• Non ci sono risultati.

Novel insights into cardiomyocytes provided by atomic force microscopy

N/A
N/A
Protected

Academic year: 2021

Condividi "Novel insights into cardiomyocytes provided by atomic force microscopy"

Copied!
9
0
0

Testo completo

(1)

SeminarsinCell&DevelopmentalBiology73(2018)4–12

ContentslistsavailableatScienceDirect

Seminars

in

Cell

&

Developmental

Biology

jo u r n al h om ep age : w w w . e l s e v i e r . c o m / l o c a t e / s e m c d b

Review

Novel

insights

into

cardiomyocytes

provided

by

atomic

force

microscopy

Daniele

Borin

a,1

,

Ilaria

Pecorari

a,1

,

Brisa

Pena

b,c

,

Orfeo

Sbaizero

a,∗ aDepartmentofEngineeringandArchitecture,UniversityofTrieste,ViaValerio10,34127,Trieste,Italy

bCardiovascularInstitute,UniversityofColoradoDenver,E17thPl,Aurora,CO80045,UnitedStates cBioengineeringDepartment,UniversityofColoradoDenver,E17thPl,Aurora,CO80045,UnitedStates

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30May2017

Receivedinrevisedform29June2017 Accepted3July2017

Availableonline4July2017 Keywords:

Atomicforcemicroscopy Cardiomyocyte Biomechanicalproperties Mechanotransduction Beatingactivity

a

b

s

t

r

a

c

t

Cardiovasculardiseases(CVDs)arethenumberonecauseofdeathglobally,thereforeinterestinstudying aetiology,hallmarks,progressandtherapiesforthesedisordersisconstantlygrowing.Overthelast decades,theintroductionanddevelopmentofatomicforcemicroscopy(AFM)techniqueallowedthe studyofbiologicalsamplesatthemicro-andnanoscopiclevel,hencerevealingnoteworthydetailsand pavingthewayforinvestigationsonphysiologicalandpathologicalconditionsatcellularscale.

Thepresentworkisaimedtocollectandreviewtheliteratureoncardiomyocytes(CMs)studiedbyAFM, inordertoemphasisethenumerouspotentialitiesofthisapproachandprovideaplatformforresearchers inthefieldofcardiovasculardiseases.OriginaldataarealsopresentedtohighlighttheapplicationofAFM tocharacterisetheviscoelasticpropertiesofCMs.

©2017ElsevierLtd.Allrightsreserved.

Contents

1. Introduction...4

2. AFMasimagingmachineappliedtocardiomyocytes...5

3. AFMasmechanicalmachineappliedtocardiomyocytes ... 5

3.1. Assessmentofelasticbehaviourofcardiomyocytes...5

3.2. Assessmentofadhesivebehaviourofcardiomyocytes...7

3.3. Assessmentofplasticityindexoncardiomyocytes...7

3.4. Viscoelasticitycharacterizationofcardiomyocytes...8

3.5. AFMquantificationofbeatingactivity...8

4. OtherapplicationsofAFMoncardiomyocytes...9

5. Conclusion...10

Conflictofintereststatement ... 10

Fundings...10

Acknowledgements ... 10

References...10

1. Introduction

Inthelate1980s,theatomicforcemicroscope(AFM)was

devel-opedby Binniget al.[1] toinvestigate surfacesof insulatorsat

theatomicscale,whileavoidingdamagestothespecimens.AFM

∗ Correspondingauthorat:DepartmentofEngineeringandArchitecture Univer-sityofTrieste,PiazzaleEuropa1,34127Trieste,Italy.

E-mailaddress:sbaizero@units.it(O.Sbaizero). 1 Shareco-authorship.

isascanningprobetechnique,whichexploitsthedeflectionsofa

cantileveredspringtoimageandprobedifferentkindofsamples.

FundamentalcomponentsandworkingprinciplesoftheAFMare

showninFig.1.

Theatomicforcemicroscopehasproventobeaversatiletool

ofinvestigation,sinceitcaneitheracquireasampletopographyor

measurevariousmechanicalproperties,suchasstiffness,adhesive

andviscoelasticbehaviour;intheformercase,theAFMworksas

animagingmachine,whereasinthelatteritcanbeconsidereda

mechanicalinstrument[2].Inaddition,astheAFMcanworkin

aqueousenvironments,itwasforthwiththoughttobeusedfor

(2)

Fig.1.AFMdiagramandworkingprinciple.Thetipmountedonthecantileverscansandprobethesample.Movementsofcantilever-tipsystemin(X,Y,Z)directionsare controlledbyapiezo-scanner.Whileinteractingwiththespecimen,thecantileverbends;itsdeflectionsarerecordedbyanopticalsystem(lasersource,focallens,mirror andphotodiodedetector).Thecontrollerelectronicsprovidesafeedbackloopthatpermitstoadjustthetip-sampleseparation.

studyingbiologicalspecimenseitherclosetoorunderphysiological

conditions.

Cardiovascular diseases are still the leading cause of death

worldwide.Particularly,accordingtoGillespieetal.[3],heart

dis-easeandstrokearethefirstandfourthcausesofdeath,respectively,

intheUnitedStates.Theproperfunctioningoftheheartispivotal

forlivingorganisms,andcardiologyresearchismainlyfocusedon

thethoroughcomprehensionofbio-chemo-mechanicalprinciples

underlyingthephysiologicalbehaviouroftheheart.Yet,theeffects

ofinheritedorincidentalcardiacdysfunctionsareunder

investiga-tion,likewiseanypossibletherapy,suchasdrugadministration

and tissue regeneration/transplantation. Thestudy of aetiology,

hallmarksandprogressofacardiacpathologycanbeconsidered

a multidisciplinary task, since it involvesphysicians, biologists,

andmorerecentlybiophysicistsandbioengineers.Altogether,they

investigate cardiac behaviour both at the macroscopic, e.g. via

echocardiographyorventriculography,andmicroscopiclevel.

Inrecentyears,moreandmoreresearchersfocusonthebasic

constituent of cardiac tissue, mainlyon cardiomyocytes(CMs),

whicharethecoreunitoftheheart,generatingandtransmittingthe

contractileforce.Inthisscenario,AFMcanplayakeyrole,duetoits

highresolution,bothintopographicandforceterms.Thepresent

workaimstoreviewthestudiesthatinvolvedAFMtechnologyto

investigatethestructureandfunctionofCMs.Inaddition,original

dataarepresentedasfurthercharacterizationofcardiomyocytesin

termsofplasticityindexandstressrelaxationbehaviour.

2. AFMasimagingmachineappliedtocardiomyocytes

Overtheyears,variousbiologicalsampleshavebeen

character-izedfortheirtopographybyAFM,asthoroughlyreviewedin[4,5].

Regardingtheaimofthepresentwork,in1999,Perez-Terzicetal.

[6]imagedsarcolemma-strippedCMsfromneonatalrats,

focus-ingonthenuclearporecomplexes(NPCs).Datashowedthatboth

Ca2+andATP/GTPdepletioninducedasignificantdecreaseinthe

percentageofopenNPCscomparedtountreatedCMs,thesecond

treatmentresultingalsoinmorerelaxedpores(biggerouter

diam-eter).

In2001,Davisetal.[7]resolvedbothexternalandsub-surface

featuresoffixed,intactcardiomyocytesfromtheventriclesofadult

guineapigs,thuspavingthewayforfurtherAFMinvestigationsof

wholecells.Morerecently,thenanoscopicresolutionofthis

tech-niqueallowedtodetectchangesintheplasmamembranesurfaceof

neonatalmurineCMsinducedbyadministrationofaldosterone[8].

Similarly,neonatalratCMsweretreatedwithGCIP-27,asynthetic

polypeptidethoughttopreventcardiachypertrophy,and

exhib-itedanincreasedsurfaceroughnesscomparedtothenot-treated,

controlgroup[9].Anotherstudyanalysedthecellsurfaceand

con-firmedtheabsenceoft-tubulesinmouseandhumanembryonic

stem cell-derived cardiomyocytes(ESC-CMs),which were

com-paredwithadultguineapigventricularCMs[10].Moreover,AFM

revealedthecellsurfacepropertiesofcardiomyocytesfromhealthy

andfailingmicehearts:theformerwerecharacterizedbyaperiodic

successionofcrestsandhollows,whilethelattershowedageneral

lossofthesestructures[11].

Ina ground-breakingstudy,AFMwasappliedtoobservethe

cytoskeleton of murine CMs stimulated by lipopolysaccharide

(LPS),whichisknowntoberelatedtosepsisand,therefore,to

car-diacdysfunction.Theacquiredimageshighlightedthecytoskeleton

reorganizationandthemorphologicalchangesinducedbyLPS,thus

provingtheuseofAFMtostudythefunctionalpropertiesthrough

theobservationofstructuralinformation[12].

The atomic forcemicroscopy was then exploitedto

investi-gate infarcted porcine myocardium treated with mesenchymal

stemcells(MSCs),eitherwithorwithoutglucagon-like

peptide-1(GLP-1)expression[13].Interestingly,Wrightetal.[13]found

thatcollagenfibrildiametersignificantlyincreasedaftertreatment

withMSCs,furtherdemonstratingthattheMSCstherapyoption

canhaveadramaticeffectonthescardepositedasaconsequence

ofmyocardialinfarction.

3. AFMasmechanicalmachineappliedtocardiomyocytes

3.1. Assessmentofelasticbehaviourofcardiomyocytes

Earlyafteritsinvention,theatomicforcemicroscopewasused

toassessthemechanicalproperties,namelyhardness,elasticand

plasticbehaviour,bynano-indentationoftheinvestigatedsample

[14].ThemechanicalanalysisbyAFMattheatomiclevelhasraised

(3)

6 D.Borinetal./SeminarsinCell&DevelopmentalBiology73(2018)4–12

Fig.2. Whenprobingthemechanicalpropertiesofasample,theAFMworksintheso-calledforcespectroscopymode.Dwelltimeisthetimepassingbetweentheendof theindentation(loading)(blackcurve,leftpanel)ofthespecimenandthebeginningoftheunloadingprocess(redcurve,leftpanel).Ifdwelltimeisnull,stiffness,adhesion andplasticityindexcanbeassessed.Stiffnessisevaluatedfittingtheportionofloadingcurveafterthecontactpoint“C”withanappropriatemechanicalmodel.Adhesion workisgenerallyreferredtothegreyareaaboveunloadingcurve(leftpanel).Plasticityindexiscalculatedfromtheareasunderloadingandunloadingcurves,namelyas (1-BÔD/BÔC)(leftpanel).Not-nulldwelltimeallowsinferringtheviscoelasticpropertiesofasample,bothwithstressrelaxationandcreepcomplianceexperiments.Inthe former,forceisdetectedwhileZ-positionofthetipiskeptconstant;thelatterimpliesmaintainingtheforceappliedtothetipandrecordingthevariationsintheZ-position oftheprobe(rightpanel).

studyofcellularandmolecularprocessesthatconvertmechanical

cuesintobiochemicalsignals[15].

Alargenumberofstudiesontheelasticpropertiesoflivingcells,

commonlydescribedasYoung’smodulus,hasbeenissued.Young’s

modulusisameasureofthematerial’sstiffness,thatistheaptitude

ofasampletobedeformed.Basically,theAFMcanactasan

inden-ter,thuscanperformforcemeasurementsonadesiredportionofa

cellwhiledetectinghowthespecimendeformsinresponsetothe

appliedforce(seeFig.2).Nevertheless,theestimationofcell

stiff-nessisalwaysaffectedbyseveralfactors,forinstancethechoiceof

themostsuitablemechanicalmodeltofittheexperimentaldata,

theassumptionsonwhichthatmodelrelies,andtheprecisionin

determiningthecontactpoint(i.e.thepointintheforcecurveat

whichtheAFMprobereachesthespecimen).Athoroughdiscussion

aboutthistopicisprovidedin[16].

Adultratatrialmyocyteswerenano-mechanically

character-izedbyAFMbothintheirquiescentandcontractilestatus,along

theiroverallsurface(i.e.nuclearandperipheralregions),andunder

differentconditions (i.e. either withdifferent extracellular

cal-ciumconcentrationsorafterfixation)[17].Alsoadultmalemouse

CMsweretested intheirrelaxedand contractile state,

exploit-ingeitherhigh-K+ solutionorlow-Ca2+ solutionwithEGTAand

2,3-butanedionemonoxime[18].Spontaneouslybeating,

neona-talrat cardiomyocytes were studiedwith AFM in theirsystole

anddiastolebyAzelogluandCosta[19],revealingthespatial

het-erogeneityofmechanical propertieswithinasinglecellandthe

increaseofCMsstiffnessduringcontractionthanrelaxation.The

same study demonstrated that administration of blebbistain, a

specificinhibitor ofactin-myosin interactionin cardiacmuscle,

reducedtheelasticmodulusofCMstodiastolicvalues;theauthors

alsooutlinedthatincreasingtheculturetimeofcellsresultedinthe

stiffeningofbothsystolicanddiastolicmoduli,althoughinthelast

case,thevariationwasnotstatisticallysignificant.Saenz-Cogollo

andcolleagues[20]grewaconfluentlayerofratembryosCMson

microelectrodearrays(MEA)andcoupledthesystemwithAFM.

Suchsetupallowedtherecordingofextracellularactionpotential

signalandthesynchronizationofthecontractilecyclewith

mor-phologicalandmechanicalmeasurements.Similarlytowhatwas

reportedin[19],asubstantialstiffeningofcellsduringcontraction

wasobserved,followedbysofteningintherelaxationphase.

Dague etal. [11] studiedthe effects inducedby formamide,

whichisknowntocausedetubulation,bothontopographyand

elasticpropertiesofmurinecardiomyocytes.Theyfoundthatthe

responseofcellstovariousconcentrationsofformamidemimics

thephenotypeof CMsfromfailed heartsat differentstages. In

anotherstudy,CMsderivedfromchickenembryoswereanalysed

afterdosingcytochalasinB,inordertodeterminetheinfluenceof

theactinnetworkontheYoung’smodulusofthesecells[21].Here,a

consistentdecreaseoftheelasticmoduluswasobservedafteractin

depolymerization.

Anticancerdrugsarewell-knowntocausecardiotoxicity,ergo

primary adult murine CMs were exposed to an anthracycline

anticancerdrug(doxorubicin)andacardioprotectiveagent

(dexra-zoxane),andcellstiffnesswasassessedtoelucidatetheeffectsof

thesetwodrugsatthecellularlevel[22].DoxorubicintreatedCMs

displayedthesamestiffnessofcontrolCMswithinthefirst50min,

followedbyasignificantsoftening,whereaspre-treatmentwith

dexrazoxaneavoidedthesevariations.

Besides the outcome of various chemical substances in the

mechanical properties of CMs, theeffect of a gradient of

sub-straterigidityintheelasticityofneonatalratventricularmyocytes

(NRVMs)wasinvestigated[23],resultinginanon-significant

influ-ence.

The AFM was also exploited to study the role of different

cytoskeletalproteinsinmaintainingthestructureandfunctionof

cells,asinthecaseofvinculin.Cardiomyocytesfromvinculin

het-erozygousnull miceweresofterthancellsfromtheirwildtype

littermate;yet,rescueofvinculinrestoredtheelasticmodulusto

controllevels,asdemonstratedbyTangneyetal.[24].AdultCMs

fromephrin-B1knock-outmicewerefoundtobestifferthantheir

counterpartderivedfromwildtypeanimals,asresultedfromthe

destabilizationofthelateralmembraneinducedbytheabsenceof

(4)

Tangneyetal.[24]investigatedvinculinbecauseitsmutations

arerelated tohypertrophicand dilatedcardiomyopathy(DCM),

thussuggestingtheAFMasavaluabletooltoinvestigate

patho-logicalconditionsandtheeffectsofdrugtherapies.Severalother

studiessupportthisapplication:forinstance,ageingwasrelatedto

leftventriculardiastolicdysfunctionandwasdemonstratedtobe

crucialforthestiffnessofratCMs;valuesfor30-months-oldmale

animalswerehigherthanthosefrom4-months-oldrats[26].The

increaseofcellstiffnesswithagewasconfirmedalsoinintact,

enzy-maticallyisolatedcardiomyocytesderivedfromagedand young

murineheartsunderCa2+-freeconditions[27].Similarly,diabetes

inducedastiffeninginadultmiceCMs,asobservedin[28].In

addi-tion,theYoung’smodulusofNRVMswasassessedtoelucidatethe

effectsofgeneticmutationsinA-typelamin,whichareresponsible

foraparticularclassofpathologiescalledlaminopathies.Lanzicher

etal.[29]showedthatNRVMsinfectedwithhumanD192GLMNA

werestifferthanwildtype(expressingwildtypehumanlamin)

andcontrol(not-treated)counterparts.Moreover,cellstiffnesswas

investigatedinhypertrophiedhearts:adultmaleratsweretreated

witheitheravehicle(control)orisoproterenol(ISO),resultinginan

increaseoftheelasticmodulusoftheISOgroupcomparedtothe

controlone[30].Anothercardiopathologicalcondition,theheart

failure,wasstudiedfromamechanicalpointofview,exploiting

theuniquepropertiesoftheAFM.Indeed,Dagueetal.[11]

com-paredtheelasticity ofcardiomyocytesfrom healthyand failing

micehearts,findingthatearlyafterheartfailure,CMsdecreased

theirYoung’smodulus,whereasatlaterstages,cellsbecamestiffer

thancontrols.Likewise,Liuetal.[31]exploitedtheAFMtocompare

thepropertiesofinducedpluripotentstemcellsderived

cardiomy-ocytes(iPSC-CM)fromhealthysubjectsandpatientsaffectedby

dilatedcardiomyopathy.TheauthorsdemonstratedthatDCMled

toadecreaseiniPSC-CMselasticity.Itisnoteworthytostressthat

inthelaststudy,cardiomyocyteswerederivedfromhumanskin

biopsies,whereasmostofthereportedworksusedanimalmodels.

Growingeffortshavebeenrecentlymadetodevelopprotocolsfor

obtainingCMs,e.g.iPSC-CM,thatresemblesthosefoundinnative

humanhearttissue.Indeed,thisapproachcouldovercomethe

lim-itationsimposedbythedifferencesbetweenhumanandanimal

modelsandtheobviouschallengesfacedtoobtainCMsfromheart

biopsies.

Itisalsonoteworthytomentionthatthedeformabilityof

car-diomyocyteswasassessedevenundernonconventionalconditions,

likeafterantiorthostaticsuspension[32,33]or2-gcentrifugation

[34].

Some of the reviewed works applied the Hertz model or

its variants to quantify the Young’s modulus of cardiac cells

[11,23,24,29,30,35].Nevertheless,thesuitabilityofthesemodels

forbiological specimenshasbeenquestioned.A better

descrip-tionofcellularstiffnesswasproposedbySoufivandandcolleagues

[36],usinghyperelasticmodelstofitdatafromembryonicmurine

CMs.Furthermore,nonlinearelasticbehaviourofrabbitCMswas

alreadyproveninthepastbyMathuretal.usingAFM[37].Itisthe

opinionoftheauthorsthatassumptionofelasticbehaviour(within

thelimitsofapplicability)anduseofHertzmodelcouldbe

com-monlyacceptedforcomparativeinvestigations,asinthecaseofthe

presentedstudies.

3.2. Assessmentofadhesivebehaviourofcardiomyocytes

FromthefirststudiesdemonstratingAFMtohavethesensitivity

forinvestigatingintermolecularforces[38],tothedevelopmentof

singlecellprobeforcespectroscopy[39],biologicalsampleshave

beenwidelycharacterizedfortheiradhesiveproperties(seeFig.2).

Inparticular,thecelladhesionofCMshasbeenreportedinsomeof

theaforementionedstudies[18,24,29].Notably,inthestudyofWu

etal.[18],substratecoatingdidnotaffectcelladhesiveproperties

Fig.3.PlasticityindexforNRVMsexpressingthehumanD192Glaminmutation comparedtowildtype(WT)andcontrol(NT)cells.Datawereacquiredonn>40 cellsforeachcondition.StatisticalsignificancewasprobedwithKruskal-Wallis non-parametrictestandDunn’scorrectionformultiplecomparisons.Ap-value<0.05 wasassumedasstatisticallysignificant.n.s.=notsignificant.

inadultmurineCMs.Ontheotherhand,itwasdemonstratedthat

thegeometryofthetip(sharpversusmicrobead)andthestatusof

thecell(contractedversusrelaxed)influencetheadhesionofCMs,

duetothedifferentcontactareabetweentipandsampleandto

thevariationofactiveintegrinreceptorsandcostamerecomplexes

duringcontractilecycle,respectively[18].

Vinculinwasshownnottoaffecttheinitialpeakadhesionforce,

whiletheprobabilityofadhesionbetweenAFM-fibronectincoated

probeandacelldecreasedsignificantlyinvinculinnullmurineCMs

comparedtowildtypespecimens[24].Inthesamestudy,therescue

ofvinculinexpressionrestoredtheadhesivepropertiestothelevel

ofwildtypecontrols.Anotherprotein,thehumanmutantLMNA,

zeroedtheadhesionworkinNRVMs,whereaswildtypeandcontrol

cellsexhibitedsimilarvalues,asdemonstratedbyLanzicheretal.

[29].

3.3. Assessmentofplasticityindexoncardiomyocytes

Themechanicalmodelsusedtoestimatetheelasticpropertiesof

acellrelyonstrictassumptions,suchasisotropyandhomogeneity

of the investigated sample, thus severelyaffecting the

reliabil-ityofYoung’smodulus estimation.Toovercomethis limitation,

Klymenko et al. [40] introduced theso-called index of

plastic-ity,exploitingthehysteresisbetweenloadingandunloadingforce

curves(Fig.2).Suchdifferenceisattributedtoanenergydissipation

duetocytoskeletalorganization.Tothebestofourknowledge,this

parameterwasmeasuredbyothergroupsinlivingcells[41,42],but

notincardiomyocytes.Inparticular,intheworkofMendezetal.

[42],theplasticityindexprovidedadditionalinformationto

elu-cidatetheroleofvimentinintheviscoelasticresponseofmouse

embryonic fibroblasts,thus demonstratingtherelevance ofthis

mechanicalproperty.

We exploited the plasticity index to highlight the different

behaviourofalivingcellinducedbyageneticmutation.Thesame

protocolreportedin[29,43]wasusedtoextract,infectand

cul-tureNRVMsexpressingthehumanmutantD192GLMNAgeneor

thewildtypeform.Notinfected(NT)NRVMswereusedasfurther

control.Measurements wereperformeddirectlyonPetridishes

keptatphysiological temperature.Cells werethenindented on

thenuclearregionusingagoldsphericalprobe(diameteraround

5␮m)attachedtoatriangularcantilever(nominalspringconstant

(5)

8 D.Borinetal./SeminarsinCell&DevelopmentalBiology73(2018)4–12

data)andshowthatNRVMsexpressingthemutantLMNAwere

significantlyalteredcomparedtocontrols.

3.4. Viscoelasticitycharacterizationofcardiomyocytes

Besidesthe applications reported so far,the AFM hasbeen

usedtocharacterisecellsfortheirviscoelasticbehaviour,

indent-ingthesampleandkeepingeithertheheight(stressrelaxation)

ortheforce(creep)constantforafixedperiodoftime[44](see

Fig.2).Alternatively,afterindentation,thecantilevercanoscillate

atsmallamplitudeandvariablefrequencytodescribethe

viscoelas-ticbehaviourintermsofstorageandlossmoduli[45,46].Despite

thispotentiality,tothebestofourknowledge,onlyfewexamplesof

AFMrheologicalcharacterizationofcardiomyocyteswerereported

intheliterature.

In theworkof Lanzicher, Martinelliet al. [43], stress

relax-ationexperimentswereperformedonNRVMsinfectedwithhuman

LMNAD192Gmutantgene.Relaxationdatawerefittedwiththe

standardlinearsolid(SLS)model,alsoknownasZener’smodel.As

comparedtocontrolsandcellsexpressingwildtypehumanLMNA,

mutantsamplesshowedanincreasedpurelyelasticcontribution,

inaccordancewithYoung’smodulusvalues[29].Moreover,cells

withmutantA-typelaminexhibitedareducedviscosity,whichwas

attributedtoanimpairmentoflengthandthicknessoftheactin

cytoskeletonelementsinducedbythelaminmutation.

Theeffectofdifferentsubstrates(i.e.fibronectin-or

collagen-coated,alignedornot)andofageing(from1to15daysofculture)

ontheviscoelasticbehaviourofneonatalratCMswereassessedby

Deitchetal.[47]throughstressrelaxationexperiments.Here,the

(normalized)relaxationdatawerefittedbothwiththe

Quasilin-earViscoelastic(QLV)andtheSLSmodelstoevaluatethepercent

relaxationafter60sofload,thefirstresultinginabetterfitofthe

experimentaldata.Adecreaseofthepercentrelaxationfromday1

to3inallsampleswasobserved,thenstabilizingtoplateauvalues.

CMsonalignedsubstratesdisplayedgenerallyalowerrelaxation

thanonrandomcoating,sincetheactinfibresweremoreoriented,

thusbettercounteractingtheappliedstress.

Ina recent workby Robisonet al.[48],AFM contributedto

demonstratetheeffectofdetyrosinationonbucklingorslidingof

microtubulesduringcontractioninadultratventricularmyocytes,

wheremicrotubulesactasforcebearing structuresanchoredto

sarcomericZ-disksbydesmin. Inparticular,theSLS modelwas

usedtodescribetheelasticandviscouscomponentsasfunction

oftheindentationrate.Loweringthedetyrosinationlevel, both

elasticityand viscosityofCMs weresignificantlyreduced

com-paredtocontrols.Depletionofdesminexpressionstronglyreduced

cellstiffnessbecauseofthemissingconnectionbetween

detyrosi-natedmicrotubulesandsarcomeric Z-disks.On theotherhand,

ondesmin-depletedCMs,viscositydidnotvaryafterreductionof

detyrosinationlevels.

Stressrelaxationdatacanbeusedtopredicttherheological

behaviour of cells as function of frequency, assuming that the

imposeddeformationiswithinthelinearregime.Inthelinear

vis-coelastictheory,theBoltzmannsuperposition isapplicable and

therelaxationmoduluscanbeconsideredapredictiveconstituent

parameterofthemodelforanyarbitrarydeformationhistory[49].

RelaxationdatacanbedescribedusingtheGeneralizedMaxwell

model,namelyapurelyelasticelement(aspring)inparallelwith

Maxwellelements(aspringinserieswithadashpot).Considering

theintegralformofthelineargeneralizedviscoelasticmodeland

anoscillatingdeformationofangularfrequency␻,thestorage(E’)

andthelossmoduli(E”)arecalculatedas:

E(ω) =Ee+ni=1Ei ω 22 i 1+ω22 i (1)

Fig.4.Representativecurvesofstorage(E’,continuouslines)andloss(E”,dashed lines)modulusprofilesvs.theangularfrequency␻forNRVMsbearingamutation inthelamingene(N195K,redcurves)andinthenativeform(NT),usedascontrol (blackcurves).

E(ω) =n

i=1Ei1+ωωi22 i

(2)

whereEeistherelaxationmodulusatequilibrium(t→∞),nisthe

totalnumberofMaxwellelementsusedtofittherelaxation

pro-file,Eiand␶iaretheelasticmodulusandtherelaxationtimeofthe

Maxwellelementi.Thus,theelasticandviscouscontributionsof

themechanicalresponseareeasilyseparatedandcompared.Asan

example,weappliedthismodeltopredicttheviscoelasticresponse

ofNRVMsafterinfectionwithhumanmutantN195Klamin,using

thesameprotocolreportedin§3.3.Resultswerecomparedtothose

obtainedonnot-treatedsamples(NT).Cellsatphysiological

tem-peraturewereindentedonthenuclearregionwiththespherical

probepreviouslydescribed,at20%oftheirheight.Relaxationforce

datawereconvertedtomoduliandfittedwithamodelconsisting

ofonepureelasticelementinparallelwithtwoMaxwellelements,

whichdemonstratedabetterdescriptionoftheinitialpartofthe

curvethanasingleMaxwellmodel.Resultingstorageandloss

mod-uliarereportedinFig.4(original,unpublisheddata),whereahigher

elasticcontributionatbothlowandhighfrequencyisdisplayedfor

mutantcellscomparedtocontrols.Eventheviscouscontribution

forfrequenciesaround1rad/sismoremarkedformutantcells.

3.5. AFMquantificationofbeatingactivity

Monitoringthedeflectionofthecantileverpositionedona

beat-ingcardiomyocyte(oronaclusterofthem)givesinformationabout

contractileforce,frequencyandverticaldisplacementofthecell.

Tothebestofourknowledge,thefirstcharacterisationofbeating

profilewasperformedbyDomkeandco-authors[50],who

mea-suredtheheightchangeandtheverticaldeflectionduetoeach

pulse.ConsideringthatcontractionofadherentCMsisprimarily

a lateraldisplacement inducinga heightchange, Liuet al. [51]

suggestedthelateral(torsional)deflectionofthecantileverasa

morereliablesignaltomeasurecontractileactivity.Nonetheless,

mostof thereportedstudiesconsidered theverticaldeflection,

sincetheassociatedforcecanbeeasilycalculatedbymultiplying

thedeflectionsignalbythesensitivityandthespringconstantof

thecantilever.Changetal.[52]introducedtheshort-termFourier

transform to identify even small variations in thebeating

fre-quency,andsuggesteditsapplicationtodetectCMsdynamicsafter

drugadministration.

TheconfluencelevelofCMcultureisakeyparameteraffecting

thebeatingprofile:indeed,thefrequencywasshowntobemuch

moreregularonconfluentcultures thanonsub-confluentones,

whereastheeffectonthebeatingamplitudeseemscontroversial

(6)

Adeepercharacterisationofthecontractilebehaviourof

car-diomyocytes has been obtained coupling the AFM with other

techniques.Veryoften,theatomicforcemicroscopyismounted

oninvertedmicroscopes,inordertoperformsimultaneousoptical

andmechanicalinvestigationofthecells.Theintracellular

oscil-lationofCa2+ionscanbemonitoredloadingCMswitha proper

calciumsensitivemedium, as Ca2+plays a fundamental role in

contractionofthesarcomericunitsthatformthecontractile

appa-ratusofcardiomyocytes[53].TheaforementionedworkofLiuand

co-workers[51]demonstratedalinearrelationshipbetweenthe

torsionalforce and thecalcium flux intensity,whereas vertical

deflectiondidnotshowsuchdependence.Burridgeetal.[54]

syn-chronizedthemechanicalandfluorescentsignals,thusdescribing

thetime-dependencebetweencalciumfluxandforcegeneration.

AFMbeatingmeasurementwascombinedwithdigitalholographic

microscopyanalysisbyYueetal.[22],overcomingthelimitsin

resolutionthataffecttheclassicalopticalmethodsusedtomonitor

contraction.In2016,Tianandcolleagues[55]coupledtheAFMwith

amicroelectrodearray(MEA),thusproposinganovelandpowerful

methodtosimultaneouslycharacterisetheelectricaland

mechan-icalactivityofcontractileCMs.Although,somelimitationswere

identified,particularlythepresenceoffalsepeaksintheforceand

extracellularfieldpotentialprofilesproducedbycellclusters.These

falsepeakswereabsentwhenasingleCMwasdepositedonthe

MEA.

AFMhasbeenwidelyusedtoassesstheroleplayed by

spe-cific genesin the beatingactivity,as theirmutations areoften

associatedwithcardiomyopathies.Nguyenetal.[56]showedthat

theknock-downofthestromalinteractionmolecule1(STIM1),a

transmembraneproteinonthesarcoplasmicreticulumactingasa

Ca2+sensor,decreasedthebeatingregularityofHL-1cardiaccells.

Theinhibition of theprotein kinaseC ␧ isoform(PKC␧),which

isassociatedwithadecreasedphosphorylationoftroponinTin

ischaemicheartfailure,wasdemonstratedtoreducethe

contrac-tionamplitudeinneonatalratCMs[57].Mutationsinthecardiac

troponinTcanleadtodilatedcardiomyopathies,thusSunetal.

[58]studiedtheeffectsofapointmutationoftheTNNT2gene,

car-riedbyacohortofpatients.Authorsobtainedcardiomyocytesfrom

patient-specificiPSCsandstudiedthemusingAFM.DCM-derived

CMsexhibitedsimilarbeatingfrequencyanddurationcompared

tohealthydonors,butthecontractionforcewasweaker.Thiswas

restoredbyinducingtheoverexpressionofsarcoplasmicreticulum

Ca2+adenosinetriphosphatase(Serca2a).Liuetal.[31]compared

thebeatingprofilesofsingleiPSCandESCderivedcardiomyocytes:

despitethehighvariability,whichresultedlowerinCMsclusters,

thetwocelllinesexhibitedcomparablebeatingforce,while

iPSC-CMsdemonstrated a slightly higher beat duration and a lower

beatratethanESC-CMs.Aprotocoltoimprovethehomogeneity

ofembryoidbodies(EBs)toobtainbeatingcardiomyocytesboth

fromhumanESCsandiPSCswasproposedbyPesletal.[59].Evenin

thiscase,AFMmeasurementsofthebeatingprofileofEBs

demon-stratedcomparablebeatingforceinthetwomodels,whilethebeat

ratewashigherforiPSCsderivedCMs.Recently,thesamegroup

[60]proposedtheuseofEBscoupledtoanAFMcantileverasa

sen-sortoprobetheeffectsofdifferentenvironmentalconditions(i.e.

appliedforce,temperature,calciumlevelanddrugtreatments)on

beatingforceandrate.Authorssuggestedthisnovelbiosensoralso

forbiomechanicalcharacterisationofheartdiseasesanddrug

ther-apies,sinceEBsareclosertophysiologicalconditionsthansingle

CMson2Dcultures.

AFMstudieswereconductedtoevaluatealsoviabilityand

beat-ingactivityofCMsonsupportspurposelydesignedtodeliverthese

cells to theinjured cardiac tissue and repair it. Burridgeet al.

[54]usedAFMtoverifythatinteractionofiPSC-CMswithother

celltypesina3Dhydrogeldidnotinterferewiththecontractile

activity.Linandco-workers[61]investigatedtheeffectofsizeand

orientationofelectro-spunfibrouspatchesofgelatine-coated

poly-acrylonitrileonthebeatingfrequencyand forceofneonatalrat

myocytes.AuthorsfoundthatCMsonalignednanofibresbeatfaster

andstrongerthanthoseonrandomlyorientedones.Theco-culture

withendothelialcellsalsoincreasedthefrequencyandforceofthe

beating,whereastheuseofmicron-sizedfibresstronglyreduced

theadhesionandthebeatingforce,asnanofibreshavedimensions

closertonativecardiacextracellularmatrix.

Detectionofcardiomyocytecontractileactivitycanbealso

fruit-fullyusedtoevaluatetheeffectsand/orcytotoxicityofdrugsat

the single celllevel. Severalstudies demonstrated the

reliabil-ityofAFMinrecordingthechronotropic(variationoffrequency)

and/or theinotropic (variationof beatingforce) actions of

cer-tainsubstances,suggestingitsuseforpreclinicaltestsofcandidate

treatments.StudiesreportedintheliteratureuseddifferentCMs

models,concentrationsandadministrationapproaches,sothata

real quantification and comparison of the effects of each drug

onthecontractionforceandthebeatrateiscumbersome.Asa

generalobservation,drugsactivating␣1and␤1adrenergic

recep-torssuchasepinephrine(ornorepinephrine,ademethylatedform

ofepinephrine)ledtoanincreaseofboththebeatrateandthe

contractionforce[31,52,55].Thesameeffectwasproducedby

iso-proterenol[55,57,59,60],a␤receptoragonist,whichwasshownto

augmentboththebeatrateandcontractionforceafterinhibition

ofSer208phosphorylation[57],ortreatmentswith␤1receptor

blockers,suchasmetoprolol[59,60]or propranolol[55].

More-over,caffeineenhancedtheCa2+releasefromsarcomericreticulum

byactivationoftheRyR2pathway,resultinginafastincreaseof

thecontractionforce,followedbyaprogressivedecreaseand

lead-ingtohighlyirregularbeatfrequency(arrhythmia)[59,60].Other

testedblockingagentswereesmololhydrochlorideanddoxazosin

mesylate,actingonthe␤and␣adrenergicreceptors,respectively,

andleading toa decreaseofboththebeatrateand contraction

amplitude[52].Ibutilide,adrugusedtotreatarrhythmia,caused

anincreaseofbeatingfrequencyandareductionofthecontraction

force[51].

Aspreviouslystated,atomicforcemicroscopycanbeusedto

evaluatethetoxicityof drugsonsingleCMsand toidentifythe

bestadministrationstrategytominimizetheadverseeffects.For

instance,treatmentwithdoxorubicinwasdemonstratedto

signif-icantlyaffectthebeatingpropertiesofcardiomyocytes.Yueetal.

[22]provedanincreaseofthebeatdurationandaquick

intensifica-tionofthebeatingforceinmurinemyocytes,followedbyastrong

decrease.Meanwhile,Changetal.[52]foundhighirregularityand

reducedcontractileforceinchickenembryonicmyocytes.Inthe

firstcase,theactionofdexrazoxaneascardioprotectivedrugwas

proved,showingthatitsadministration30minbeforedoxorubicin

treatmentreducedthecardiotoxiceffects.IntheworkofChangand

colleagues[52],theantioxidantactionofvitaminCwasshownto

restorethecontractionforceofcardiomyocytes.

4. OtherapplicationsofAFMoncardiomyocytes

Beyondthealreadydiscussedassessmentofcontractileactivity,

AFMwasemployedtoinducecontractioninlivingcells,activating

theirmechano-sensitiveionchannels.ThiswasexploitedbyHe

etal.[62]todemonstratetheformationofmembranenanotubes

asatransportmechanismbetweenNRVMsandratfibroblaststhat

arenotstrictly connectedbygapjunctions. Usingsimultaneous

fluorescenceimaging,authorsshowedthattheCa2+signalfrom

induced contraction propagated through the membrane

nano-tubes,thusleadingtheconnectedcellstocontract.In2015,Galie

andco-workers[63]studiedtheeffectsofindentationdepthand

frequencyforAFMinducedcontractionon3Dsuspendedconstructs

(7)

10 D.Borinetal./SeminarsinCell&DevelopmentalBiology73(2018)4–12

(from1to3␮m)didnotchangeeitherthecontractionforceorthe

contractilevelocity,whichwasshowntoincreasewiththe

inden-tationrate(from0.5to2Hz).

Ossolaandcolleagues[64] exploitedhollowcantilevers

con-nectedwitha pressurecontrol system(FluidFM technology)to

developanAFM-basedpatch-clampdevice,thatcancharacterise

bothelectrophysiologicalandmechanical activityof contracting

CMs.ThissetuptookadvantagefromtheforcecontrolloopofAFM

foramorestablecouplingbetweenthehollowtipandthebeating

cellcomparedtothecommonpatchclamptechnique.The

repeata-bilityandthepotentialuseofthistechnologyasmicroinjectortool

wasdemonstrated,whilethelimitationscomingfromthelow

elec-tricalresistanceinthecell-tipcouplingwereaddressedforfuture

improvements.

Recently,Smolyakovetal.[65]optimizedtheapplicationofa

novelmultiparametricAFMmodeformorphologicaland

mechan-icalinvestigationoflivingandfixedadultmurinecardiomyocytes.

IntheclassicaltopologicalmappingwithAFM,theforce-volume

method is exploited, where each pixel is probed by a

force-deformationcurve.Thealternativetechniqueuseshighfrequency

oscillatingcantileversformultipleprobingonthesamepoint.Such

improvementallowshigherresolution,reducedacquisitiontime

andbettercontrastforcellularsubstructuresintermsofheight,

stiffness,adhesion(relatedtothesurfacechemistry)and

dissipa-tion(relatedbothtoviscousandchemicaleffects)comparedtothe

classicalforce-volumemethod.In thecited study,authorswere

abletoclearlycharacteriseevensubsarcolemmalstructures,such

asmitochondriaandsarcomericapparatus,identifyingbothZ-lines

andM-bands.

5. Conclusion

The interest in cardiovascular research is constantly

fos-teredbythestrikingamountofdeathscausedbycardiovascular

diseases, therefore new methods and approaches are being

pursued to better understand the pathophysiological

condi-tions of the heart, both at the macro- and microscopic

level.

Thepresentworkhasbeenfocusedmainlyonstudiesperformed

onsinglecellsandcellularclusters,andreviewedmostofthe

lit-eratureaboutcardiomyocytesinvestigationviaAFM,rangingfrom

thefirstworksonCMstopographytothemostrecentones

exploit-ingadvancednanomechanicalmapping.Reporteddataprovideda

thoroughinsightintocardiacphysiologicalandpathological

condi-tions,aswellastheeffectsoftherapeuticapproachesatthecellular

scale.

Nowadays, thetopics herebydiscussed areamong themost

pressing issues, and many open questions still require to be

answered.Researchersin thefieldcouldtakeadvantageof this

reviewandthepotentialofAFMtechniqueinordertotesttheir

hypotheses,achieveadeepercomprehensionofcardiacbehaviour

and,hopefully,findnewandeffectivetherapiesforcardiac

patholo-gies.

Conflictofintereststatement

Theauthorshavenoconflictofinteresttodeclare.

Fundings

Thisworkwassupportedbythe“FondationLeducq”,

Transat-lanticNetworkofExcellence(grantnumber14-CVD03).

Acknowledgements

AuthorsgratefullythankThomasLanzicherforhiscontribution

withtheplasticityindexdataonNRVMsandDr.Valentina

Mar-tinelliforprovidingtheNRVMsusedinthisstudy.

References

[1]G.Binnig,C.F.Quate,C.Gerber,Atomicforcemicroscope,Phys.Rev.Lett.56 (1986)930–933,http://dx.doi.org/10.1103/PhysRevLett.56.930.

[2]R.Benitez,J.L.Toca-herrera,Lookingatcellmechanicswithatomicforce microscopy:experimentandtheory,Microsc.Res.Tech.77(2014)947–958, http://dx.doi.org/10.1002/jemt.22419.

[3]C.D.Gillespie,C.Wigington,Y.Hong,Coronaryheartdiseaseandstroke deaths—UnitedStates,2009,CDChealDisparitiesInequalitiesReport—United States,vol.62,2013,pp.157–160https://www.cdc.gov/minorityhealth/ chdireport.html.

[4]D.P.Allison,N.P.Mortensen,C.J.Sullivan,M.J.Doktycz,Atomicforce microscopyofbiologicalsamples,WileyInterdiscip,Rev.Nanomed. Nanobiotechnol.2(2010)618–634,http://dx.doi.org/10.1002/wnan.104. [5]K.-C.Chang,Y.-W.Chiang,C.-H.Yang,J.-W.Liou,Atomicforcemicroscopyin

biologyandbiomedicine,TzuChiMed.J.24(2012)162–169,http://dx.doi. org/10.1016/j.tcmj.2012.08.002.

[6]C.Perez-Terzic,A.M.Gacy,R.Bortolon,P.P.Dzeja,M.Puceat,M.Jaconi,F.G. Prendergast,A.Terzic,Structuralplasticityofthecardiacnuclearpore complexinresponsetoregulatorsofnuclearimport,Circ.Res.84(1999) 1292–1301,http://dx.doi.org/10.1161/01.RES.84.11.1292.

[7]J.J.Davis,H.A.O.Hill,T.Powell,Highresolutionscanningforcemicroscopyof cardiacmyocytes,CellBiol.Int.25(2001)1271–1277,http://dx.doi.org/10. 1006/cbir.2001.0813.

[8]K.Kliche,M.Kuhn,U.Hillebrand,Y.Ludwig,C.Stock,H.Oberleithner,Direct aldosteroneactiononmousecardiomyocytesdetectedwithatomicforce microscopy,Cell.Physiol.Biochem.18(2006)265–274,http://dx.doi.org/10. 1159/000097673.

[9]H.Yang,Y.Liu,X.L.Lu,X.H.Li,H.G.Zhang,Transmembranetransportofthe G␣qproteincarboxylterminusimitationpolypeptideGCIP-27,Eur.J.Pharm. Sci.49(2013)791–799,http://dx.doi.org/10.1016/j.ejps.2013.05.028. [10]D.K.Lieu,J.Liu,C.Siu,G.P.McNerney,H.Tse,A.Abu-Khalil,T.Huser,R.A.Li,

Absenceoftransversetubulescontributestonon-uniformCa(2+)wavefronts inmouseandhumanembryonicstemcell–derivedcardiomyocytes,Stem CellsDev.18(2009)1493–1500,http://dx.doi.org/10.1089/scd.2009.0052. [11]E.Dague,G.Genet,V.Lachaize,C.Guilbeau-Frugier,J.Fauconnier,C.Mias,B.

Payré,L.Chopinet,D.Alsteens,S.Kasas,C.Severac,J.Thireau,C.Heymes,B. Honton,A.Lacampagne,A.Pathak,J.M.Sénard,C.Galés,Atomicforceand electronmicroscopic-basedstudyofsarcolemmalsurfaceofliving cardiomyocytesunveilsunexpectedmitochondrialshiftinheartfailure,J. Mol.Cell.Cardiol.74(2014)162–172,http://dx.doi.org/10.1016/j.yjmcc.2014. 05.006.

[12]L.Wang,T.Chen,X.Zhou,Q.Huang,C.Jin,Atomicforcemicroscopy observationoflipopolysaccharide-inducedcardiomyocytecytoskeleton reorganization,Micron51(2013)48–53,http://dx.doi.org/10.1016/j.micron. 2013.06.008.

[13]E.J.Wright,N.W.Hodson,M.J.Sherratt,M.Kassem,A.L.Lewis,C.Wallrapp,N. Malik,C.M.Holt,CombinedMSCandGLP-1therapymodulatescollagen remodelingandapoptosisfollowingmyocardialinfarction,StemCellsInt. 2016(2016)1–12,http://dx.doi.org/10.1155/2016/7357096.

[14]N.A.Burnham,R.J.Colton,Measuringthenanomechanicalpropertiesand surfaceforcesofmaterialsusinganatomicforcemicroscope,J.Vac.Sci. Technol.AVac.Surf.Film7(1989)2906–2913,http://dx.doi.org/10.1116/1. 576168.

[15]G.R.Fedorchak,A.Kaminski,J.Lammerding,Cellularmechanosensing:getting tothenucleusofitall,Prog.Biophys.Mol.Biol.115(2014)76–92,http://dx. doi.org/10.1016/j.pbiomolbio.2014.06.009.

[16]N.Gavara,Abeginner’sguidetoatomicforcemicroscopyprobingforcell mechanics,Microsc.Res.Tech.(2016)75–84,http://dx.doi.org/10.1002/jemt. 22776.

[17]S.G.Shroff,D.R.Saner,R.Lal,Dynamicmicromechanicalpropertiesofcultured ratatrialmyocytesmeasuredbyatomicforcemicroscopy,Am.J.Physiol.− CellPhysiol.269(1995)C286–292.

[18]X.Wu,Z.Sun,A.Foskett,J.P.Trzeciakowski,G.A.Meininger,M.Muthuchamy, Cardiomyocytecontractilestatusisassociatedwithdifferencesinfibronectin andintegrininteractions,Am.J.Physiol.HeartCirc.Physiol.298(2010) H2071–H2081,http://dx.doi.org/10.1152/ajpheart.01156.2009. [19]E.U.Azeloglu,K.D.Costa,Cross-bridgecyclinggivesrisetospatiotemporal

heterogeneityofdynamicsubcellularmechanicsincardiacmyocytesprobed withatomicforcemicroscopy,Am.J.Physiol.HeartCirc.Physiol.298(2010) H853–H860,http://dx.doi.org/10.1152/ajpheart.00427.2009.

(8)

[21]U.G.Hofmann,C.Rotsch,W.J.Parak,M.Radmacher,Investigatingthe cytoskeletonofchickencardiocyteswiththeatomicforcemicroscope,J. Struct.Biol.119(1997)84–91,http://dx.doi.org/10.1006/jsbi.1997.3868. [22]T.Yue,K.H.Park,B.E.Reese,H.Zhu,S.Lyon,J.Ma,P.J.Mohler,M.Zhang,

Quantifyingdrug-inducednanomechanicsandmechanicaleffectstosingle cardiomyocytesforoptimaldrugadministrationtominimizecardiotoxicity, Langmuir32(2016)1909–1919,http://dx.doi.org/10.1021/acs.langmuir. 5b04314.

[23]X.Shi,L.Qin,X.Zhang,K.He,C.Xiong,J.Fang,X.Fang,Y.Zhang,Elasticityof cardiaccellsonthepolymersubstrateswithdifferentstiffness:anatomic forcemicroscopystudy,Phys.Chem.Chem.Phys.13(2011)7540–7545, http://dx.doi.org/10.1039/c1cp20154a.

[24]J.R.Tangney,J.S.Chuang,M.S.Janssen,A.Krishnamurthy,P.Liao,M. Hoshijima,X.Wu,G.A.Meininger,M.Muthuchamy,A.Zemljic-Harpf,R.S. Ross,L.R.Frank,A.D.McCulloch,J.H.Omens,Novelroleforvinculinin ventricularmyocytemechanicsanddysfunction,Biophys.J.104(2013) 1623–1633,http://dx.doi.org/10.1016/j.bpj.2013.02.021.

[25]G.Genet,C.Guilbeau-Frugier,B.Honton,E.Dague,M.D.Schneider,C. Coatrieux,D.Calise,C.Cardin,C.Nieto,B.Payré,C.Dubroca,P.Marck,C. Heymes,A.Dubrac,D.Arvanitis,F.Despas,M.F.Altié,M.H.Seguelas,M.B. Delisle,A.Davy,J.M.Sénard,A.Pathak,C.Galés,Ephrin-B1isanovelspecific componentofthelateralmembraneofthecardiomyocyteandisessentialfor thestabilityofcardiactissuearchitecturecohesion,Circ.Res.110(2012) 688–700,http://dx.doi.org/10.1161/CIRCRESAHA.111.262451.

[26]S.C.Lieber,N.Aubry,J.Pain,G.Diaz,S.-J.Kim,S.F.Vatner,Agingincreases stiffnessofcardiacmyocytesmeasuredbyatomicforcemicroscopy nanoindentation,Am.J.Physiol.HeartCirc.Physiol.287(2004)H645–H651, http://dx.doi.org/10.1152/ajpheart.00564.2003.

[27]M.E.Nance,J.T.Whitfield,Y.Zhu,A.K.Gibson,L.M.Hanft,K.S.Campbell,G.A. Meininger,K.S.McDonald,S.S.Segal,T.L.Domeier,Attenuatedsarcomere lengtheningoftheagedmurineleftventricleobservedusingtwo-photon fluorescencemicroscopy,Am.J.Physiol.HeartCirc.Physiol.309(2015) H918–H925,http://dx.doi.org/10.1152/ajpheart.00315.2015.

[28]J.C.Benech,N.Benech,A.I.Zambrana,I.Rauschert,V.Bervejillo,N.Oddone,J.P. Damian,Diabetesincreasesstiffnessoflivecardiomyocytesmeasuredby atomicforcemicroscopynanoindentation,AJPCellPhysiol.307(2014) C910–C919,http://dx.doi.org/10.1152/ajpcell.00192.2013.

[29]T.Lanzicher,V.Martinelli,L.Puzzi,G.DelFavero,B.Codan,C.S.Long,L. Mestroni,M.R.G.Taylor,O.Sbaizero,ThecardiomyopathylaminA/CD192G mutationdisruptswhole-cellbiomechanicsincardiomyocytesasmeasured byatomicforcemicroscopyloading-unloadingcurveanalysis,Sci.Rep.5 (2015)13388,http://dx.doi.org/10.1038/srep13388.

[30]W.SumitaYoshikawa,K.Nakamura,D.Miura,J.Shimizu,K.Hashimoto,N. Kataoka,H.Toyota,H.Okuyama,T.Miyoshi,H.Morita,K.FukushimaKusano, T.Matsuo,M.Takaki,F.Kajiya,N.Yagi,T.Ohe,H.Ito,Increasedpassive stiffnessofcardiomyocytesinthetransversedirectionandresidualactinand myosincross-bridgeformationinhypertrophiedratheartsinducedby chronic␤-adrenergicstimulation,Circ.J.77(2013)741–748,http://dx.doi. org/10.1253/circj.CJ-12-0779.

[31]J.Liu,N.Sun,M.A.Bruce,J.C.Wu,M.J.Butte,Atomicforcemechanobiologyof pluripotentstemcell-derivedcardiomyocytes,PLoSOne7(2012)1–7,http:// dx.doi.org/10.1371/journal.pone.0037559.

[32]I.V.Ogneva,T.M.Mirzoev,N.S.Biryukov,O.M.Veselova,I.M.Larina,Structure andfunctionalcharacteristicsofrat’sleftventriclecardiomyocytesunder antiorthostaticsuspensionofvariousdurationandsubsequentreloading,J. Biomed.Biotechnol.2012(2012)1–11,http://dx.doi.org/10.1155/2012/ 659869.

[33]I.V.Ogneva,N.S.Biryukov,T.A.Leinsoo,I.M.Larina,Possibleroleof non-musclealpha-actininsinmusclecellmechanosensitivity,PLoSOne9 (2014),http://dx.doi.org/10.1371/journal.pone.0096395.

[34]I.V.Ogneva,V.Gnyubkin,N.Laroche,M.V.Maximova,I.M.Larina,L.Vico, Structureofthecorticalcytoskeletoninfibersofposturalmusclesand cardiomyocytesofmiceafter30-day2-gcentrifugation,J.Appl.Physiol.118 (2015)613–623,http://dx.doi.org/10.1152/japplphysiol.00812.2014. [35]V.Szuts,F.Ötvös,O.Bencsik,G.Váró,J.A.Jarabin,A.Kovács,L.Rovó,J.G.Kiss,

T.Szénási,A.Véha,A.Szekeres,C.Vágvölgy,K.Halasy,Z.Szegletes,Effectsof 6-epi-ophiobolinAonmechanicalandphysiologicalparametersof cardiomyocytesandonthereorganizationandamountsoftheirkv4.xion channels,ActaBiol.Szeged.60(2016)157–166.

[36]A.A.Soufivand,M.Navidbakhsh,M.Soleimani,IsitappropriatetoapplyHertz modeltodescribecardiacmyocytes’mechanicalpropertiesbyatomicforce microscopynanoindentation?MicroNanoLett.9(2014)153–156,http://dx. doi.org/10.1049/mnl.2014.0019.

[37]A.B.Mathur,A.M.Collinsworth,W.M.Reichert,W.E.Kraus,G.A.Truskey, Endothelial,cardiacmuscleandskeletalmuscleexhibitdifferentviscousand elasticpropertiesasdeterminedbyatomicforcemicroscopy,J.Biomech.34 (2001)1545–1553,http://dx.doi.org/10.1016/S0021-9290(01)00149-X. [38]J.H.Hoh,J.P.Cleveland,C.B.Prater,J.P.Revel,P.K.Hansma,Quantized

adhesiondetectedwiththeatomicforcemicroscope,J.Am.Chem.Soc.114 (1992)4917–4918,http://dx.doi.org/10.1021/ja00038a075.

[39]W.R.Bowen,N.Hilal,R.W.Lovitt,C.J.Wright,Directmeasurementoftheforce ofadhesionofasinglebiologicalcellusinganatomicforcemicroscope, ColloidsSurf.APhysicochem.Eng.Asp.136(1998)231–234,http://dx.doi. org/10.1016/S0927-7757(97)00243-4.

[40]O.Klymenko,J.Wiltowska-Zuber,M.Lekka,W.M.Kwiatek,Energydissipation intheAFMelasticitymeasurements,ActaPhys.Pol.A115(2009)548–551, http://dx.doi.org/10.12693/APhysPolA.115.548.

[41]A.N.Fernandes,X.Chen,C.A.Scotchford,J.Walker,D.M.Wells,C.J.Roberts, N.M.Everitt,Mechanicalpropertiesofepidermalcellsofwholelivingrootsof Arabidopsisthaliana:anatomicforcemicroscopystudy,Phys.Rev.E85 (2012)21916,http://dx.doi.org/10.1103/PhysRevE.85.021916.

[42]M.G.Mendez,D.Restle,P.A.Janmey,Vimentinenhancescellelasticbehavior andprotectsagainstcompressivestress,Biophys.J.107(2014)314–323, http://dx.doi.org/10.1016/j.bpj.2014.04.050.

[43]T.Lanzicher,V.Martinelli,C.S.Long,G.DelFavero,L.Puzzi,M.Borelli,L. Mestroni,M.R.G.Taylor,O.Sbaizero,AFMsingle-cellforcespectroscopylinks alterednuclearandcytoskeletalmechanicstodefectivecelladhesionin cardiacmyocyteswithanuclearlaminmutation,Nucleus6(2015)394–407, http://dx.doi.org/10.1080/19491034.2015.1084453.

[44]S.Moreno-Flores,R.Benitez,M.dMVivanco,J.L.Toca-Herrera,Stress relaxationandcreeponlivingcellswiththeatomicforcemicroscope:a meanstocalculateelasticmoduliandviscositiesofcellcomponents, Nanotechnology21(2010)445101,http://dx.doi.org/10.1088/0957-4484/21/ 44/445101.

[45]J.Alcaraz,L.Buscemi,M.Grabulosa,X.Trepat,B.Fabry,R.Farré,D.Navajas, Microrheologyofhumanlungepithelialcellsmeasuredbyatomicforce microscopy,Biophys.J.84(2003)2071–2079,http://dx.doi.org/10.1016/ S0006-3495(03)75014-0.

[46]B.A.Smith,B.Tolloczko,J.G.Martin,P.Grütter,Probingtheviscoelastic behaviorofculturedairwaysmoothmusclecellswithatomicforce microscopy:stiffeninginducedbycontractileagonist,Biophys.J.88(2005) 2994–3007,http://dx.doi.org/10.1529/biophysj.104.046649.

[47]S.Deitch,B.Z.Gao,D.Dean,Effectofmatrixoncardiomyocyteviscoelastic propertiesin2Dculture,Mol.Cell.Biomech.9(2012)227–249. [48]P.Robison,M.A.Caporizzo,H.Ahmadzadeh,A.I.Bogush,C.Y.Chen,K.B.

Margulies,V.B.Shenoy,B.L.Prosser,Detyrosinatedmicrotubulesbuckleand bearloadincontractingcardiomyocytes,Science352(2016)aaf0659,http:// dx.doi.org/10.1126/science.aaf0659.

[49]R.B.Bird,R.C.Armstrong,O.Hassager,FluidmechanicsDynamicsofPolymeric Liquids,vol.1,2nded.,Wiley-Interscience,NewYork,1987(Chapter6). [50]J.Domke,W.J.Parak,M.George,H.E.Gaub,M.Radmacher,Mappingthe

mechanicalpulseofsinglecardiomyocyteswiththeatomicforcemicroscope, Eur.Biophys.J.28(1999)179–186,http://dx.doi.org/10.1007/s002490050198. [51]Y.Liu,J.Feng,L.Shi,R.Niu,Q.Sun,H.Liu,J.Li,J.Guo,J.Zhu,D.Han,Insitu

mechanicalanalysisofcardiomyocytesatnanoscales,Nanoscale4(2012) 99–102,http://dx.doi.org/10.1039/C1NR11303H.

[52]W.-T.Chang,D.Yu,Y.-C.Lai,K.-Y.Lin,I.Liau,Characterizationofthe mechanodynamicresponseofcardiomyocyteswithatomicforcemicroscopy, Anal.Chem.85(2013)1395–1400,http://dx.doi.org/10.1021/ac3022532. [53]N.Frey,T.aMcKinsey,E.N.Olson,Decodingcalciumsignalsinvolvedin

cardiacgrowthandfunction,Nat.Med.6(2000)1221–1227,http://dx.doi. org/10.1038/81321.

[54]P.W.Burridge,S.A.Metzler,K.H.Nakayama,O.J.Abilez,C.S.Simmons,M.A. Bruce,Y.Matsuura,P.Kim,J.C.Wu,M.Butte,N.F.Huang,P.C.Yang, Multi-cellularinteractionssustainlong-termcontractilityofhuman pluripotentstemcell-derivedcardiomyocytes,Am.J.Transl.Res.6(2014) 724–735,http://dx.doi.org/10.1016/j.tem.2013.11.001.

[55]J.Tian,C.Tu,B.Huang,Y.Liang,J.Zhou,X.Ye,Studyoftheunionmethodof microelectrodearrayandAFMfortherecordingofelectromechanical activitiesinlivingcardiomyocytes,Eur.Biophys.J.(2016),http://dx.doi.org/ 10.1007/s00249-016-1192-4.

[56]N.Nguyen,M.Biet,É.Simard,É.Béliveau,N.Francoeur,G.Guillemette,R. Dumaine,M.Grandbois,G.Boulay,STIM1participatesinthecontractile rhythmicityofHL-1cellsbymoderatingT-typeCa2+channelactivity, Biochim.Biophys.Acta−Mol.CellRes.2013(1833)1294–1303,http://dx.doi. org/10.1016/j.bbamcr.2013.02.027.

[57]E.Dubois-Deruy,A.Belliard,P.Mulder,M.Bouvet,C.Smet-Nocca,S.Janel,F. Lafont,O.Beseme,P.Amouyel,V.Richard,F.Pinet,Interplaybetween troponinTphosphorylationandO-N-acetylglucosaminylationinischaemic heartfailure,Cardiovasc.Res.107(2015)56–65,http://dx.doi.org/10.1093/ cvr/cvv136.

[58]N.Sun,M.Yazawa,J.Liu,L.Han,V.Sanchez-Freire,O.J.Abilez,E.G.Navarrete, S.Hu,L.Wang,A.Lee,A.Pavlovic,S.Lin,R.Chen,R.J.Hajjar,M.P.Snyder,R.E. Dolmetsch,M.J.Butte,E.A.Ashley,M.T.Longaker,R.C.Robbins,J.C.Wu, Patient-specificinducedpluripotentstemcellsasamodelforfamilialdilated cardiomyopathy,Sci.Transl.Med.4(2012),http://dx.doi.org/10.1126/ scitranslmed.3003552(130ra47-130ra47).

[59]M.Pesl,I.Acimovic,J.Pribyl,R.Hezova,A.Vilotic,J.Fauconnier,J.Vrbsky,P. Kruzliak,P.Skladal,T.Kara,V.Rotrekl,A.Lacampagne,P.Dvorak,A.C.Meli, Forcedaggregationanddefinedfactorsallowhighlyuniform-sizedembryoid bodiesandfunctionalcardiomyocytesfromhumanembryonicandinduced pluripotentstemcells,HeartVessels29(2013)834–846,http://dx.doi.org/10. 1007/s00380-013-0436-9.

[60]M.Pesl,J.Pribyl,I.Acimovic,A.Vilotic,S.Jelinkova,A.Salykin,A.Lacampagne, P.Dvorak,A.C.Meli,P.Skladal,V.Rotrekl,Atomicforcemicroscopycombined withhumanpluripotentstemcellderivedcardiomyocytesforbiomechanical sensing,Biosens.Bioelectron.85(2016)751–757,http://dx.doi.org/10.1016/j. bios.2016.05.073.

(9)

12 D.Borinetal./SeminarsinCell&DevelopmentalBiology73(2018)4–12 Hsieh,Ananopatternedcell-seededcardiacpatchprevents

electro-uncouplingandimprovesthetherapeuticefficacyofcardiacrepair, Biomater.Sci.2(2014)567–580,http://dx.doi.org/10.1039/c3bm60289c. [62]K.He,X.Shi,X.Zhang,S.Dang,X.Ma,F.Liu,M.Xu,Z.Lv,D.Han,X.Fang,Y.

Zhang,Long-distanceintercellularconnectivitybetweencardiomyocytesand cardiofibroblastsmediatedbymembranenanotubes,Cardiovasc.Res.92 (2011)39–47,http://dx.doi.org/10.1093/cvr/cvr189.

[63]P.A.Galie,F.J.Byfield,C.S.Chen,J.Y.Kresh,P.A.Janmey,Mechanically stimulatedcontractionofengineeredcardiacconstructsusinga

microcantilever,IEEETrans.Biomed.Eng.62(2015)438–442,http://dx.doi. org/10.1109/tbme.2014.2357778.

[64]D.Ossola,M.Y.Amarouch,P.Behr,J.Vörös,H.Abriel,T.Zambelli, Force-controlledpatchclampofbeatingcardiaccells,NanoLett.15(2015) 1743–1750,http://dx.doi.org/10.1021/nl504438z.

Riferimenti

Documenti correlati

(A) Differential interference contrast (DIC) optical image of a GSC immobilized on a tipless cantilever brought into contact with a GASC cultured on glass coverslip coated

Through electrochemical impedance spectroscopy measurements on extended ssDNA self-assembled monolayers we followed in real-time the variation of capacitance, being able to

contenuti degli scambi verbali, gli atteggiamenti assunti da Filippo III, Poliperconte e i philoi del re in quella occasione. Il fine principale di questo lavoro è mettere

Anche dalle successive interviste con gli abitanti della valle, è emerso come i vincoli di parentela e la rete famigliare siano ritenuti alla base della coesione sociale e

Second, the capability of the approach to describe dispersionless correlation effects realistically is used to extract dispersion effects in time-dependent density

Low Germination Success in Phyteuma cordatum Balb and Empetrum hermaphroditum Hagerup Ivan Pace* and Paola Maria Chiavazza.. Department of Agricultural Forest and Food

The inclusion criteria were: (a) RCT or CCT; (b) the effects of a psychosocial intervention were investigated; (c) psychosocial interventions were compared with no psychosocial

Come è stato correttamente osservato, tuttavia, la giurispru- denza della Suprema Corte si è formata con riguardo a periodi di imposta anteriori al 2008, anno a partire dal quale