http://bruening.home.cern.ch/bruening/summer−school/HST−Lecture.pdf
trajectory stability storage rings
acceleration concepts
design parameters for the LHC Basic Accelerator Principles :
units and equations
Overview
collider concept
synchrotron radiation vacuum requirements
Overview and History:
• M.S. Livingston and E.M. McMillan, ’History of the Cyclotron’, Physics Today, 1959
• S. Weinberg, ’The Discovery of Subatomic Particles’, Scientific Ameri- can Library, 1983. (ISBN 0-7167-1488-4 or 0-7167-1489-2 [pbk]) (539.12 WEI)
• C. Pellegrini, ’The Development of Colliders’, AIP Press, 1995. (ISBN 1-56396-349-3) (93:621.384 PEL)
• P. Waloschek, ’The Infancy of Particle Accelerators’, DESY 94-039, 1994.
• R. Carrigan and W.P. Trower, ’Particles and Forces - At the Heart of the Matter’, Readings from Scientific American, W.H. Freeman and Company, 1990.
• Leon Lederman, ’The God Particle’, Delta books 1994
• Lillian Hoddeson (editor), ’The rise of the standard model: particle physics in the 1960s and 1970s’, Cambridge University Press, 1997
• S. Weinberg, ’Reflections on Big Science’, MIT Press, 1967 (5(04) WEI)
Introduction to Particle Accelerator Physics:
• J.J. Livingood, ’Principles of Cyclic Particle Accelerators’, D. Van Nos- trand Company, 1961
• M.S. Livingston and J.P. Blewett, ’Partticle Accelerators’, McGraw- Hill, 1962
• Mario Conte and William McKay, ’An Introduction to the Physics of Particle Accelerators’, Word Scientific, 1991
• H.Wiedemann, ’Particle Accelerator Physics’, Springer Verlag, 1993.
• CERN Accelerator School, General Accelerator Physics Course, CERN Report 85-19, 1985.
• CERN Accelerator School, Second General Accelerator Physics Course, CERN Report 87-10, 1987.
• CERN Accelerator School, Fourth General Accelerator Physics Course, CERN Report 91-04, 1991.
• M. Sands, ’The Physics of Electron Storage Rings’, SLAC-121, 1970.
• E.D. Courant and H.S. Snyder, ’Theory of the Alternating-Gradient Synchrotron’, Annals of Physics 3, 1-48 (1958).
• CERN Accelerator School, RF Engeneering for Particle Accelerators, CERN Report 92-03, 1992.
• CERN Accelerator School, 50 Years of Synchrotrons, CERN Report 97-04, 1997.
• E.J.N. Wilson, Accelerators for the Twenty-First Century - A Review, CERN Report 90-05, 1990.
Special Topics and Detailed Information:
• J.D. Jackson, ’Calssical Electrodynamics’, Wiley, New York, 1975.
• Lichtenberg and Lieberman, ’Regular and Stochastic Motion’, Applied Mathematical Sciences 38, Springer Verlag.
• A.W. Chao, ’Physics of Collective Beam Instabilities in High Energy Accelerators’, Wiley, New York 1993.
• M. Diens, M. Month and S. Turner, ’Frontiers of Particle Beams: In- tensity Limitations’, Springer-Verlag 1992, (ISBN 3-540-55250-2 or 0- 387-55250-2) (Hilton Head Island 1990) ’Physics of Collective Beam Instabilities in High Energy Accelerators’, Wiley, New York 1993.
• R.A. Carrigan, F.R. Huson and M. Month, ’The State of Particle Accel- erators and High Energy Physics’, American Institute of Physics New Yorkm 1982, (ISBN 0-88318-191-6) (AIP 92 1981) ’Physics of Collec- tive Beam Instabilities in High Energy Accelerators’, Wiley, New York 1993.
super conducting magnet technology R = 2784 meter
FODO lattice proton collider
2 in 1 magnet design
2835 bunche with 10 particles per bunch B = 8.38 T
high luminosity insertions beam screen
super conducting RF
cryo pump at 2K
11
Choices for the LHC
max earth: 0.3 * 10 Tesla
iron sarturation: 2 Tesla
−4
Stage I:
Nuclear Physics
1803:
+ 1896:
1896:
1906:
Dalton
M & P Currie Thomson
Rutherford
Electron Atom
Search for Elementary Particles
Particle Accelerators
Disintegration of Nuclei!
1911: Rutherford α+ N O + H+ Atoms can decay
Chronology:
Electron Nucleus
Stage II:
Particle Physics
Chronology (Theory):
E = mc2
Einstein
(Cosmic Rays)
Antimatter - Meson
π
Dirac Yukawa 1905:
1930:
1935:
Chronology (Experiments):
Anderson e
µ
+ Anderson
1937:
1932:
p-
π } ?
Acceleratorsmagnetic fields:
F
v
)
v x B E +
(
= Q * dp
dt
Acceleration Concepts
Lorentz Force:
Energy gain only due to E field!
Trajectory curvature due to B field!
B
1 Volt
0.51 MeV proton: 0.94 GeV
γ = 1/ 1 − ;β2 β = v/c
Total Particle Energy:
E = mc ; m = * m2 γ 0
Relativity:
keV, MeV, GeV, TeV 10 , 10 , 10 , 103 6 12 )
( 9
Units
Energy Gain:
e− E
(1.6 * 10 J)−19
1 eV
Common Units:
electron:
- +
e
-e :
-p
+:
Antimatter:
H + e H + e
2 e H + H + H + e H + e H + 2 e
2 2
2 +
+ +
+ -
- -
- - -
Particle Sources:
Cathode Rays Cathode Tube with H
Pair Production
high voltage unit
Electrostatic Fields
V = 200 kVmax
1928:
1932:
Cockroft + Walton p + Li 2 He
(Nobel Prize 1951)
capacitors U = U sin to ω
0 2Uo 4Uo 6Uo
diodes
Cascade Generator:
High Voltage Unit:
+
−
700kV (p) 800kV
target tube
acceleration ion source
source
Van de Graaf Generator
Single Unit:
V = 10 MVolt
max
channel
acceleration 50 kV
dc +
+ ++ +
+ + + + +
+ +
+ + + + + + +
+
+ +
+ 10 MV
conveyor belt
top terminal
evacuated
experiment spectrometer
magnet spraycomb charge
charge collector
ion
Circular Accelerator:
Time Varying Fields
E
beam
E beam
beam
E
Linear Acceleration:
bunched beam
long accelerator!
Resonator:
capacitor
AC generator
capacitor
coil
beam
cavity beam
cavity
f; Q; R
beam
E
e E
e t rot B = µεc
L = l
µ N A0 2
C = ε A d
0
Time Varying Fields
E = - 1 A
e e
c
E B
t
Q m
Bγ ω =
Q r = m
B γ ω
v
=
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111
B
injection
magnet
vacuum chamber
extraction / target RF cavity
0
0 0 0
Circular Accelerators
Synchrotron: R = const.
B = const.
(LHC/LEP: 11.3kHz)
Q r = m
B
γ v
R[meter]
p[GeV/c]
B[T] = 1 0.3
B = 8.38 T
L = 27000 meter arcs: L = 22200 meter R = 3500 meter
p = 7000 GeV/c
Bending and Focusing: R = 2784 meter
Why 8.4 Tesla?
LEP tunel:
Physics:
max earth: 0.3 * 10 Tesla
iron sarturation: 2 Tesla
−4
0
R = const.
B γ
Synchrotron:
P = R I
P = 78 MW / magnet B = 8.38 T
2
B I
8.4 T is at the limit of available technology!
I = 4500A; R = 1m ca. 500 magnets
LHC:
max I = 280000 A
superconducting technology!
ca. 500 magnets P > 39 GW
Power Consumption
B = 0.135 Tesla LEP:
Ω P = 20 kW / magnet P = 10 MW
gravitation:
g = 10 m s−2
∆ s = 18 mm ∆ t = 60 msec
660 Turns!
B
v F
v
B
x F
y
particle trajectory ideal orbit
B (y)x
Vertical Plane:
2
∆ s = g t1 ∆ 2
requires focusing!
Trajectory Stability
1
small vacuum chamber
high oscillation frequency
for a fixed energy F = −g y
efficient magnets
2 g
A g
small amplitudes
000000 000 111111 111
000000000000000 000000000000000 000000000000000 000000000000000 111111111111111 111111111111111 111111111111111 111111111111111
Strong Focusing
oscillator (spring):
Ω
strong focusing:
Quadrupole Focusing
Quadrupole Magnet B = −g yx
B = −g xy
R
N S
S N
Alternate Gradient Focusing
00000000 00000000 00000000 0000
11111111 11111111 11111111 1111
00000 00000 00000 00000 00000 00000
11111 11111 11111 11111 11111 11111
ω > ωβ 0
Idea: cut the arc sections in
elements defocusing
focusing and
defocusing in horizontal plane!
x
y
F = g x F = −g y
Q ; Q ; Q
y(s) = A sin( Q s + ) number of oscillations Q = turn
β( ) = β( )s + L s
β( )s Q = 1
2π
1 ds
2π
β L φ0
amplitude term due to injector
amplitude term due to focusing
sorage ring circumference
Tune:
Envelope Function:
Storage Ring
x y s
B L Q 2π
p = m
Q
0
B
0
γ
Q c 2π
r = v
E / c
−drift space for installation
−different types of magnets
−space for experiments etc for E >> E
B−field is not uniform:
−high magnetic field
−large packing factor ’F’
high beam energy requires:
Circular Accelerators
R = const.
uniform B−field:
B d l E =
realistic synchrotron:
D B F B
B
D
x = x + x0
dipole component
quadrupole
y
B = -g yx
B = -g x - g x
orbit error
y
B = -g yx
0
B = -g x
B F B D B
F
Closed Orbit
Orbit Offset in Quadrupole:
slow drift
moon seasons
civil engineering
power supplies calibration
civilisation
Sources for Orbit Errors
Alignment: +/− 0.1 mm
Ground motion
Energy error of particles Error in dipole strength
b)
π γ
t V
a)
f = h fRF rev
f = 1 2
q
m B
rev
E depends on orbit and magnetic field!
assume: L > design orbit
the orbit determines the particle energy!
Synchrotron:
energy increase
Equilibrium:
momentum increase
1 Q2 α
R
∆ = α ∆pR p α = 1γt2
momentum compaction factor:
increase particle energy
transition energy
E error depends on transition energy!
longer revolution time shorter revolution time velocity increase
Orbit Correction
place orbit corrector and BPM next to the main quadrupoles
vertical BPM and corrector next to QD
QF MB QD
BPM
HX
BPM
HV
aim at a local correction of the dipole error due to the quadrupole alignment errors
relative alignment of BPM and quadrupole?
horizontal BPM and corrector next to QF
minimise field errors
Orbit Stability
dipole error and Q = N:
Kick
watch out for fractional tunes!
watch out for integer tunes!
the perturbation adds up
field errors:
the perturbations add up for Q = 1/n
and avoid strong resonances!
changes
y s
avoid low order resonances!
x
h An+m+s strength:
and tune
00000000 00000000 00000000 11111111 11111111 11111111
n Q + m Q + r Q = p
limits for b
Q
Tune Diagram
resonances:
n x
Q y
0 0.2 0.4 0.6 0.8 1
0 0.2 0.4 0.6 0.8 1
Q x
Q y
0.2 0.22 0.24 0.26 0.28 0.3
0.2 0.22 0.24 0.26 0.28 0.3
particle energy
200 400 600 800 1000 500
1000 1500 2000
fixed target collider
ISR
Tevatron
Tevatron
GeV GeV
center of mass energy
SPS SppS
But:
CM p
+ +
−
1970 : −
e / e collider p / p collider
Collider Rings
fixed target physics 1960:
(bubble chamber)
0 2
cm 2
E
0
Collider: E = 2 E
E = 2 m c 1 + − 1 2 m c
1960 :
collision regions
collision point
anti−particles
long storage times
requires beam separation anti−particles hard to produce
two rings
beam−beam interaction
−
Features ( )
not all particles collide in one crossing
+
requires 2 beams:
/
ALICE
injection b1 collimation
machine protection
extraction
injection b2 LHCb
CMS TOTEM
ATLAS RF
beam2 beam1
IP3
IP8 IP5
IP4 IP6
IP2
IP1
LHC Layout
2 Ring Layout:
2−in−1 magnet design
beam cross−over in 4 IR’s
4 proton experiments + 1 ion experiment
IP7
−
e e+ −
Z
0 1985 SppS p p+
1990 LEP
Lepton versus Hadron Collider
+ −
( p / p )
elementary particles
multi particle collisions energy spread
well defined energy precision experiments
discovery potential
Example:
Leptons:
Hadrons:
( e / e )+ −
−2
00000 00000 00000 11111 11111 11111
N N
1 2
area A
interaction region
n N N f A
b 1 2 rev
00000 00000 00000 11111 11111 11111
[ L ] = cm s−1
σ
many bunches
small beam size
coupling; dispersion; hardware
Luminosity
N / sec = Lev
L =
high bunch current
beam−beam; collective effects
total current (RF); collective effects
00000000 0000 11111111 1111
b 1 2 rev
00000000 0000 11111111 1111
N N
1 2
area A
interaction region
n N N f A
Beam Size
Luminosity:
Limit:
aperture
magnet strength
β
x = sin( )A φ
L =
A = π β εLHC:
<β>arc= 80 meter = 0.5 meter
βIP
β
x = A sin( )φ
γ = 7000
accelerated charge emits electro−magnetic waves
bending plane
radiation fan in bending plane
<E > γ γ 3 ρ
γ 4 P ρ2
Electro−Magnetic Waves :
particle trajectory light cone
synchrotron
radio signal X−rays
Synchrotron Radiation
opening angle γ1
LEP: γ = 200000
LHC:
0.04
[km]
u
[keV]
c
[MW]
P
LEP 1
LHC LEP 2
X−rays
γ
UV light
−rays
Examples
LEP 2 LEP 1
[GeV]
E
45 100
3.1
[10 ]
N
12
4.7
U
[MeV]
260 3.1
90
LHC 7000 3.1 312
LEP2+ 312
4.7 3.1
110
30 1.2 2900
3900 44
715 952 0.007 0.005
ρ
equipment damage!
Bremsstrahlung + Coulomb Scattering
Vacuum
beam blow−up
particle loss
background in experiments
loss in luminosity!
LHC − Beam Parameter
Beam−Beam Interaction:
+
magnet quality aperture
∆
Q Nε
bquadrupole strength aperture+
β:
Synchrotron Radiation Beam Power
E = 300 MJ
= 120 kg TnT
P = 0.5 W/m n = 2835b
N
p2n
bL = ε β
f 2
rev
π L = 10 cm s
34 −2 −1Beam Size:
< 5 10−3
ε
N = 10
p
11
β
= 0.5 meter I = 0.5 Abeam
Circular Accelerator:
Time Varying Fields
E
beam
E beam
beam
E
Linear Acceleration:
bunched beam
long accelerator!
BEAM + ++ − − + + − − + + +
−
1MHz, 25kV oscillator
But: f < 7MHz (l = 21 meter)!
l = v T/2part
1.3MV mercury ions with 48kV Lawrance:
V
t AC Voltage:
50kV potassium ions 1924: Ising
1928: demonstrated by Wideroe
Drift Tubes
Symmetric line:
b) and d)
plus:
Rotation on
Time Varying Fields
= E
2
e
E t2e
c2
µε
∆
2 2e
Be
t2 = B µεc2∆
2c)
∆
* B = 0 d)∆
c
e
x B − = 0µε t
e
Ea)
∆
* E = 0 b)∆
c
e
x E + = 01
e
t Bx ( x V ) = ( V ) − V∆ ∆ ∆ ∆ ∆
Maxwell Equations without Sources
Wave equation:
ω ω
B = B e0
ik n x − t ik n x − t
k = 2 π µε λ
B = n x E0 0
No acceleration in the
direction of propagation!
E = E e0
Time Varying Fields
Plane Electro Magnetic Wave:
s
Problem:
v > c
phv
phShielding or change
I
E = 0 everywhere;z
e
ne
Bs
Boundary condition: = 0
B = 0 everywhere;z
Boundary condition: E = 0
n
λ 2
H mode01
E − E
wall currents displacement currents
Transverse Electric Waves (TE):
Transverse Magnetic Waves (TM):
Boundary Conditions
proton
BEAM + − − + + − − + + −
support
posts
l = v Tpart
(f = 200 MHz gives good tube size) Tubes are passive
Posts v = 0gr
Pre−accelerator for most acclelerators
Alvarez:
higher frequencies!
Resonance Tank
E axis H
beam
Short Section:
multi−cell
multi−passage
II
TM mode with longitudinal boundary;
Cavity Resonator:
Boundary Conditions
iris
But:
Concept of linear acceleration is limited by power of RF generator!
Not feasible before World War II
particle
beam path
III
v = vph
Boundary Conditions
Loaded Wave Guide: