• Non ci sono risultati.

4 X k=1 cos(αk) &lt

N/A
N/A
Protected

Academic year: 2021

Condividi "4 X k=1 cos(αk) &lt"

Copied!
1
0
0

Testo completo

(1)

Problem 12204

(American Mathematical Monthly, Vol.127, October 2020) Proposed by F. Visescu (Romania).

Prove that the absolute value of the sum of the cosines of the four angles in a convex quadrilateral is less than1/2.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Let α1, α2, α3, α4be the four angles of the convex quadrilateral, we are going to show that

−1 2 <

4

X

k=1

cos(αk) < 1 2.

We have that α1+ α2+ α3+ α4 = 2π and we may assume that 0 < α1 ≤ α2 ≤ α3 ≤ α4 < π. It suffices to show that

4

X

k=1

cos(αk) <1

2. (1)

Indeed let βi = π − αi for i = 1, 2, 3, 4, then β1+ β2+ β3+ β4= 2π, 0 < β4≤ β3 ≤ β2 ≤ β1< π, and

4

X

k=1

cos(αk) =

4

X

k=1

cos(βk) <1

2 =⇒ −1 2 <

4

X

k=1

cos(αk) In order to prove (1) we distinguish four cases.

1) If α4≤ π/2 then α1= α2= α3= α4= π/2 andP4

k=1cos(αk) = 0 < 1/2.

2) If α3≤ π/2 < α4, since x → cos(x) is concave in [0, π/2], then by Jensen inequality,

4

X

k=1

cos(αk) ≤ 3 cos α1+ α2+ α3

3



+ cos(α4) = 3 cos 2π − α4 3



+ cos(α4)

< 3 cos 2π − π 3



+ cos(π) = 3

2 − 1 = 1 2 because α4→ 3 cos 2π−α3 4 + cos(α4) is stricly increasing in [π/2, π].

3) If α2≤ π/2 < α3then, again by Jensen inequality,

4

X

k=1

cos(αk) ≤ 2 cos α1+ α2

2



+ cos(α3) + cos(α4) = 2 cos 2π − (α3+ α4) 2



+ cos(α3) + cos(α4)

= −2 cos α3+ α4

2



+ cos(α3) + cos(α4) < −2 cos α3+ π 2



+ cos(α3) − 1

< −2 cos π/2 + π 2



+ 0 − 1 =√

2 − 1 < 1 2

because, since x → cos(x) is convex in [π/2, π] it follows that α4→ −2 cos α32 4+cos(α3)+cos(α4) is strictly increasing in [π/2, π], and α3→ −2 cos α32 + cos(α3) − 1 is strictly decreasing [π/2, π].

4) If α1≤ π/2 < α2then

4

X

k=1

cos(αk) = cos(α2) + cos(α3) + cos(α4) + cos(α2+ α3+ α4)

= 2 cos α2+ α3

2



cos α2− α3 2



+ 2 cos 2α4+ α2+ α3

2



cos α2+ α3

2



= 4 cos α2+ α3

2



cos α3+ α4

2



cos α4+ α2

2



< 0 < 1 2

because (α2+ α3)/2, (α3+ α4)/2, (α4+ α2)/2 ∈ (π/2, π).  Remark. 1/2 is the best constant: consider a convex quadrilateral with α1= α2= α3= π/3 + t and α4= π − 3t then lim

t→0+ 4

X

k=1

cos(αk) = 1/2.

Riferimenti

Documenti correlati

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,