• Non ci sono risultati.

University of Pisa

N/A
N/A
Protected

Academic year: 2021

Condividi "University of Pisa"

Copied!
6
0
0

Testo completo

(1)

University of Pisa

Research Doctorate School in BIOmolecular Sciences

XXII Cycle (2008-2010)

Structure and function of olfactory proteins

in mosquitoes and aphids

Candidate: Supervisor:

Qiao Huili Paolo Pelosi

(2)

Table of Contents

Acknowledgements...I Abstract... II Abbreviations... IV Chapter I - Introduction ... 1 Chemoreception in insects... 1

Soluble proteins of chemoreception... 6

Tissue and subcellular expression... 13

Ligand binding studies... 15

The physiological function of OBPs... 18

Specific introduction on aphids ... 22

Specific introduction on mosquitoes... 26

Chapter II - Materials and Methods... 30

Chapter III - Results and Discussion... 39

Part I Aphids ... 39

Identification of OBPs in aphids... 39

Expression of aphids OBPs... 42

Ligand-binding experiments ... 44

Design and synthesis of new potential alarm pheromones ... 48

Immunodetection... 49

Identification of aphids Olfactory Receptors ... 50

Expression of a fragment of OR83b... 52

Results obtained by collaborators ... 53

Immunofluorescence localisation ... 53

Behaviuor experiments ... 53

Part II Mosquitoes ... 55

Identification of Anopheles gambiae OBPs ... 55

Expression and purification of selected OBPs in E.coli ... 57

Expression of OBPs in yeast ... 59

Ligand-binding experiments ... 64

Identification of OBPs and their ligands in male sex organs ... 74

Results obtained by collaborators ... 79

Crystallography of OBP47 ... 79

Chapter IV - Conclusions ... 82

References ... 85

(3)

I

Acknowledgements

First, I would like to sincerely thank my supervisor, Paolo Pelosi, that during the three years gave me a strong support and commitment to the project, as well as the capacity to deal with research and to assume a scientific mentality in order to solve problems. Words cannot express the extend of my gratitude for his guidance and support.

I am also very thankful to Francesca Romana Dani, Alessandra della Torre and Beniamino Caputo, Zhou Jingjiang, Christian Cambillau, Patrizia Falabella and Angelo Gazzano, who have been collaborating in these studies and helped my research in many ways.

I am also grateful to Antonio Felicioli, Immacolata Iovinella, Elena Tuccori, Maria Giovanna Carucci, Sandro Silvestri, Narciso Andreoni for their patient assistance in my lab work and for helping me to solve many problems in the ordinary life. Also thanks to all the people with whom I have interacted during these three years and helped me to solve the problems I met during my experiments.

Last but above all, I thank the members of my family and my friends who have always believed in my capacities and gave me love and support in my studies.

(4)

II

Abstract

This thesis reports the experimental results of my research in the field of insect chemoreception. The focus is on biochemical events occurring at the periphery of the olfactory system, where odorants and pheromones are detected and discriminated. In particular, I have studied a class of soluble proteins that very recently have been shown to represent the key elements in insect chemosensing. As suggested by their name, Odorant-binding proteins (OBPs) bind chemicals present in the environment and convey the information to membrane-bound receptors, where the chemical messages are translaed into electric signals to be processed by the brain.

For my experimental work I chose species very different in their biology, chemical ecology and phylogenetic position, aphids and mosquitoes. Both are of great economical importance, aphids represent one of the major pests in agriculture, not only for their direct damage to plants, but also as carriers of deadly microorganisms. Mosquitoes are vectors of serious diseases worldwide, causing enormous numbers of victims particularly among the populations of developing countries.

In aphids, we have cloned and characterised for the first time 4 OBPs in different aphid species. Three of them have been expressed in bacterial system and functionally studied. Unlike OBPs in other insects, those of aphids are well conserved across even very distant species. Ligand-binding experiments have shown similar behaviour of the three proteins towards several organic compounds, but also some significant selectivities. In particular, (E)-β-farnesene, the aphids alarm pheromone and its related compound farnesol exhibited good affinity to OBP3, but did not bind the other two proteins. On the basis of such results we can suggest that OBP3 mediates the typical response of aphids to the alarm pheromone and propose a strategy for the design and synthesis of new repellents for aphids.

In the malaria mosquito, Anopheles gambiae, seven OBPs have been expressed, purified and characterised for their ligand-binding properties. Binding experiments performed with mixtures of two OBPs of An. gambiae, suggested that OBP4 could form heterodimers with OBP1 and OBP3, thus generating new protein species with different properties. Such phenomenon could also occur in vivo, based on the observation that the genes encoding OBP1 and OBP4 are

(5)

III

co-expressed in the same sensillum. Western blot has revealed that OBP47, an anomalous member of this class of proteins, being longer and more complex, is glycosylated in the mosquito. This is the first report of glycosylation in insect OBPs. The same protein was also successfully expressed both in bacterial and yeast systems. A highly purified samples has been crystallised by our collaborator, Christian Cambillau, Marseille, and its folding has been solved, being the first three-dimensional structure of a C-plus OBP. Moreover, the expression of OBPs has been mapped in the antennae of An. gambiae using a proteomic approach in collaboration with the group of CISM, University of Firenze, revealing that only two OBPs are expressed at relatively high levels in male antennae of An. gambiae, while at least a dozen are expressed in the female antennae.

A parallel work investigated the expression of the most abundant OBP in the sex organs of An.

gambiae, as well as of another mosquito species, Aedes albopictus. In both species this protein

(OBP9 in An. gambiae, OBP22 in Ae. albopictus) is produced in the male sex organs and transferred to the female during mating. In the latter species, OBP22 is complexed with nonanal, a new putative male pheromone. This work supports the idea that, as in vertebrates, also in insects OBPs may play a double role in the detection and in the release of pheromones.

The results reported in this thesis represent a major contribution to the characterisation of OBPs in insect and provide strong evidence that OBPs are directly and specifically involved in insect chemical communication. In particular, controlling the populations of dangerous insects can be best achieved after the fine and specific interactions between semiochemicals and their binding proteins are completely understood and clarified.

(6)

IV

Abbreviation

1-AMA: 1-aminoanthracene 1-NPN: N-phenyl-1-naphthylamine ABPs: antennal binding proteins

ANS: 1-anilinonaphthalene-8-sulphonic acid ASA: (±)-12-(9-anthroyloxy)stearic acid ASP: antennal-specific protein

BSA: bovine serum albumin

CHAPS:

3-[(3-Cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate

CRLBP: chemical sense-related lipophilic

ligand-binding protein

CSPs: chemosensory proteins

DEET: N,N-Diethyl-3-methylbenzamide DTT: DL-Dithiothreitol

dNTP: 2’-deoxynucleoside 5’-triphosphate

ESI-MS: electrospray mass spectrometry

EST: expressed sequence tag

GC-MS: gas chromatography-mass spectrometry GOBPs: general odorant-binding proteins

HPLC: High Performance Liquid Chromatography IPTG: isopropyl thio-β-D-galactopyranoside LC-MS/MS: Liquid chromatography-mass

spectrometry

MALDI-MS: matrix-assisted laser desorption/

ionization-mass spectrometry

MALDI-TOF: matrix-assisted laser desorption/

ionization-time-of-flight

MS/MS: tandem mass spectrometry NMR: nuclear magnetic risonance OBPs: odorant-binding proteins ORs: olfactory receptors

OS-E: olfactory segment-E OS-F: olfactory segment-F PBPRP: PBP-related protein PBPs: pheromone-binding proteins PBS: phosphate-buffered saline PCR: polymerase chain reaction

PDN: 1-phenyl-4,8-dimethyl-1,3,7-nonatriene SAP: sporozoite-specific protein

SDS: sodium dodecyl sulfate

SDS-PAGE:sodium dodecyl sulfate polyacrylamide

gel electrophoresis

TFA: Trifluoroacetic acid

Riferimenti

Documenti correlati

A first analysis develops a building typology study of football stadiums in general analyzing in depth for : historical mentions, architectural structure and

In small ruminants, often the reality of husbandry is far different compared to other livestock rearing, especially in Mediterranean regions, where sheep husbandry

We will relate the transmission matrix introduced earlier for conductance and shot noise to a new concept: the Green’s function of the system.. The Green’s functions represent the

By arguing against the possible reasons for this neglect on the international aspect of toleration, this thesis claims that there is a place for toleration in our

In the fourth chapter, the behavior of entanglement in open quantum systems is described: in particular, a two-qubit system is studied, analyzing both entanglement generation

Historical situation: The restarting of Higher Education in China leads to a number of government sponsored programmes to go to study in France such as by the Ministry of Trade

2.3.3 Daphnia magna: acute and reproduction toxicity tests The 48 h daphnid toxicity test was conducted according to OECD test guideline 202.. magna Straus clone neonates between 6

On one hand, we shall discuss the existence of hyperelliptic curves lying on the Jacobian variety - and a fortiori on the second symmetric product - of a generic curve by extending