• Non ci sono risultati.

The Interaction Between Sound and Food

N/A
N/A
Protected

Academic year: 2022

Condividi "The Interaction Between Sound and Food"

Copied!
101
0
0

Testo completo

(1)

Angelo Farina farina@unipr.it www.angelofarina.it

The Interaction Between Sound and Food

Cooperating with…

(2)

The Interaction Between Sound and Food

Three ways food and sound interact

1

TOC

CRUNCH “AARGH”

(3)

Food sound in marketing

2

(4)

Part 1

Testing food quality by listening at their sound

3

(5)

Testing food quality by listening at their sound

4

(6)

Testing food quality by listening at their sound

5

(7)

Testing food quality by listening at their sound

6

(8)

TEST FOR QUALITY CHECK OF SALAMI

TARGET

Feasibility study for a compact real time sound-analyzer to help

the expertizer in selecting defected pieces

(9)

PRELIMINARY TEST

(10)

20 HEALTHY PIECES (N) 20 CORRUPT PIECES (B) 20 CORRUPT PIECES (G)

“holed”: localized problem “fat”: diffuse problem

PROCEDURE

previously selected by an expertiser (@ half of seasoning)

``

``

``

``

(11)

20 HEALTHY PIECES (N) 20 CORRUPT PIECES (B) 20 CORRUPT PIECES (G)

“holed”: localized problem “fat”: diffuse problem

PROCEDURE

previously selected by an expertiser (@ half of seasoning)

``

``

``

``

CONDITION OF TESTS

NOISY ENVIRONMENT & SILENT ENVIRONMENT PINGING WITH FINGERS & USING INSTRUMENTED

HAMMER (Force Gauge)

(12)

0 10 20 30 40 50 60

58.5937 5 93.75 128.906 25 164.062 5 199.218 75 234.375 269.531 25 304.687 5 339.843 75 375 410.156 25 445.312 5 480.468 75 515.625 550.781 25 585.937 5 621.093 75 656.25 691.406 25 726.562 5 761.718 75 796.875 832.031 25 867.187 5 902.343 75 937.5 972.656 25 1007 .81 25 1042 .96 875 1078 .12 5 1113 .28 125 1148 .43 75 1183 .59 375 1218 .75 1253 .90 625 1289 .06 25 1324 .21 875 1359 .37 5 1394 .53 125 1429 .68 75 1464 .84 375 1500 1535 .15 625 1570 .31 25 1605 .46 875 1640 .62 5 1675 .78 125 1710 .93 75 1746 .09 375 1781 .25 1816 .40 625 1851 .56 25 1886 .71 875 1921 .87 5 1957 .03 125 1992 .18 75

Pinging - Avg- FFT - Silent room

N - AVG

B - AVG

G - AVG

(13)

0 10 20 30 40 50 60 70

58.5937 5 93.75 128.906 25 164.062 5 199.218 75 234.375 269.531 25 304.687 5 339.843 75 375 410.156 25 445.312 5 480.468 75 515.625 550.781 25 585.937 5 621.093 75 656.25 691.406 25 726.562 5 761.718 75 796.875 832.031 25 867.187 5 902.343 75 937.5 972.656 25 1007 .81 25 1042 .96 875 1078 .12 5 1113 .28 125 1148 .43 75 1183 .59 375 1218 .75 1253 .90 625 1289 .06 25 1324 .21 875 1359 .37 5 1394 .53 125 1429 .68 75 1464 .84 375 1500 1535 .15 625 1570 .31 25 1605 .46 875 1640 .62 5 1675 .78 125 1710 .93 75 1746 .09 375 1781 .25 1816 .40 625 1851 .56 25 1886 .71 875 1921 .87 5 1957 .03 125 1992 .18 75

Hammer - Avg - FFT - Silent room

N - AVG

B - AVG

G - AVG

(14)

99.5 100 100.5 101 101.5 102

58.5937 5 93.75 128.906 25 164.062 5 199.218 75 234.375 269.531 25 304.687 5 339.843 75 375 410.156 25 445.312 5 480.468 75 515.625 550.781 25 585.937 5 621.093 75 656.25 691.406 25 726.562 5 761.718 75 796.875 832.031 25 867.187 5 902.343 75 937.5 972.656 25 1007 .81 25 1042 .96 875 1078 .12 5 1113 .28 125 1148 .43 75 1183 .59 375 1218 .75 1253 .90 625 1289 .06 25 1324 .21 875 1359 .37 5 1394 .53 125 1429 .68 75 1464 .84 375 1500 1535 .15 625 1570 .31 25 1605 .46 875 1640 .62 5 1675 .78 125 1710 .93 75 1746 .09 375 1781 .25 1816 .40 625 1851 .56 25 1886 .71 875 1921 .87 5 1957 .03 125 1992 .18 75

Hammer - Avg - H1 - Silent room

N - AVG

B - AVG

G - AVG

(15)

0 10 20 30 40 50 60 70

58.5937 5 93.75 128.906 25 164.062 5 199.218 75 234.375 269.531 25 304.687 5 339.843 75 375 410.156 25 445.312 5 480.468 75 515.625 550.781 25 585.937 5 621.093 75 656.25 691.406 25 726.562 5 761.718 75 796.875 832.031 25 867.187 5 902.343 75 937.5 972.656 25 1007 .81 25 1042 .96 875 1078 .12 5 1113 .28 125 1148 .43 75 1183 .59 375 1218 .75 1253 .90 625 1289 .06 25 1324 .21 875 1359 .37 5 1394 .53 125 1429 .68 75 1464 .84 375 1500 1535 .15 625 1570 .31 25 1605 .46 875 1640 .62 5 1675 .78 125 1710 .93 75 1746 .09 375 1781 .25 1816 .40 625 1851 .56 25 1886 .71 875 1921 .87 5 1957 .03 125 1992 .18 75

Pinging - Avg - FFT - Noisy room

N - AVG

B - AVG

G - AVG

(16)

0 10 20 30 40 50 60 70

58.5937 5 93.75 128.906 25 164.062 5 199.218 75 234.375 269.531 25 304.687 5 339.843 75 375 410.156 25 445.312 5 480.468 75 515.625 550.781 25 585.937 5 621.093 75 656.25 691.406 25 726.562 5 761.718 75 796.875 832.031 25 867.187 5 902.343 75 937.5 972.656 25 1007 .81 25 1042 .96 875 1078 .12 5 1113 .28 125 1148 .43 75 1183 .59 375 1218 .75 1253 .90 625 1289 .06 25 1324 .21 875 1359 .37 5 1394 .53 125 1429 .68 75 1464 .84 375 1500 1535 .15 625 1570 .31 25 1605 .46 875 1640 .62 5 1675 .78 125 1710 .93 75 1746 .09 375 1781 .25 1816 .40 625 1851 .56 25 1886 .71 875 1921 .87 5 1957 .03 125 1992 .18 75

Hammer - Avg - FFT - Noisy room

N - AVG

B - AVG

G - AVG

(17)

99 99.5 100 100.5 101 101.5

58.5937 5 93.75 128.906 25 164.062 5 199.218 75 234.375 269.531 25 304.687 5 339.843 75 375 410.156 25 445.312 5 480.468 75 515.625 550.781 25 585.937 5 621.093 75 656.25 691.406 25 726.562 5 761.718 75 796.875 832.031 25 867.187 5 902.343 75 937.5 972.656 25 1007 .81 25 1042 .96 875 1078 .12 5 1113 .28 125 1148 .43 75 1183 .59 375 1218 .75 1253 .90 625 1289 .06 25 1324 .21 875 1359 .37 5 1394 .53 125 1429 .68 75 1464 .84 375 1500 1535 .15 625 1570 .31 25 1605 .46 875 1640 .62 5 1675 .78 125 1710 .93 75 1746 .09 375 1781 .25 1816 .40 625 1851 .56 25 1886 .71 875 1921 .87 5 1957 .03 125 1992 .18 75

Hammer - Avg - H1 - Noisy room

N - AVG

B - AVG

G - AVG

(18)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Index 1 - Silent room P-N-1

P-N-2 P-N-3 P-N-4 P-N-5 P-B-1 P-B-2 P-B-3 P-B-4 P-B-5 P-G-1 P-G-2 P-G-3 P-G-4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Index 1 - Noisy room P-N-1

P-N-2 P-N-3 P-N-4 P-N-5 P-B-1 P-B-2 P-B-3 P-B-4 P-B-5 P-G-1 P-G-2 P-G-3 P-G-4

IT IS POSSIBLE TO DISTINGUISH [B] EITHER IN SILENT OR IN NOISY ROOMS,

WHILE [G] CAN B DISCRIMINATED ONLY IN SILENT ROOM

(19)

Part 2

Evaluating human perception of food’s sound

18

(20)

Electronic Nose

Texture Rheology

SEM Mass Spectrometry HPLC Barilla Polysensorial

Laboratories

(21)

Scheme of the sound perception process

• Mechanical action over the product applied by teeth

• The product breaks, producing sound and vibrations

• These physical stimuli affect the human sensorial system, both through acoustical propagation and bone transmission

• The brain elaborates these stimuli, translating then

into perceptual sensations, and later on in emotions

(not analyzed yet)

(22)

Measurement of the fracture sound

• Instron texturimeter

• Bruel & Kjaer mic

• Soundproof enclosure

• Temporal/spectral analysis of

the waveform

(23)

Measurement of crunching sound of bread substitutes

• Binaural microphones

• Webcam recording

• 8 subjects

• 6 products, not pre-breaked (the first sound comes from breaking the product with front teeth).

• 3 pieces for each product

02/10/2018

(24)

Measurement of teeth vibrations

• Small piezoelectric transducers

• Glued on the side of teeth by means of a professional cement

• The signal is recorded as a

“guitar pickup” signal

(25)

Measurement of teeth vibrations

• 4 subjects

• 6 products tested

• Simultaneous recording of vibrations and sound

(through binaural microphones)

(26)

Signal analysis – steps:

• Segmentation in single crunches

• Spectral analysis in octave band

• Temporal analysis (A-weighted)

• Feature extraction: octave band levels, peakiness, impulsiveness, tonal ratios, decay time, etc.

• All the processing done within specially-developed plugins for Adobe Audition, initially developed for speech analysis and speech intelligibility

measurement

(27)

Aurora plugins

Spectral and temporal

analysis

(28)

Subjective questionnaires

• Compiled in a not-stressing, silent environment

• 8 subjects

• 6 products

• 10 attributes on 7-marks scale

• Collection of answers

through a specific software

tool

(29)

Questionnaire software

• Subjects forced to complete the whole form

• All the scales forced to linear

• No request of assessing

“pleasantness”

(30)

Statistical analysis

• PCA of objective results from measurements, both from microphones and from teeth sensor

• PCA of subjective responses to questionnaires

• PLS for analyzing the interrelation between objective data and subjective responses

• De-meaning was required both on objective and subjective data,

for removing inter-individual differences

(31)

Objective parameters PCA

• 1° Component: loudness

• 2° Component: peakiness

• 3° Component: spectral slope

(32)

Conclusions

• The bread substitute products appear reasonably differentiated both in objective and subjective

analysis

• Despite this, the correlation between objective and subjective data is generally weak.

• The weak point appears to be in the formulation

of the questionnaires and in the linguistic barrier

when describing crunching-related perceptions

(33)

Sensory Panel: crackers

(34)

Principal Component Analysis

(35)

• sound quality analysis of Barilla - Mulino Bianco crackers and bread substitutes

Fette Biscottate Classiche Spianelle

02/10/2018

(36)

Binaural recordings of crackers:

Gran Pavesi Salato MB Sfoglia Di Grano

Ricetta 14

(37)

Sound processing with Aurora plugins

Spectral Analysis

Temporal Analysis

(38)

Spettro Livello Sonoro

60 62 64 66 68 70 72 74 76 78 80

Lsg_250 Lsg_500 Lsg_1000 Lsg_2000 Lsg_4000 Lsg_8000 Lsg_16000

Livello Sonoro (dB)

Gran Pavesi Salato Sfoglia di Grano MB Ricetta 14

(39)

Spettro Tempo Decadimento EDT

0 5 10 15 20 25 30 35

Lsg_250 Lsg_500 Lsg_1000 Lsg_2000 Lsg_4000 Lsg_8000 Lsg_16000

EDT (s)

Gran Pavesi Salato Sfoglia di Grano MB Ricetta 14

(40)

Spettro Tempo Decadimento T20

0 5 10 15 20 25 30

Lsg_250 Lsg_500 Lsg_1000 Lsg_2000 Lsg_4000 Lsg_8000 Lsg_16000

Late Decay Time T20 (s)

Gran Pavesi Salato Sfoglia di Grano MB Ricetta 14

(41)

Spettro Center Time

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Lsg_250 Lsg_500 Lsg_1000 Lsg_2000 Lsg_4000 Lsg_8000 Lsg_16000

Center Time (ms)

Gran Pavesi Salato Sfoglia di Grano MB Ricetta 14

(42)

Test on potato chips:

Binaural microphone recordings

Three samples for every subject for every product

Analysis with Adobe Audition + Aurora software

(43)

Barilla Cipster

Pringles San Carlo

(44)

Principal Component Analysis

(45)

Livello Sonoro- Intensità

10,00 12,00 14,00 16,00 18,00 20,00 22,00 24,00

Barilla Chipster Pringles San Carlo

Prodotto

(46)

Come suona - Spectral slope

10,00 12,00 14,00 16,00 18,00 20,00 22,00 24,00

Barilla Chipster Pringles San Carlo

Prodotto

S lope ( d b/ oc t)

(47)

Barilla Cipster

Pringles San Carlo

20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00

SPL- 63

SPL- 125

SPL- 250

SPL- 500

SPL- 1000

SPL- 2000

SPL- 4000

SPL- 8000 Frequenza (Hz)

SPL (dB)

0.00 5.00 10.00 15.00 20.00 25.00

SPL- 63

SPL- 125

SPL- 250

SPL- 500

SPL- 1000

SPL- 2000

SPL- 4000

SPL- 8000 Frequenza (Hz)

SPL (dB)

Pringles - spettro primo morso

18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50

SPL- 63

SPL- 125

SPL- 250

SPL- 500

SPL- 1000

SPL- 2000

SPL- 4000

SPL- 8000 Frequenza (Hz)

SPL (dB)

San Carlo - spettro primo morso

0.00 5.00 10.00 15.00 20.00 25.00

SPL- 63

SPL- 125

SPL- 250

SPL- 500

SPL- 1000

SPL- 2000

SPL- 4000

SPL- 8000 Frequenza (Hz)

SPL (dB)

(48)

Peakness

15,00 17,00 19,00 21,00 23,00 25,00

Barilla Chipster Pringles San Carlo

Prodotto

(49)

10 12 14 16 18 20 22 24

Barilla Chipster Pringles San Carlo

Product

Sound duration during chewing

(50)

GOALS:

To develop analytical methods for biscuit texture, by means of advanced objective

instrumental methods correlating with sensory characteristics.

• Project #4 – biscuits for breakfast

(51)

Preference Mapping Study: study the Competitive set of Products (Mulino Bianco, Key Italian Competitors,

Private Labels).

Liking assessment of the same 20 products by 250 Consumers and Sensory Maps.

Statistical correlation of Sensory & Consumer data.

BACKGROUND

(52)

HL=593.66 F=132.36 p=0.0001 NDIMSIG=16 - 90 % Confidence Ellipses of PRODUCT Means

CAN2 16.34 %

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

CAN1 48.83 %

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 DUREZZA

FRIABIL

CROCCAN ARIOSO

MASTICAB ASCIUGA

GRATTA

INCASTRA SALIVAZ

ASTRING SABBPOLV

GRANULOS CEROSO

PATINA

APPICCIC

ATTGOLA PIZZICOR

SOLUBIL

Campagno

CerCosiG CiaBaloc

GLCerCol GLRisCol

Galetti

Grancere Macine

McVitDig

MegCosiG MisuInte

OroSaiwa Pavesini Primule

Rigoli

RisLatCo SZucMisu Taralluc

TheFrolG

ZeroGiG

Light in mouth

Hard & Crunchy Sandy & Crispy

C1

C2

ALL C3

(53)

Three Sensory Liking Segments

C1: light, airy in mouth, sandy and crispy texture C2: more crispy, sandy cookies and less soluble/air C3: slightly hard and crunchy

BACKGROUND

(54)

Developing new methods for texture evaluation:

Texture Analyser Acoustics methods

Methods

(55)

Mechanical properties derived by a fracture test

Texture Analyzer

(56)

Acoustical Parameters computed from binaural recordings (8 parameters in 10 frequencies)

Acoustics Methods

(57)

Campagnole vs Primule

Sound recording

(58)

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

D URE Z Z A FRI A BI L CR O C C A N ARI O SO M A STI C AB AS C IUG A G R A TTA INCA S T RA SALI V AZ ASTRI N G SAB BPO LV GR AN UL O S

Var ID (Primary)

Totali Biscotti.M3 (PCA-X) R2VX[2](cum)

Q2VX[2](cum)

SIMCA-P+ 11 - 22/05/2007 17.06.59

PCA Panel

(59)

-0,2 0,0 0,2 0,4 0,6 0,8 1,0

Car ic o Ener gi a R V 3350 R V 2800 R V 1400 RV 5 0 0 PV 5 0 0

Var ID (Primary)

PCA Instron

R2VX[3](cum)

Q2VX[3](cum)

SIMCA-P+ 11 - 30/01/2008 11.11.08

PCA Mechanical Parameters

(60)

Energy - Mechanical Parameters

Energy (J)

0 2 4 6 8 10 12

CAM P AG RI SOL A GRANCE MACI NE BA L O CC TARAL L MI SURA G A LLE T CEREAL DEFROL RI GOL I PRI M UL

E (J )

(61)

Sound Pressure Level- Acoustic Parameters

Livelli Sonori Medi - normalizzati - ad 1 kHz

76 78 80 82 84 86 88 90 92

C A M PAG RISOL A DE F R OL GA LLE T CEREAL TA R A L L BAL O C C GRA N CE RIGO LI M ISURA M A CINE PRI M UL

SPL (dB)

(62)

Separate Acoustic Parameters

Acoustical analysis was performed separately for the first bite, the

second bite and the following crunching

(63)

3 4 5 6 7 8 9

3 4 5 6 7 8 9

YVarPS(DUREZZA)

YPredPS[2](DUREZZA)

PLS-Frollini-Acustica-Instron.M3 (PLS), Durezza, PS-PLS-Frollini-Acustica-Instron YPredPS[Last comp.](DUREZZA)/YVarPS(DUREZZA)

Colored according to Obs ID (Prodotto)

RMSEP = ---

BALOCC

CAMPAG

CEREAL

DEFROL GALLET GRANCE MACINE

MISURA PRIMUL

RIGOLI

RISOLA

TARALL

SIMCA-P+ 11 - 22/01/2008 13.09.45

Predictivity from Mechanical Parameters- Hardness

Ideal C3

Ideal C2

Ideal C1

(64)

4 5 6 7 8 9

3 4 5 6 7 8 9 10 11

YPr e d [3 ]( DU R E Z Z A )

YVar(DUREZZA)

DUREZZA

BALOCC

CAMPAG

CEREAL

DEFROL GALLET

GRANCE

MACINE MISURA PRIMUL

RIGOLI

RISOLA

TARALL

SIMCA-P+ 11 - 14/02/2008 16.15.08

Predictivity from Acoustic Parameters - Hardness

Ideal C3

Ideal C2

Ideal C1

(65)

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 13

YVarPS(FRIABIL)

YPredPS[2](FRIABIL)

PLS-Frollini-Acustica-Instron.M2 (PLS), Friabilità, PS-PLS-Frollini-Acustica-Instron YPredPS[Last comp.](FRIABIL)/YVarPS(FRIABIL)

Colored according to Obs ID (Prodotto)

RMSEP = ---

BALOCC

CAMPAG

CEREAL DEFROL

GALLET

GRANCE

MACINE MISURA

PRIMUL

RIGOLI RISOLA

TARALL

SIMCA-P+ 11 - 22/01/2008 13.12.01

Predictivity from Mechanical Parameters- - Friability

Ideal C1

Ideal C2

Ideal C3

(66)

2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

YP re d [6 ]( F R IABI L )

YVar(FRIABIL)

FRIABILITA'

BALOCC

CAMPAG

CEREAL

DEFROL

GALLET

GRANCE

MACINE MISURA

PRIMUL RIGOLI

RISOLA TARALL

SIMCA-P+ 11 - 14/02/2008 16.21.15

Parameters - Friability

Ideal C1

Ideal C2

Ideal C3

(67)

2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

YPred[1](CROCCAN)

YVar(CROCCAN) PLS-Frollini-Instron.M4 (PLS), Croccantezza YVar(CROCCAN)/YPred[Comp. 1](CROCCAN) Colored according to Obs ID (Prodotto)

BALOCC

CAMPAG

CEREAL DEFROL

GALLET

GRANCE

MACINE MISURA

PRIMUL

RIGOLI

RISOLA

TARALL

SIMCA-P+ 11 - 30/01/2008 12.18.31

Parameters- - Croccantezza

Ideal C3

(68)

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11 12 13

Y P re d [3 ]( C R OC C A N )

YVar(CROCCAN)

CROCCANTEZZA

BALOCC

CAMPAG

CEREAL

DEFROL

GALLET

GRANCE

MACINE

MISURA

PRIMUL

RIGOLI

RISOLA

TARALL

SIMCA-P+ 11 - 14/02/2008 16.28.17

Parameters - Croccantezza

Ideal C3

(69)

From mechanical and acoustical parameters, we got good prediction of:

Hardness(Durezza) Crunchiness,

Crispiness (friabilità sabbpolv), airy in mouth (arioso)

Chewiness(masticabilità) drying in mouth (asciuga)

scratching the tongue (Gratta) toothpaking

make you salivate (salivazione) Grainy (granuloso)

Sticky (appiccica) Solubilità

Fragrance

Conclusion

(70)

Part 3

How the soundscape affects food consumption

69

(71)

Effect of acoustical environment on food consumption

70

(72)

Effect of acoustical environment on food consumption

71

(73)

Music for food at Yamaha Conference Dinner

72

First Course

1. Bambino Dallda 3'30

2. Bycyclette Yves Montant 4'02 3. Americano Renato Carosone 3'25 4. Au suivant Brel 3'05

5. Petit loup Pierre Perret 4'52 6. Madeleine Brel 4'23

7. El Pompopera Enrico Macias 4'22 8. Paris s eveille dutronc 4'45

9. Amants de st jean lucien delylle 4’20 10. Emmenez moi Aznavour 3"52 11. rdv avec vous Brassens 3'12 12. Padam Piaf 3'05

13. Nationale 7 trenet 2'55

14. Petit papiers Serge Gainsbourg 5'45 15. Tps de fleur Dalida 4'12

Second Course

1. Cour de loup Philippe Lafontaine 4'25 2 Parking des anges Marc Lavoine 4' 12 3. Voyage desireless 4'54

4. Sans contrefacon Mylene Farmer 4'15 5. La Gitane Felix Gray 5'10

6. Macumba mader 4'40 7. Cargo Axel Bauer 3'25

8. Démons de minuit Image 4'25

9. Plus pres des etoiles gold 5'10

(74)

Effect of acoustical environment on food consumption

73

• Does the environmental noise or background music affect food consumption?

• How to test different acoustic soundscapes while eating food in controlled conditions?

• Answer: perform sensory panels inside a virtual

acoustics room, where recorded soundscapes are

played, while everything else is under control

(75)

Urban Soundscapes:

Typical panoramic views of Parma

(76)

Urban Soundscapes:

Typical panoramic views of Parma

(77)

Urban Soundscapes:

Typical panoramic views of Parma

(78)

Urban Soundscapes:

Typical panoramic views of Parma

(79)

SOUND RECORDING EQUIPMENT

EIGENMIKE™ by MH Acoustics

• Spherical Array with 32 condenser capsules of good quality,  frequency response up to 20 kHz (14 mm each)

• Preamplifiers with digital gain control and A/D converters  inside the sphere, with ethernet interface

• Large windshield for outdoor operation with camera 

support

(80)

SOUND RECORDING EQUIPMENT

Cylindrical Arrays by AIDA and RAI

• Various sizes for different frequency ranges

• One model includes a 5Mpixels panoramic  mirror camera

• They operate with the same interface and  software as the Eigenmike

• The cylindrical shape favours horizontal  resolution

• They can be easily installed inside standard 

Rycote windshields

(81)

• Computer: Mac Book Pro 13”

• Software: Plogue Bidule, or our own 3DVMS  Recorder software

• 12V lead‐acid battery powering the EMIB and  the computer

SOUND RECORDING EQUIPMENT

(82)

• Works as front-end for Ecasound (partially customized...)

• Embedded gain control for the Eigenmike EM32

• VU meters with true peak indicators

• Output as W64 (WAV file with 64-bit header) for very long recordings (more than 2 32 samples)

(83)

Array of 8 GoPro cameras

• 1920x1440 pixels, 29.97 FPS, H264 x 8

• Autopano Video software for stitching

• Resulting resolution for mono: 5648x2824

• Resulting resolution for stereo: 5648x5648

Samsung Gear 360 camera

• 3840x1920 pixels, 29.97 FPS, H265

• Samsung S7 smartphone for stitching

• Resulting resolution for mono: 3840x1920

(84)

PROCESSING OF THE AUDIO RECORDINGS

VIRTUAL MICROPHONES

The 3DVMS processing technique was developed by the RAI Research Center in Turin and by AIDA, a spinoff of the University of Parma.

We don’t assume any theory for computing the filters: they are derived directly from a set of anechoic measurements.

m = 1…M microphones

d = 1…D directions

δ(t) δ(t)

A matrix of measured impulse response coefficients is formed and the matrix has to be numerically inverted

V = 16 virtual microphones

(85)

Method 1: 3rd Order AMBISONICS

The 32x16 A to B-format filter matrix has been calculated with Matlab starting from a measurement set of 362 directions in the anechoic room

The Ambisonics decoder is Rapture3d by Richard Furse

(86)

to spherical harmonics of orders 0, 1, 2 and 3:

Method 1: 3rd Order AMBISONICS

(87)

METHOD 2: DIRECT SYNTHESIS OF VIRTUAL MICROPHONES

Feed every speaker with a single (virtual) microphone.

• Define the (regular) layout of the V loudspeakers

• Create an ultradirective virtual microphone focused in the direction of every speaker

(88)

Our synthetic, “virtual” microphone is chosen  among a family of cardioid microphones of  various orders:

Where n is the directivity order of the 

microphone – normal cardioid microphones are  just 1 st ‐order…

4 th ‐order microphones are typically used for a  ring of 16 virtual cardioids

    n

P D  ,   0 . 5  0 . 5  cos(  )  cos(  )

87

METHOD 2: TARGET DIRECTIVITY

(89)

We impose that applying the filter matrix H to the measured impulse responses C, the system should behave as a virtual microphone with wanted directivity

Target function

A

M,v

A

1,v

A

2,v

m = 1…M microphones

d = 1…D directions

δ(t) δ(t) δ(t)

 

 

M

m

d m

d

m h p d D

c

1

, 1 ..

But in practice the result of the filtering will never be exactly equal to the prescribed directivity functions p d …..

h

1

(t) h

2

(t)

h

M

(t)

p d (t) c 1,d (t)

c 2,d (t)

c M,d (t)

(90)

We compare the results of the numerical inversion with the theoretical response of our target microphones for all the D directions, properly delayed, and sum the squared deviations for defining a total error:

The inversion of this matrix system is performed adding a regularization parameter  , in such a way to minimize the total error (Nelson/Kirkeby approach):

It revealed to be advantageous to employ a frequency-dependent regularization parameter  k .

P

     

  k MxD   k DxM k   MxM MxD DxV

k k

j k MxV

I C

C

Q C

H e

*

*

(91)

Spectral shape of the regularization parameterk

• At very low and very high frequencies it is advisable to increase the value of   .

H

L

mid

(92)

X-Volver VST plugin for realtime FIR filtering

• Realtime fast convolution of the 32 microphone signals with the matrix of 32x16 FIR filters

32x16 FIR Matrix:

• 2048 samples

• 48kHz – 24bit

(93)

Performed in a threated room equipped with:

• Desktop PC

• RME Hammerfall audio interface

• Apogee DA‐16x digital‐to‐analog converter

• N.2 QSC CX168 power amplifiers 

• N.16 Turbosound Impact 50 speakers

PLAYBACK SOFTWARE:

• Windows 7

• Plogue Bidule

• Rapture3D decoder by Richard Furse

• Novel alternative decoder based on Filippo Fazi’s theory

(94)

• Modifying the geometry of the loudspeaker array, it became possible to employ a simpler Ambisonics  decoder, with frequency‐independent coefficients, providing better reconstruction

Original Geometry

Modified Geometry

Playback system #1: 3D Ambisonics room

(95)

Wave Field Synthesis room, named “Sala Bianca”, in “Casa del  Suono” museum.

• Dimensions: 7.5 x 4.5 x 4.5 meters

• Number of speakers: 189

• 4 Optoma Full‐HD projectors

The Wave Field System is used for simulating 16 “virtual” speakers placed on a regular octagon at a distance  of 15 meters from the centre of the room.

A set of 16 4 th ‐order virtual cardioid microphones are synthesized for feeding these 16 virtual loudspeakers

(96)

RME MADIFACE XT

MAC PRO

3x RME ADI 648 24x Aphex 141 D/A 24x QSC CX 168 amplifiers

HP Prodesk 400 with Nvidia Quadro NV-510

4x Optoma GT1070X

Remote control of VLC over Ethernet

Playback system #2: the WFS «white room»

(97)

THE WFS SOFTWARE by Fons Adriaensen

Virtual Sources Mixer

WFS Realtime Monitoring

WFS system VU Meters

(98)

Remote Control

WFS Kickstarter

THE WFS SOFTWARE by Fons Adriaensen

(99)

RESULTS

• A complete workflow for panoramic audio and video recording / processing / playback has been set up and successfully employed

• The resulting quality has been judged perfectly satisfying by opera lovers

• The recordings can be released in various formats and are compatible with many platforms:

• Youtube (Ambix 1 st order, 4 channels)

• Facebook (TBE 2 nd order, 8 channels)

• Jump Inspector (Ambix 3 rd order, 16 channels)

• 3DVMS (WFS, ring of 16 “sound objects”, 4 th order)

• SPS (Spatial PCM Sampling, 32 channels/objects, 4 th order)

(100)

Food consumption tests inside the Ambisonics room with

different soundscapes

(101)

Effect of acoustical environment on food consumption CONCLUSIONS

100

• The research is still running

• some preliminary available results demonstrate some

modification in the subjective responses depending on the acoustical environment being recreated

• The lack of visual reproduction in the Ambisonics room is still limiting the illusion of “being there”

• So the research will transfer inside the White Room (WFS),

equipped with panoramic projectors, for a better immersive

experience

Riferimenti

Documenti correlati

The food supply chain connects three economically important sectors: the agricultural sector, the food processing industry and the distribution sector (wholesale and

Due to the substantial lack of studies on the role of religious communities in consumption contexts, a modified version of Sierra et al’s (2016) measure of

We characterised the subgame perfect equilibrium of a dynamic Cournot game with inverse hyperbolic demand and costly capacity accumulation, showing that the feedback

Right panel: Cumulative contributions to the low-energy deuteron photodisintegration cross section, obtained at LO, NLO, N2LO, and N3LO for models Ia ∗ , are compared to

Bladder cancer represents the 7th most common cancer in men and the 17th in women.1 and 2 Since the early 1960s, radical cystectomy and pelvic lymphadenectomy have been

287/90 (Linee Guida sulla modalità di applicazione dei criteri di quantificazione delle sanzioni amministrative pecuniarie irrogate dall’Autorità in

In the future Gordon (2016) does not exclude changes but he believes that they will occur more slowly and that new technologies will have less impact than in the