU PP

(48) DQGWKHGULHVW-XO\ PP

(49) 7KHDQQXDO DYHUDJH WHPSHUDWXUH LV ƒ& WKH KRWWHVW PRQWK LV $XJXVW ƒ&

(50) DQGWKHFROGHVW-DQXDU\ ƒ&

(51) 7KH 5RVFLROR VWDWLRQ EHORQJV WR WKH WHPSHUDWH ELRFOLPDWH FKDUDFWHUL]HG E\ D ORZHU VXSUDWHPSHUDWH PRXQWDLQ

(52)  WKHUPRW\SHDQGDVXEKXPLGRPEURW\SH 5LYDV0DUWL QH]

(53)  ,QWKHVWXG\DUHDEHHFKIRUHVWVRFFXS\DERXW KDUDQJLQJIURPWRPDVO7KHVHIRUHVWV KDYH EHHQ PDQDJHG IRU FHQWXULHV PDLQO\ DV FRSSLFH ZLWK VWDQGDUGV DQG DV KLJK IRUHVW +LVWRULFDOO\ WZR PDLQH[SORLWDWLRQHYHQWVKDYHRFFXUUHGLQZKHQ EHHFKIRUHVWVZHUHLQWHQVLYHO\FXWPDLQO\IRUFRDODQG SROHVDQGEHWZHHQ VDQG VZKHQFXWVZHUHEUR DGHU DQG GLVWULEXWHG RYHU DOPRVW WKH HQWLUH DUHD$I WHUWKLVODWWHUHYHQWWKHVHIRUHVWVKDYHQRORQJHUEHHQ H[SORLWHGDQGWKHSURJUHVVLYHUHGXFWLRQRIWKHVKHHS IDUPLQJRYHUWKHSDVW\HDUVKDVOHGWRVSRQWDQHRXV UHIRUHVWDWLRQSURFHVVHVPDLQO\DWKLJKDOWLWXGHV $YH. )LJ²7KHVWXG\DUHDERXQGHGDQGFRORUHGLQOLJKWJUH\. )LJ7KHUPRSOXYLRPHWULFGLDJUDP 5RVFLRORPHWHRUROR JLFDOVWDWLRQ>'DWDVRXUFH8IÀFLR,GURJUDÀFRH 0DUHRJUDÀFR5HJLRQH/D]LR

(54) @. QD %ODVL3HWULFFLRQH

(55)  7KH REVHUYHG HQYLURQPHQWDO FRQGLWLRQV EHGURFN FRPSRVLWLRQDQGODQGXVHKLVWRU\DUHUHJLRQDOO\ZLGH VSUHDGLQFHQWUDO$SHQQLQHVWKXVWKH0RQWDJQHGHOOD 'XFKHVVDPDVVLIFRXOGEHFRQVLGHUHGDKLJKO\UHSUH VHQWDWLYH DUHD IRU ORQJWHUP HQYLURQPHQWDO UHVHDUFK 7KHXULOODWHWDO&XWLQLHWDO

(56) 0RUHRYHU VLQFHWKH VWKH0RQWDJQHGHOOD'XFKHVVDVLWHLVD 5HJLRQDO 1DWXUDO 5HVHUYH DQG PRUH UHFHQWO\ LW KDV EHHQUHFRJQL]HGDVD6SHFLDO3URWHFWLRQ$UHD DFFRU GLQJWRWKH(XURSHDQ'LUHFWLYH((&

(57) 3DUWRI LW KDV DOVR EHHQ UHFRJQL]HG DV D 6LWH RI &RPPXQLW\ ,PSRUWDQFH (XURSHDQ'LUHFWLYH((&

(58)  'DWDFROOHFWLRQ )RUW\ VTXDUH SORWV  P HDFK

(59)  ZHUH LQYHVWLJDWHG GXULQJWKH0D\-XO\SHULRGRI)RUHDFKRIWKHP DOWLWXGH P

(60) DVSHFW GHJUHHV

(61) DQGVORSH GHJUHHV

(62) ZHUH PHDVXUHG7KHVDPSOLQJVFKHPHLQFOXGHGERWKYDVFX ODU ÁRUD DQG IRUHVW VWUXFWXUH VXUYH\V (DFK SORW ZDV UDQGRPO\ VHOHFWHG WKURXJKRXW D VWUDWLÀHG PHWKRG LQ *,6HQYLURQPHQW $UJ*,6(65,

(63) RQWKHEDVLVRI WKH PDLQ HQYLURQPHQWDO SDUDPHWHUV DOWLWXGH DVSHFW DQG VORSH

(64)  DQG WKH VLOYLFXOWXUDO PDQDJHPHQW 7KH SK\WRVRFLRORJLFDO UHOHYpV ZHUH PDGH E\ IROORZLQJ WKHPHWKRGRORJ\RIWKH6LJPDWLVW=XULFK0RQWSHOOLHU VFKRRO %UDXQ%ODQTXHW 

(65)  ZKLOH ÁRULVWLF QR PHQFODWXUH IROORZV &RQWL HW DO 

(66) $V VWUXFWXUDO SDUDPHWHUVZHUHFRUGHGWKHGLDPHWHUDWEUHDVWKHLJKW '%+PDERYHJURXQGOHYHO

(67) RIHDFKWUHHZLWKD GLDPHWHU•FPDQGWKHQXPEHURIWUHHVLQHDFKSORW 7KHPLFURPRUSKRORJ\ZDVHYDOXDWHGXVLQJWKH7HU UDLQ5XJJHGQHVV,QGH[ 75,5LOH\HWDO

(68) FDOFX ODWHGIURPWKHGLJLWDOHOHYDWLRQPRGHO [P

(69) XVLQJ 6$*$*,6VRIWZDUH &RQUDG

(70) 7KH75,TXDQWL ÀHVWKHWRSRJUDSKLFKHWHURJHQHLW\DQGFRUUHVSRQGVWR.

(71) 0RQWDQHEHHFKIRUHVWVLQ&HQWUDO$SHQQLQHV. . WKHDYHUDJHHOHYDWLRQFKDQJH IURPDGLJLWDOHOHYDWLRQ JULG

(72) EHWZHHQDQ\SRLQWRQDFHOODQGLWVVXUURXQGLQJ DUHD 7R FKDUDFWHUL]H WKH FRPPXQLW\ W\SHV WKH VWDQGDUG (OOHQEHUJ V LQGLFDWRU YDOXHV / 7 0 5 1

(73)  RSWLPL ]HGIRUWKH,WDOLDQ)ORUDDQGWKHOLIHIRUPVZHUHXVHG 3LJQDWWL

(74) FDOFXODWHGDVZHLJKWHGDYHUDJHVSHU UHOHYp7KH UHFRUGHG VSHFLHV ZHUH FODVVLÀHG LQWR 6R FLDO%HKDYLRXU7\SHV 6%7%RUKLGL

(75) RQWKHED VLVRIWKHVSHFLHVSUHIHUHQFHIRUDGHÀQLWHKDELWDWLH EDVHGRQWKHLUVLPLODUSK\WRFRHQRORJLFDOUROH 0RROD  9DVVHXU  %DUWKD HW DO 

(76) $FFRUGLQJ WR %DUWKD HW DO 

(77)  ÀYH 6%7 FDWHJRULHV ZHUH XVHG EHHFKIRUHVWVSHFLHV 6%7

(78) IRUHVWJHQHUDOLVWVSHFLHV 6%7

(79)  QRQIRUHVW VSHFLHV LH VSHFLHV SUHIHUULQJ RSHQ DQG VXQQ\ FRPPXQLWLHV 6%7

(80)  PDUJLQDO VSH FLHVLHH[RWLFRUPHPEHUVRIUXGHUDORUDJULFXOWXUDO FRPPXQLWLHV 6%7

(81) DQGJDSVSHFLHVOLQNHGWRIRUHVW HGJHVDQGJDSV 6%7

(82) (DFKVSHFLHVZDVDVVLJQHGWR DQ6%7FDWHJRU\DFFRUGLQJWRLWVUHJLRQDOV\QHFRORJ\ LWVPDLQUROHLQWKHORFDOÁRUD 3LJQDWWL

(83) DQGWKH ÀHOGH[SHULHQFH DFRPSOHWHOLVWRIVSHFLHVGLVWULEXWHG DPRQJWKH6%7VFDWHJRULHVLVVKRZQLQ7DE

(84) . 7KH VDPH DQDO\VLV ZDV SHUIRUPHG XVLQJ D SORW [ (O OHQEHUJ ,QGLFDWRU 9DOXHV PDWUL[ / 7 0 5 1

(85)  DQG DSORW[6%7FODVVHVPDWUL[LQRUGHUWRKLJKOLJKWWKH FRHQRORJLFDOGHVFULSWRUVWKDWFKDUDFWHUL]HHDFKFOXVWHU 7R LGHQWLI\ WKH PDLQ GULYHUV WKDW FKDUDFWHUL]H WKH FRPPXQLWLHVKLJKOLJKWHGE\WKHFOXVWHUDQDO\VLVDFRQ VWUDLQHGRUGLQDWLRQPHWKRGZDVSHUIRUPHGDQGDSSOLHG RQ D SORW [ VSHFLHV PDWUL[ XVLQJ WKH HQYLURQPHQWDO PRUSKRORJLFDO DQG VWUXFWXUDO IHDWXUHV WKDW VKRZHG VLJQLÀFDQFHLQWKH.UXVNDO:DOOLVWHVWDVFRQVWUDLQHG YDULDEOHV,QRUGHUWRFKRRVHWKHDSSURSULDWHPHWKRGD 'HWUHQGHG&RUUHVSRQGDQFH$QDO\VLV '&$

(86) ZDVSHU IRUPHG 6LQFH WKH ÀUVW D[LV OHQJWK UDQJHG EHWZHHQ  DQGDQ5'$ZDVFKRVHQDVDFRQVWUDLQHGRUGLQDWLRQ PHWKRG /HSō ŌPLODXHU

(87) 'DWDZHUHQRUPDOL ]HGXVLQJWKH+HOOLQJHUWUDQVIRUPDWLRQPHWKRG 7KH7ZR:D\&OXVWHU$QDO\VLVDQG,6$ZHUHHODER UDWHG XVLQJ 3&25' VRIWZDUH 0F&XQH  0HIIRUG 

(88)  WKH .UXVNDO:DOOLV WHVW ZDV SHUIRUPHG XVLQJ 67$7,67,&$VRIWZDUH $QRQ

(89) ZKLOHWKHRUGL QDWLRQPHWKRGVDQGWKH+HOOLQJHUWUDQVIRUPDWLRQZHUH FDUULHGRXWXVLQJWKH5SURJUDP 3DFNDJH¶YHJDQ·2N VDQHQHWDO

(90) . 'DWDHODERUDWLRQDQGDQDO\VLV 7KH KLHUDUFKLFDO DUUDQJHPHQW RI WKH VXUYH\HG FRP PXQLWLHV ZDV SHUIRUPHG WKURXJK D WZR ZD\ FOXVWHU DQDO\VLVXVLQJDSORW[VSHFLHVPDWUL[LQZKLFKFRYHU YDOXHV ZHUH WUDQVIRUPHG DFFRUGLQJ WR YDQ GHU 0DD UHO V FRYHUDEXQGDQFH VFDOH YDQ GHU 0DDUHO 

(91)  $ 5HODWLYH (XFOLGHDQ DOJRULWKP ZDV XVHG DV D GL VWDQFHPHDVXUHDQGWKH)OH[LEOH%HWD ơ 

(92) DV OLQNDJH PHWKRG 7R WHVW WKHLU HFRORJLFDO FRQVLVWHQF\ UHOHYpJURXSVGHULYHGIURPWKHGHQGURJUDPREWDLQHG WKURXJK WKH FOXVWHU DQDO\VLV ZHUH FRPSDUHG LQ WHUPV RI HQYLURQPHQWDO SDUDPHWHUV DOWLWXGH DVSHFW VORSH DQG FDQRS\ FORVXUH

(93)  PRUSKRORJLFDO IHDWXUHV URFNL QHVVVWRQLQHVVDQG75,YDOXHV

(94) FRHQRORJLFDOLQGLFD WRUV (OOHQEHUJ,QGLFDWRU9DOXHVOLIHIRUPVDQG6%7V

(95)  DQGVWUXFWXUDOSDUDPHWHUV PHDQ'%+QXPEHURIWUH HV

(96)  $VSHFW YDOXHV ZHUH WUDQVIRUPHG XVLQJ WKH +HDW /RDG ,QGH[ IRUPXOD 0F&XQH HW DO 

(97)  LQ RUGHU WRREWDLQDFRQWLQXRXVYDULDEOHUDQJLQJIURP 1(

(98)  WR  6:

(99)  1RUPDOLW\ GLVWULEXWLRQ DQG YDULDQFH KR PRJHQHLW\ZHUHWHVWHGWKURXJK.ROPRJRURY6PLUQRII WHVW DV GDWD GLG QRW VKRZ D QRUPDO GLVWULEXWLRQ ZH SHUIRUPHG D .UXVNDO:DOOLV QRQSDUDPHWULF WHVW WR XQGHUVWDQG ZKLFK JURXSV ZHUH VLJQLÀFDQWO\ GLIIHUHQW 3

(100) IURPHDFKRWKHULQUHODWLRQWRWKHVHOHFWHG JURXSV RI SDUDPHWHUV$Q ,QGLFDWRU 6SHFLHV$QDO\VLV ,6$'XIUrQH /HJHQGUH

(101) ZDVFDUULHGRXWWR LGHQWLI\WKHUHSUHVHQWDWLYHVSHFLHV DFFRUGLQJWRWKHLU RFFXUUHQFH DQG DEXQGDQFH

(102)  RI HDFK REWDLQHG FOXVWHU 0F&XQH HW DO 

(103)  )RU HDFK VSHFLHV WKH VWUHQJ WKRILWVDVVRFLDWLRQZLWKDVSHFLÀFFOXVWHUZDVWHVWHG XVLQJD0RQWH&DUORWHVW SHUPXWDWLRQVƠ

(104) . 5HVXOWV 7KH GHQGURJUDP REWDLQHG IURP WKH FODVVLÀFDWLRQ DQDO\VLV )LJ 

(105)  VKRZV WZR PDLQ FOXVWHUV WKH ÀUVW LQFOXGHVSORWVDQGLVGLYLGHGLQWRWZRVXEFOXVWHUV DDQGE

(106) WKHVHFRQGLQFOXGHVSORWVZLWKDKLJKHU OHYHORIVLPLODULW\ 7KH,6$PDGHXVLQJWKHVSHFLHV[SORWPDWUL[ 7DE 

(107) VKRZHGWKDWVXEFOXVWHUDKDVLQGLFDWRUVSHFLHV RIZKLFKWKRVHKDYLQJKLJKHULQGLFDWRUYDOXHVDUH&DU GDPLQHNLWDLEHOLL*DOLXPRGRUDWXP5XEXVKLUWXVDQG. )LJ&OXVWHUGHQGURJUDP.

(108) . $6FRODVWULHWDO. $FWDHDVSLFDWDZKLOHWKHVXEFOXVWHUEKDVQRVLJQL ÀFDQWLQGLFDWRUVSHFLHVHYHQWKRXJKLWLQFOXGHVPDQ\ H[FOXVLYH VSHFLHV VXFK DV %HUEHULV YXOJDULV 3ULPXOD YXOJDULV 6LOHQH QXWDQV 6WHOODULD KRORVWHD &HWHUDFK RIÀFLQDUXP&UXFLDWDODHYLSHV&\DQXVWULXPIHWWL*D OLXPFRUUXGLIROLXP0HGLFDJROXSXOLQD3RDWULYLDOLV 6WHOODULD PRQWDQD 7ULIROLXP SUDWHQVH DQG 9HURQLFD RIÀFLQDOLV &OXVWHUVKRZHGWKHKLJKHVWQXPEHU 

(109) RIVLJQLÀ FDQWLQGLFDWRUVSHFLHVDPRQJZKLFKWKRVHZLWKKLJKHU LQGLFDWRU YDOXHV DUH $FHU RSDOXV VXEVS REWXVDWXP %UDFK\SRGLXPUXSHVWUH)UD[LQXVRUQXV+HSDWLFDQR ELOLV /DEXUQXP DQDJ\URLGHV /LOLXP EXOELIHUXP DQG &DPSDQXODWUDFKHOLXP 7KH.UXVNDO:DOOLVWHVW 7DE

(110) VKRZHGVLJQLÀFDQW GLIIHUHQFHVLQWHUPVRIHOHYDWLRQ(OOHQEHUJLQGLFDWRU YDOXHV / 7 & 5

(111)  OLIH IRUPV 3

(112)  DQG 6%7 6%7 6%7DQG6%7

(113) EHWZHHQVXEFOXVWHUDDQG,QDG GLWLRQ WKHUH ZHUH VRPH PLQRU VLJQLÀFDQW GLIIHUHQFHV EHWZHHQ VXEFOXVWHU D DQG E * '%+ QXPEHU RI WUHHV

(114) DQGEHWZHHQVXEFOXVWHUEDQGFOXVWHU /& 536%76%76%7

(115)  7KH,6$PDGHRQWKHSORW[(OOHQEHUJLQGLFDWRUYD OXHV PDWUL[ VKRZHG WKDW VXEFOXVWHU  LV DVVRFLDWHG WR VKDGHWROHUDQW VSHFLHV / YDOXHV    

(116)  W\SLFDO RIFROGKLJKPRXQWDLQHQYLURQPHQW 7YDOXH 

(117) RQ FDOFDUHRXVVXEVWUDWH 5YDOXH 

(118) ZLWKKLJKPRLVWXUH OHYHOV 0 YDOXH  

(119)  DQG KXPLF VRLOV 1 YDOXH  

(120)  &OXVWHU  LV DVVRFLDWHG WR VSHFLHV WKDW FRYHU D ZLGHU UDQJHRI(OOHQEHUJYDOXHVIURPSDUWLDOVKDGRZWRIXOO OLJKW /YDOXHV 

(121) ZLWKWHPSHUDWXUHW\SLFDORI ORZHUPRXQWDLQDOWLWXGHV 7YDOXHV 

(122) LQERWK PRGHUDWHO\DFLGRSKLORXVDQGFDOFLSKLORXVVRLOV 5YD OXHV 

(123) WHQGHQWLDOO\LQPRUHDULGFRQGLWLRQV 8YDOXHV 

(124) DQGZLWKVRLOVWKDWUDQJHIURPVFDU FHQXWULHQWFRQGLWLRQVWRKLJKOHYHOV 1YDOXHV  

(125) 6XEFOXVWHUEGLGQRWVKRZDQ\DVVRFLDWLRQ 7KH,6$PDGHRQWKHSORW[6%7PDWUL[VKRZHGWKDW WKHVXEFOXVWHUDLVUHODWHGWRWKHEHHFKIRUHVWVSHFLD OLVWVSHFLHV 6%7

(126) ZKLOHFOXVWHULVUHODWHGWRIRUHVW JHQHUDOLVWVSHFLHV 6%7

(127) DQGWRRSHQKDELWDWV 6%7

(128)  DQGJDSV 6%7

(129) 1R6%7ZHUHUHODWHGWRVXEFOXVWHU E 7KHWRWDOH[SODLQHGYDULDQFHIRUWKHGDWDVHWFRQVWUDL QHG E\ HQYLURQPHQWDO DOWLWXGH DVSHFW VORSH

(130)  WRSR JUDSKLF 75,

(131) DQGVWUXFWXUDOYDULDEOHV '%+QXPEHU RIWUHHV

(132) ZDV DGM5

(133) 7KH5'$RUGLQDWLRQ VKRZHGDFOHDUSORWVGLVWULEXWLRQZLWKLQWKHVSDFHDORQJ WKHÀUVWD[LV )LJ

(134) KLJKOLJKWLQJDSRVLWLYHFRUUHOD WLRQEHWZHHQJURXSDDQGKLJKHUDOWLWXGHV $/

(135) DQG QRUWKHUQVORSHV $6

(136) ZKLOHJURXSZDVIRXQGWREH PRUHUHODWHGWRKLJKHUVWHHSQHVVDQGUXJJHGFRQGLWLRQV RIWKHJURXQG*URXSEVKRZHGDSRVLWLYHFRUUHODWLRQ WRWKHQXPEHURIWUHHV 1LQG

(137) DQGQHJDWLYHFRUUHODWLRQ WR'%+YDOXHV '%+P

(138)  )URP D SK\WRVRFLRORJLFDO SRLQW RI YLHZ RQ WKH ED. VLVRIWKHRFFXUUHQFHRI&DUGDPLQHNLWDLEHOLL$QHPR QH QHPRURVD 3RO\VWLFKXP DFXOHDWXP DQG (SLORELXP PRQWDQXPWKHPLFURWKHUPDOEHHFKIRUHVWV JURXSVD DQGE

(139) PD\EHUHIHUUHGWRWKH&DUGDPLQRNLWDLEHOLL )DJHWXPV\OYDWLFDHDVVRFLDWLRQ VHH7DE

(140) 7KLVW\SH RIZRRGODQGLVVSHFLÀFDOO\SUHVHQWLQWKHKLJKHUSDUW RIWKHPRQWDQHEHOWLQDZLGHSDUWRIWKH&HQWUDODQG 1RUWKHUQ$SHQQLQHPRXQWDLQVRQOLPHVWRQHVXEVWUDWH 8EDOGLHWDO%LRQGLHWDO&DWRU FLHWDO

(141) 2XUUHVXOWVFRQÀUPWKHPLFURWKHUPDO FKDUDFWHULVWLFV RI WKLV IRUHVW W\SH 7KH ÁRULVWLF FRP SRVLWLRQ RI WKH WHUPRSKLORXV FRPPXQLWLHV JURXS 

(142)  LQFOXGHVFKDUDFWHULVWLFDQGGLIIHUHQWLDOVSHFLHVRI/D WK\URYHQHWL)DJHWXPV\OYDWLFDHDVVRFLDWLRQ %LRQGLHW DO

(143) VXFKDV/DWK\UXVYHQHWXV&\FODPHQKHGH ULIROLXP6RUEXVDULDDQG9LRODDOEDVXEVSGHQKDUGWLL VHH7DE

(144) 7KLVDVVRFLDWLRQJHQHUDOO\UHIHUVWRFRH QRVHVRQOLPHVWRQHVXEVWUDWHVRIWKHFHQWUDO$SHQQLQHV DQGLVRIWHQDWUDQVLWLRQDOFRHQRVLVEHWZHHQKLOO\ZR RGVGRPLQDWHGE\2VWU\DFDUSLQLIROLDDQGWKHPRQWDQH EHHFKZRRGV %LRQGLHWDO&DWRUFLHWDO 

(145) . )LJ5'$SORW)LOOHGDQGRSHQFLUFOHVUHSUHVHQWWKHSORWV RIFOXVWHUVDDQGEUHVSHFWLYHO\ZKHUHDVWULDQJOHVUHSUH VHQWWKHSORWVRIFOXVWHU9HFWRUVUHSUHVHQWWKHDVVRFLDWLRQ RI WKH HQYLURQPHQWDO DQG WRSRJUDSKLFDO SDUDPHWHUV 1LQG  QXPEHU RI WUHHV '%+P PHDQ GLDPHWHU DW EUHDVW KHLJKW $/ DOWLWXGH$6 DVSHFW6VORSH75, WHUUDLQUXJJHGG QHVVLQGH[. 'LVFXVVLRQ 2XUUHVXOWVVKRZHGWKDWDOWLWXGHLVWKHPRVWVLJQLÀ FDQWHQYLURQPHQWDOIDFWRUDQGE\FUHDWLQJDFOLPDWLF JUDGLHQW WRJHWKHU ZLWK DVSHFW KDV D PDMRU HIIHFW LQ VKDSLQJ WKH VSHFLHV FRPSRVLWLRQ RI WKH IRUHVW FRP PXQLWLHV$WWKHVDPHWLPHWKHVORSHDQGPLFURPRU SKRORJ\ WHUUDLQUXJJHGQHVV

(146) FRQWULEXWHWRWKHFUHDWLRQ RIDQHGDSKLFSDWWHUQPDLQO\RSSRVHGWRWKHFOLPDWLF.

(147) 0RQWDQHEHHFKIRUHVWVLQ&HQWUDO$SHQQLQHV. . 7DE6RFLDO%HKDYLRXU7\SHV%HHFKIRUHVWVSHFLDOLVWV)RUHVWJHQHUDOLVWV1RQIRUHVWVSHFLHV SUHIHUULQJRSHQVLWHV

(148)  5XGHUDOVSHFLHV*DSVSHFLHV OLQNHGWRIRUHVWHGJHVDQGJDSV

(149)    '$%!*($)*()*" '%(*$%!)#*( )(%) $,"$()!!# #"$##"$'$( '"$#'"$#$( '"#*!' '"###%-!!$( '"# )! ',%!$( %!#)'"($#*" $'-!(++ %!$*""$#)#*" *((-!+) !*"$$')*"

(150) *.*!(-!+) '*'!(%'##( $'#"*($( $!-()*"*!)*" $!-()*"()'*" '##)(%*'%*' (*+'(% #*!*'$% !!$! $'*(**%' )!!'#"$'*" $!'##   #$()-!(!' #"$#%### &*!+*!'( '()$!$!*) (%'*!!+) '-%$*"(-!+)*" !"#)'#!$' "%#*!%'($! "%#*!)'!*" %!#)'!$#$! !#$%$*"+*!' $'-!*(+!!# -!"#'$!*" -!"#'%#*" -()$%)'('!( %#!*'$! %#".'*". $'$#*"$!*"# '-$%)'(!,"( "'*("*( %%)(!!$'# *$#-"*(!)$!*( *%$'"-!$( ()*,!)) ()*)'$%-!! ''+( ',#*($'#*( !#)*(#+!( '#*"'$')#*" *"*'#*". %)#$!(

(151) *'#*"#-'$(

(152) )*"*'!(

(153) )-'*(+#)*(

(154) )-'*(+'#*( !*#!$' !))("!(($%-!!*" !*"*(*" $'#)'#'+ $#$)'$%-%$% $))#*(+( ()'-'%#$! *#*"*()'*" $#"$'!( $(-!+$! $!-$#)*""*!)!$'*" $!-$#)*"$$')*" '"*!+*!'( *!"$#'%### *'*(''( #*#*!*(!#*#$(*( $('+#(( ,''$)*#$! *)!!'$!*"# #$$+)*( #$(&*!*( !##*)#( $!$+'*' )!!'$!$() "*($""*#( !%!)-%-!!$( '$#$#!( %''#. RQH WKDW LQGLFDWHV WKH GHJUHH RI VRLO HURVLRQ 7KHVH WZR IDFWRUV DUH DEOH WR PRGXODWH ODQGVFDSH SDWWHUQV EHFDXVH WKH\ DUH VWULFWO\ FRUUHODWHG WR WKH UHVRXUFHV DYDLODELOLW\ HJ OLJKW WHPSHUDWXUH

(155)  DQG FDQ DIIHFW YHJHWDWLRQ JURZWK DQG GLVWULEXWLRQ (OOHQEHUJ  )UDQNOLQ%DH]DHWDO

(156) $WWKHFRROHUHQG RI WKH FOLPDWLF JUDGLHQW OLHV VXEFOXVWHU D LQ ZKLFK )DJXVV\OYDWLFDLVWKHGRPLQDQWRYHUVWRU\VSHFLHVDQG WKHFRQWULEXWLRQRIRWKHUSKDQHURSK\WHVLVVLJQLÀFDQWO\ ORZHU $FHUSVHXGRSODWDQXVDQG6RUEXVDXFXSDULDLQ WKHWRSOD\HUDQG-XQLSHUXVFRPPXQLVLQWKHVKUXEOD \HU

(157) 8QGHUVWRU\KDVDJUHDWDEXQGDQFHRIVSHFLHVVXFK DV $FWDHD VSLFDWD &DUGDPLQH NLWDLEHOLL DQG *DOLXP RGRUDWXP 7KH FRHQRORJLFDO LQGLFDWRUV GHPRQVWUDWH. $!!   #$(!%#*( *'%)#( '(!%# '($!!# (%$!*("'$'%*( ''(+*!'( '-%$*"'*%()' *#*"*!$()#*" "%#*!!$"') "%#*!"'#) ',*"!( ',"'$!%( )'$#'*" $)$#()'#)''"*( '$*(+'#*( -#*()'*")) -"!'"*'!( -)($%-!!*"(((!$!*" )-!(!$"') %%)("'$%-!! *%$'-%'((( !!$%$#+$!+*!*( ()*'*"")''# !*"%'# !*"$''*$!*". '*"%!$(!!$(. '*"(%( *#%'*($""*#(

(158) ('%)*"!)$!*"

(159) !*"*!'*"

(160) !*""')$# $!*%*!# $(%( $$"%'(( $)'+!( '"*!+'( )'*"&*!#*" "#*(!%# *"!*" (!'#) !#)! #)*"$'-"$(*" '$!*"%')#( ')'*"#'*". '$#"'-(   '('*"+*!' '(*"'$%$'*" '*#*(+*"+*" *",$)*($!*( '$%*!'($%$! #$+*!'( !#$ !#+*!'( )!!'" #)*"%')#*"   !!'%)$!) '()*'') '$%-!!*"'(*)*" !")(+)! ')*("$#$-# '*)!+%( )!(!*)*()'!(. !!$'*($)*(

(161) "*"'#*"

(162) $#'!%# %$%#,'$#*" *#*"$'$(!#*" $)#)!!"'#) **(')*( **(*( $'*(' +!!$(. WKDWWKLVJURXSFDQEHFRQVLGHUHGDVWKHPLFURWKHUPDO IRUHVW FKDUDFWHUL]HG E\ DQ XQGHUVWRU\ WKDW JURZV LQ VKDG\ FRRO DQG PRLVW\ FRQGLWLRQV7KH VRLO LV FDOFD UHRXV KXPLF JHQHUDOO\ GHHS DQG OHVV HURGHG WKHVH DUHWKHHQYLURQPHQWDOFRQGLWLRQVLQZKLFKEHHFKIRUHVW VSHFLHV 6%7

(163) JURZEHWWHU HJ$FHUSVHXGRSODWDQXV $UHPRQLD DJULPRQLRLGHV &DUGDPLQH NLWDLEHOLL *D OLXPRGRUDWXP6RUEXVDXFXSDULD6WHOODULDQHPRUXP 9LROD UHLFKHQEDFKLDQD VHH DOVR WDE 

(164)  0RUHRYHU VSHFLHVVXFKDV$FWDHDVSLFDWD&DUGDPLQHNLWDLEHOLL (XSKRUELD DP\JGDORLGHV /DWK\UXV YHUQXV DQG 9LROD UHLFKHQEDFKLDQDDUHDOVREHHFKIRUHVWGLDJQRVWLFVSH FLHV VHQVX((&'LUHFWLYH

(165)  %LRQGLHWDO %LRQGLHWDO

(166) DQGDUHUHODWHGWROHVVIUDJPHQWHG.

(167) . $6FRODVWULHWDO. 7DE,QGLFDWRUVSHFLHVOLVWIRUWKHWKUHHFOXVWHUVREWDLQHGE\,6$ƠYDOXHVDUHVKRZQRQO\ZKHQVLJQLÀFDQW 3

(168)  3)::1.1+);165/96<7 <4*-96.9-3-=C:  +-97:-<,673);)5<: +;)-):71+);) ,-56:;@3-:/3)*9)133-9 5-465-)7-5515) 9-4651))/9146561,-: -+2 )9,)415-*<3*1.-9)9)5;A )9,)415-21;)1*-311-+0 9@67;-91:.131?4):%+06;; )31<46,69);<4%+67 )+;<+)4<9)31:)-9;5 );0@9<:=-95<:-950 "<3465)91))7-5515)91:;6. "<771 $<*<:019;<:()3,:;1; %69*<:)<+<7)91) %;-33)91)5-469<4 '163)9-1+0-5*)+01)5)69,-? 69-)< -9*-91:=<3/)91: )9,)415--55-)70@336: 9)5;A -;-9)+06..1+15)9<4(133, 315676,1<4=<3/)9- 9<+1);)3)-=17-:!71A @)5<:;91<4.-;;1336:;B3-? GD=@4*)3)91)4<9)31:)-9;5-@ %+0-9* )705-4-A-9-<4 717)+;1:41+9670@33)090%> -:;<+)-?)3;);)"9-:3 -:;<+)0-;-9670@33))4 )31<4+699<,1.631<4'133 -9)51<496*-9;1)5<4 <517-9<:+644<51: )41<4/)9/)51+<4 -,1+)/63<7<315) 6-0915/1)4<:+6:) "6)5-469)31: "6):@3=1+63)<:: "6);91=1)31: "63@:;1+0<4)+<3-);<4$6;0 "914<3)=<3/)91:<,: %13-5-5<;)5: %;-33)91)0636:;-) %;-33)91)4-,1)'133 %;-33)91)465;)5)"1-99); &91.631<479);-5:- '-9651+)6..1+15)31: +-967)3<:133:<*:76*;<:);<4 ()3,:;1;-?(133,)4: 9)*1:;<991;) 9)+0@76,1<49<7-:;9-6:; $6-4%+0<3; )47)5<3);9)+0-31<4 -70)3)5;0-9),)4):651<4133 9<+69@3<:)=-33)5) @+3)4-50-,-91.631<41;65 )705-3)<9-63) 9)?15<:695<: -7);1+)56*131:%+09-* )*<95<4)5)/@961,-:-,12 ):-971;1<43);1.631<4 131<4*<3*1.-9<4 -31;;1:4-31::670@33<4 -6;;1)51,<:)=1:$1+0 763@/65);<46,69);<4133 "914<3)=-91: #<-9+<:+-991: $6:))9=-5:1:<,: %+<;-33)91)+63<45)-33 %-:3-91)51;1,)&-5 %631,)/6=19/)<9-) %69*<:)91)9)5;A '163))3*)-::-9. ). . *.

(169). 9-8<-5+@+3)::. 5,1+);69=)3<-. . 9-8<-5+@+3)::. 5,1+);69=)3<-. . 9-8<-5+@+3)::. 5,1+);69=)3<-. .     ' ' '  ' ' .

(170).  

(171)    .

(172) .    

(173)    .    .     .           .           .           .           .           .           .    .

(174)    .    

(175)  

(176)

(177).    .    .    .    .    .    . ' .  .  .  .  .  .  .  .  .    .    .    .    .    .    .    .    .    . . . . . . . . . .                      .                      .                      .                      .                      .                      .                      .                      .                      .  .  .  .  .  .  . ' . 

(178) .   .  .  .  .  .  .  . ' '. . .  .  .                    .                    .                    .                    .                    .                    .     ' ' '  '   '        .  

(179)  

(180)  

(181). 

(182) 

(183)    

(184)   

(185) .           .  

(186)  .  . 

(187)        . 

(188)    

(189) .

(190) 0RQWDQHEHHFKIRUHVWVLQ&HQWUDO$SHQQLQHV IRUHVWV &DUUDQ]DHWDO

(191) $FWDHDVSLFDWD'U\RS WHULV ÀOL[PDV /DWK\UXV YHUQXV 6WHOODULD QHPRUXP DQG 9LROD UHLFKHQEDFKLDQD DUH DOVR VSHFLHV OLQNHG WR ¶DQFLHQWIRUHVW·FRQGLWLRQVRQWKHEDVLVRIWKHLUGLVSHU VDOFDSDFLW\DQGHFRORJ\ +HUP\HWDO

(192)  $WWKHZDUPHUHQGRIWKHFOLPDWLFJUDGLHQW ORZHUDO WLWXGH

(193) DQGLQVWHHSHUVORSHVZHIRXQGJURXSWKLVLV WKH WHUPRSKLORXV FRPPXQLW\ ZKHUH WKH RYHUVWRU\ LV ULFKHU DQG FKDUDFWHUL]HG E\ WKH SUHVHQFH RI GLIIHUHQW ZRRG\ VSHFLHV KLJKHU SKDQHURSK\WHV FRQWULEXWLRQ LQFOXGLQJ $FHU RSDOXV VXEVS REWXVDWXP )UD[LQXV RUQXV /DEXUQXP DQDJ\URLGHV 4XHUFXV FHUULV DQG 2VWU\DFDUSLQLIROLD

(194) 8QGHUVWRU\LVJHQHUDOO\ULFKDQG FRPSRVHGE\VSHFLHVWKDWVKRZDQKHWHURJHQHRXVKD ELWDWSUHIHUHQFHEXWDUHDOVRPDLQO\UHODWHGWROLJKWHU ZDUPHUDQGGULHUFRQGLWLRQVDQGWRWKLQQHUDQGHURGHG VRLOV7KHVSHFLHVPRUHFRUUHODWHGWRWKHVHFRQGLWLRQV DUHWKHIRUHVWJHQHUDOLVWVDQGWKHRSHQKDELWDWVVSHFLHV HJ&DPSDQXODWUDFKHOLXP&\FODPHQKHGHULIROLXP +HSDWLFDQRELOLV%UDFK\SRGLXPUXSHVWUH6HVOHULDQL WLGD

(195) 7KHKLJKIUHTXHQF\RIWKHVHVSHFLHVJURXSVFDQ EHDOVRLQWHUSUHWHGDVDQHIIHFWRIWKHVSDWLDOKHWHURJH QHLW\GXHWRWKHH[LVWHQFHRIPRUSKRORJLFDOGLVFRQWL QXLWLHVDQGURFN\RXWFURSVDQGWRDKLJKHUGHJUHHRI KXPDQ DFWLYLWLHV DW ORZHU DOWLWXGHV VXFK DV IDUPLQJ DQG IRUHVWU\ ,Q SDUWLFXODU LQWHQVH H[SORLWDWLRQ LQ WKH SDVW 1RFHQWLQL&DUUDQ]DHWDO

(196) IDYRUHG WKLVÁRULVWLFSDWWHUQFKDUDFWHUL]HGE\WKHSUHVHQFHRI VSHFLHV OLQNHG WR RSHQ DQG GLVWXUEHG KDELWDWV *URXS EVKRZVLQWHUPHGLDWHFRQGLWLRQVEHWZHHQPLFURWKHU PDO DQG WHUPRSKLORXV FRPPXQLWLHV 8QOLNH WKH PL FURWKHUPDO FRPPXQLW\ JURXS D

(197)  WKLV JURXS VKRZV DORZHUVSHFLHVULFKQHVVJHRSK\WHVDQGEHHFKIRUHVW. . VSHFLHV0RUHRYHULWVHHPVQRWWREHDVVRFLDWHGWRDQ\ SDUWLFXODU FRHQRORJLFDO LQGLFDWRU 7KLV LV FRQVLVWHQW ZLWKWKHIDFWWKDWWKLVJURXSLQFOXGHVSORWVDWORZHUDO WLWXGHVEXWO\LQJLQWKHERWWRPRIYDOOH\VZKHUHVRPH FOLPDWLFWUDLWVUHVHPEOHSORWVDWKLJKHUHOHYDWLRQV7KH GLYHUVLÀFDWLRQRIWKLVJURXSLVPDLQO\UHODWHGWRVWUXF WXUDOIHDWXUHV VHH5'$DQDO\VLV

(198) ,QIRUHVWVWKDWKDYH QREHHQPDQDJHGIRUGHFDGHVDKLJKHUQXPEHURIWUHHV ZLWKORZHU'%+FDQEHVHHQDVDQLQGLUHFWHYLGHQFH RIDG\QDPLFSURFHVVRIVSRQWDQHRXVUHIRUHVWDWLRQEXW RWKHUVWUXFWXUDODQDO\VHVZLOOEHQHFHVVDU\IRUDQDGH TXDWHDQGPRUHFRPSOHWHLQWHUSUHWDWLRQ2YHUWKHSDVW \HDUVWKHSURJUHVVLYHDEDQGRQPHQWRIERWKIRUHVWU\ DQGJUD]LQJDPRQJWKHXSSHUPRQWDQHEHOWKDVOHGWR DQDWXUDOUHIRUHVWDWLRQRIVHFRQGDU\JUDVVODQGV7KHUH IRUHWKHPD[LPXPGHJUHHRIG\QDPLFWUDQVIRUPDWLRQV LVPDLQO\IRXQGDWUHODWLYHO\KLJKHUHOHYDWLRQVZKHUH VRLOHURVLRQGHJUHHLVORZHU,QWKHUHSRUWHGFDVHVWXG\ WKHREVHUYHGQDWXUDOUHIRUHVWDWLRQSURFHVVLVFRQGXFWHG E\)DJXVV\OYDWLFD7KLVVSHFLHVVKRZVDSURQRXQFHG DSWLWXGHIRUH[SDQVLRQLQPDQ\HQYLURQPHQWDOFRQGL WLRQV ERWK DW KLJK DOWLWXGHV E\ QDWXUDO UHIRUHVWDWLRQ DQGRFFXSDQF\RI¶RSHQVSDFHV· JUDVVODQGDQGVKUXE JUDVVODQGPRVDLFV

(199) DQGDWORZDOWLWXGHVWKLVDOVREHLQJ WKDQNVWRLQÀOWUDWLRQLQWRPL[HGZRRGODQGVLPLODUWR ZKDWZDVREVHUYHGLQRWKHUGLVWULFWVRIWKH$SHQQLQHV 3HURQLHWDO6LW]LDHWDO%UDFFKHWWLHW DO

(200) $VJHRSK\WHVDUHJHQHUDOO\UHODWHGWRPD WXUHIRUHVWVWDQGV 'HFRFTHWDO+HUP\HWDO 

(201) WKHLUVFDUFLW\LQWKLVSDUWLFXODUJURXS E

(202) FRQ WULEXWHVWRLWVEHLQJFRQVLGHUHGDVDGHYHORSPHQWDOVWD JHGHULYHGIURPWKHIRUHVWDGYDQFHPHQW. 7DE([SODQDWRU\YDULDEOHVRIWKHWKUHHFOXVWHUV PHDQV“6'DQG6(

(203) (OOHQEHUJLQGLFDWRUYDOXHVOLIHIRUPVDQGFKRURW\SHV DUHXVHGXQGHUZHLJKWHGPHDQIRUP'LIIHUHQWVXSHUVFULSWOHWWHUVLQGLFDWHVLJQLÀFDQWGLIIHUHQFHVLQWKH.UXVNDO:DOOLVWHVW S

(204)  2QO\WKHVLJQLÀFDQWSDUDPHWHUVDUHVKRZQ $,*+) ,%)' )$-/*.  .  .  . &1 

(205) 

(206) 1  .  1 

(207) . &1  

(208) 1

(209) .  1 . &1  

(210) 1 

(211) .  1 . $$&)! $$&)! $$&)! $$&)!. 1  1  1  1. 1 1 1 1.  1  . 1 1  1

(212) . 1 1 1 1. 

(213) 1  1  1  1. 1

(214) 1 1 1. "&)'(".+* '(".+*.

(215)  1

(216)  

(217) 1 . 1 1 .

(218) . 1   1 . 1 1. 

(219) 1 . 1. 1 1 . #"&**.  1  . 1. 1. 1. 1

(220) 

(221) . 1.  ,%)' +)*. 1   1 . 1. 1.

(222) 1  1

(223) . 1  1 .  1  

(224) 1. 1  1

(225) . 1 1 1 

(226) 1. 1 1 1 1.  1 1 

(227) 1   1. 1 1 1 1. 1   1 1   1

(228) . 1 1 1 1. $+#+,.    .

(229)

(230).  

(231)  

(232) 

(233) 

(234) 

(235)         

(236)

(237)

(238) .    

(239)    

(240) 

(241) 

(242)    

(243) 

(244)    

(245)

(246) .  

(247)   

(248) .  

(249)    

(250) 

(251)  

(252)  '   

(253)    

(254)

(255) .

(256)

(257) 

(258) 

(259)  '  

(260) .

(261) 

(262)  '  

(263) .

(264)  

(265)  '  

(266) .

(267)  

(268)  ''   .

(269)  

(270) 

(271)  '  .

(272)  

(273)     .

(274)  

(275)

(276) 

(277)

(278)    .

(279)   

(280)  # 

(281) .

(282)  

(283)  #   .  

(284)    

(285) .  

(286) 

(287)  !)=36=92115!)=36=921#62636=921')3319+0

(288)   )/;99?3<):1+) 9;*97 9?3<):1+)      )31;46,68):;4 #+67. 

(289)    )+:;+)4;8)319 )-8:5.  .   )8,)415-*;3*1.-8) 8)5:@.  ;7068*1))4?/,)361,-9 9;*97  )4?/,)361,-9.  -6::1)51,;9 )<19 "1+0.  . "69))8<-5919;,9.  . )8->71369)#+67.  . 8?67:-819.131> 4)9 #+06::. . ;65?4;93):1.631;9 133.   -70)3)5:0-8),)4)9651;4133  8;+. +-879-;,673):)5;9. -31+);51.368)"-:@. . #631,)/6<18/);8-) 9;*97 <18/);8-). 6-0815/1):815-8<1) 3)18<. )47)5;3):8)+0-31;4 9;*97  :8)+0-31;4. !63?9:1+0;49-:1.-8;468992 $  668-->'6?5. 68651+;4+63;45)-$-5. -8)51;486*-8:1)5;4. 131;44)8:)/65. 131;4-..;9;4. -9:;+)0-:-8670?33))4. !8;5;9)<1;4 9;*97 )<1;4. #)51+;3)-;867)-). -7):1+)56*1319#+08-*. -8+;81)3197-8-5519. #:-33)81)06369:-) 9;*97 06369:-). 5-465-)7-5515) 9;*97 )7-5515).  #68*;9)81) 8)5:@9;*97 )81).  . &163))3*)-99-89;*97 ,-050)8,:11 $-5 ' -+2-8. 68?,)319+)<) #+0=-1// B8:- 9;*97 +)<). . . 

(290). .  . . . .  .  . . .  . . .  . .  . . .

(291) .  . 

(292). .  . .  . .    . .  . . .  . . 

(293)  . . . .

(294) .    .

(295). . . .  . 

(296)  . . . .

(297). .  . .  .    .  .

(298).

(299). . . 

(300) 

(301). . .

(302). . . 

(303)  . . . . . . . . . . . . . . . . . .  . . . . .

(304). .

(305). .  . .  .  . . .  

(306) 

(307) #  

(308) . .

(309)   

(310) 

(311) 

(312) 

(313) 

(314)  '  

(315)    

(316)  .  

(317) 

(318) 

(319)  

(320)

(321)  

(322)  %*)3,1()56::1!;771#7-8)5@)-:68*-::)

(323) ->%*)3,1

(324)  

(325) 

(326) 

(327)  68<):

(328) $6862!6,)51-:6801,1

(329)  ):0?8;9<-85;9 -850 9 3.    . .  .  . . )8,)415-21:)1*-311-+0.     

(330)

(331)  .  . !;3465)81))7-5515)819:6. !;771.    . .   . +:)-)971+):). .      . . 8-4651))/8146561,-9  9;*97  )/8146561,-9.  .  .     

(332) . . )8,)415--55-)70?3369 8)5:@.    .

(333) .  ):0?8;9<-5-:;9133 '603.. . .

(334). . ,-569:?3-9/3)*8)133  9;*97  /3)*8). .  . 

(335)

(336) 

(337) .  5-465-5-46869). . . 7136*1;4465:)5;4. . . !63?9:1+0;4)+;3-):;4 "6:0. .  .   ,6>)469+0):-3315) 9 3.  #)>1.8)/)86:;5,1.631) 9;*97  86:;5,1.631). . . . . . ")5;5+;3;93)5;/1569;9 .  . "-3-<A5;4*-8.864,-5,86/8)41/  3:1:;,-4 97-+: #367-,-/8--9 8-)4  6<-8:6:)3. 7DE&DUGDPLQRNLWDLEHOLL)DJHWXPV\OYDWLFDH8EDOGL=DQRWWL3XSSL6SHUDQ]DHW&RUEHWWDH[8EDOGL. . .

(338). . . . .  

(339)  ##

(340)  

(341) . .  . .  

(342) 

(343)  '   . .  

(344) 

(345) ##  

Riferimenti

Documenti correlati

We also found that the distinct patterns for L1 and L2 in most regions are unlikely to reflect different visual complexities of the two languages because the support vector

This analysis revealed significantly stronger connectivity during creativity between the EN and DMN, and decreased connectivity within the EN (again between bilateral BA46 and

A pesare in particolare sulla versione delle Odi è senza dubbio la precocità; e con la precocità (concetto in verità aleatorio, se si pensa che Leopardi fu ancora più precoce

An estimated 750,000 Iraqis, a little less than half the entire population of 2014 IDPs, have found their way to the Autonomous Kurdish Region (KR-I).. They are

We report the detection of circulating tumor cells by Isolation by Size of Epithelial Tumor cells (ISET) in a cohort of 31 uveal melanoma patients: we identified single CTCs

Quando non è possibile ottenere una mGFR (measured glomerular filtration rate), nella medicina umana marcatori endogeni come la creatinina sierica e la cistatina

Alla domanda dell’aristocratica se il popolo bresciano fosse libero, il democratico-pedagogo risponde: «fin adesso è stato suddito al Dominio, Veneto, ma al momento che parliamo

Take your time with our collection of slow cooker recipes–for appetizers, entrées, side dishes, and desserts–that were designed to cook slow and deliver huge amounts of great