Problem 11828
(American Mathematical Monthly, Vol.122, March 2015) Proposed by R. Tauraso (Italy).
Let n be a positive integer, and let z be a complex number that is not a kth root of unity for any k with 1 ≤ k ≤ n. Let S be the set of all lists (a1, . . . , an) of n nonnegative integers such that Pn
k=1kak= n. Prove that X
a∈S n
Y
k=1
1
ak!kak(1 − zk)ak =
n
Y
k=1
1 1 − zk. For example, for n = 3 we have
1
6(1 − z)3 + 1
2(1 − z)(1 − z2)+ 1
3(1 − z3) = 1
(1 − z)(1 − z2)(1 − z3).
Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.
First solution. We have that
F (z, t) :=X
n≥0
tn X
α1+2α2+···=n n
Y
k=1
1
αk!kαk(1 − zk)αk
=
n
Y
k=1
X
αk≥0
tkαk αk!kαk(1 − zk)αk
= Y
k≥1
exp
tk k(1 − zk)
= exp
X
k≥1
tk k(1 − zk)
= exp
X
j≥0
X
k≥1
(tzj)k k
=Y
j≥0
exp
X
k≥1
(tzj)k k
=Y
j≥0
exp
ln
1
1 − tzj
=Y
j≥0
1
1 − tzj = 1 1 − t
Y
j≥1
1 1 − tzj
Note that [tnzN]F (z, t) is the number of integer partitions of N with at most n parts because it is known that
[tnzN]Y
j≥1
1 1 − tzj
is the number of integer partitions of N with exactly n parts. On the other side,
G(z, t) :=X
n≥0
tn
n
Y
k=1
1 1 − zk
and [tnzN]G(z, t) is the number of integer partitions of N with at most n parts.
Hence F and G are equal and the identity is proved.
Second solution. It suffices to prove that
X
σ∈π(In) n
Y
k=1
1 1 −Qk
j=1xσ(j) = X
σ∈π(In) lσ
Y
k=1
1 1 −Q
j∈Ckxj
where σ ∈ π(In) is a permutation of In= {1, 2, . . . , n} which can be written as a product of disjoint cycles C1, C2, . . . , Clσ. The required identity follows by letting xj= z for j = 1, . . . , n.
We note that
n
Y
k=1
1 1 −Qk
j=1xσ(j) = X
a1≥a2≥···≥an≥0 n
Y
j=1
xaσ(j)j ,
and
lσ
Y
k=1
1 1 −Q
j∈Ckxj = X
a1≥0,a2≥0,··· ,alσ≥0 lσ
Y
k=1
Y
j∈Ck
xj
ak
.
Hence, if a1= a2= · · · = an then
[xa11xa22· · · xann] X
σ∈π(In) n
Y
k=1
1 1 −Qk
j=1xσ(j) = n! = [xa11x2a2· · · xann] X
σ∈π(In) lσ
Y
k=1
1 1 −Q
j∈Ckxj. In general,
[xa11xa22· · · xann] X
σ∈π(In) n
Y
k=1
1 1 −Qk
j=1xσ(j) =Y
i≥0
(|Ai|!)
where Ai= {j : aj= i} for i ≥ 0. By the above remark,
|Ai|! = [Y
j∈Ai
xajj] X
σi∈π(Ai) lσi
Y
k=1
1 1 −Q
j∈Ck,ixj
.
Therefore
Y
i≥0
(|Ai|!) =Y
i≥0
[Y
j∈Ai
xajj] X
σi∈π(Ai) lσi
Y
k=1
1 1 −Q
j∈Ck,ixj
= [xa11xa22· · · xann] X
σ∈π(In) lσ
Y
k=1
1 1 −Q
j∈Ckxj
where σ is the product of σi ∈ π(Ai) for i ≥ 0.