• Non ci sono risultati.

Convention Paper

N/A
N/A
Protected

Academic year: 2021

Condividi "Convention Paper "

Copied!
20
0
0

Testo completo

(1)

Convention Paper

Presented at the 120th Convention 2006 May 20–23 Paris, France

!

"# $% & ' & ' (#(")*%)%# + ,

A System for Head Related Impulse

Responses Rapid Measurement and Direct Customization

Simone Fontana1, Angelo Farina2 and Yves Grenier3

1Ecole Nationale Supérieure des Télécommunications, Paris, France fontana@tsi.enst.fr

2 Università di Parma, Parma, Italia farina@pcfarina.eng.unipr.it

3 Ecole Nationale Supérieure des Télécommunications, Paris, France grenier@tsi.enst.fr

ABSTRACT

!" # $ %

$ %

& % ' & &

% !" & % !" %

# ( ( % & &

& $ % !" #

$ % & % %

1. INTRODUCTION

' # %

% (

& ( % '

(2)

+ & & &

,

(

( (

- . / -

0 θ

θ φ

φ = (

& - %.

% /

0 - 1 (

2 #

'

$ # 1 #

# 1 #1

345( 6 '

( (

' * 2 &

' (

2 ' % (

$ $

% ' $

#1 #1

' ( % ' %.

%. + $

' $ #1 % % ' (

7% 2 # %

% % % '

% % 2 "

' 2

' $ %

!"

# % %

%. 8 - 8 395 8 :

; 3!5 % ( & #1 <=

=4 %. # % !"

&

#

$ '

# '

& ' & %. (

% ) : 3<5 #

'

' , %

$

% &

% ( % '

& ( % &

& % %. 345( 3=5

3>5 #1 %

% %

& "

3?5 - 8

#1

( $

#1

3@5 %

% & (

%

# %

% #1 &

$

% !"

& !" &

%

% % (

!" $ # %

%

( %

& * #1 %

#1 # & & $

1 2 3 %

% %

( %

&

# (

% & %

( % #1

& & #1 &

#1 %

& % ' % (

& & 2 / 1

2 3

# % $ ( %

%

(3)

&

2

%

# '

2 = + %. '

& !" $ #1 A ) 2 4=

'

%

$

& & & &

; & #1

% & &

& 2 % &

& & & (

& &

! #

% <( &

=( & &

$

& & # $

>

2. PRELIMINARY REMARKS 2.1. Time-frequency remarks

& % ( 9B 9BBBB $

# % %

( 1 #

& %

# (

% C

( ' A

D

& &

& #

( %

( ( %

; (

' &

4 & & =B $

<<4BB $ 9BB( 4BBB( 4BBBB

& 9BB

=B $ ' ( &

' %

100 101 102 103 104 105

−30

−20

−10 0 10 20 30 40 50 60 70

Frequency

20log|H(f)|

Effect of sampling time window at 50 Hz

200 samples 1000 samples 10000 samples

9 4BBB $

& & =B ' #

&

' %

& % ( %

2

100 101 102 103 104 105

−15

−10

−5 0 5 10 15 20 25 30 35

Frequency

20log|H(f)|

Effect of sampling time window at 1000 Hz

50 samples 100 samples

# %

& % &

& & % C

(4)

&

η =

! & 2 B

=B $ # &

B

!

=

& & %

)! ) & % ! )

0 500 1000 1500 2000 2500 3000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Samples Number

Frequency resolution: Bandwidth−3dB/f0

Frequency resolution at 50 Hz

D B = =B $

& & & 4B9<

2.2. Space-time remarks

( (

%

( 2 ( 2

(

' 2 E

' &

( % 2

# % 4 & ' '

% & % (

% 1

% 6 *

% %.

!" # $ %&

' ((

# $ %&

' ()

B =BBB 4 = >= ?4

4 9 F 49F 4<!

4 =B < < 4F< 949

9 = F 9=F 9@=

9 =B ?< !9< !=!

! @ @ !FB <9<

@ 9! = 4B!? 44!B

49 != ! 4==? 4?BB

4? =B 99B= 9<BB

! * +

# %'

2 % '

% % #

% % & &

& % 6 * ( $

& ( % & & ( & *

=

3. SYSTEM CHARACTERIZATION

# % # 8 :

: D 9< 9< 2 ( 2 %

% & 2

2 # # 8 : >

G >4=B & ( & > #

>BB 2 # %

: E 9BB9 % ( 2

) # &

# 8 :

# %

'

%

# & %

% 2 (

%

2 (

%

2 2 %

& ( % %

(5)

D

( & & 3F5(

%

# 8 : # 8 :

3.1. Electronic chain

$ &

2 C #

( < 9B < =B < >B : E9

2 4

# % %

% #

% <

101 102 103 104 105

−70

−60

−50

−40

−30

−20

−10 0 10 20

f

20log10|H(f)|

Tannoy System 600 transfer function

IRCAM Tranfer function Measured Tranfer function

( ! , -

- . - / 01 2

#

%

D %

# 8 : (

# ' %

#

2 ( % % &

: E9

# &

' % 8 : # .

% ( &

2 4=BB $(

% = D %

% 2 (

2 #

! ) ' =9 $

9BE $

# : E 9BB9 '

% ' (

& : E 9BB9 '

# & &

> D % ' : E 9BB9

' & , F )

=B $ : E9

4B9<

1 % ' ( & % '

! ) 4BB 4FBBB $

4BB $ ( =49

B = & &

& &

& =B $ & &

% # 2 (

4B9<

D $

% % ' #

& =( & &

<!B(

& ( &

! 9 ( & 2

4 <B ) 2

% , % %

2

102 103 104

−30

−25

−20

−15

−10

−5 0 5 10

f

20log10|H(f)|

MKE2002−MK2 measured transfer functions

MK2MK2002

! , -

- . -

(6)

0 200 400 600 800 1000 1200

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0 room impulse response

time

20log10abs(h(t))

3 $ - " / 01 2

3.2. Electroacoustic chain

& $

(

2 (

D

% C #( & < 9B < =B < >B

# & %

49 # >BB '

2 ?

4 $

' & (

& $ (

( ' 2

(

&

D &

!" (

2

# & @ D

% >(

( ( ( 2 (

' ( &

2 2

) 5

% 9 &

& 6 7 -

4 4 >< B B

9 4 >< B !B

! 4 >< 4= FB

< 4 >< 4=B >B

= 4 >< 4=B >B

> 4 >< 4= >B

! *

# & ,

44 ) F 1

9?B !FB

(7)

4B % &

2 > 2 (

& ' %

<BB( &

2 2

0 200 400 600 800 1000 1200

−100

−80

−60

−40

−20 0

Time

20*log10|h(t)|

Ancient Impulse Response

0 200 400 600 800 1000 1200

−100

−80

−60

−40

−20 0

Time

20*log10|h(t)|

Impulse Response comparison

New Impulse Response

8 9 5

# !FB

% & <B ) & &

0 200 400 600 800 1000 1200

−100

−80

−60

−40

−20 0

Time

20*log10|h(t)|

Room Impulse Response

0 200 400 600 800 1000 1200

−100

−80

−60

−40

−20 0

Time

20*log10|h(t)|

Impulse Response comparison

Room and structure Impulse Response

9 6

3.3. System calibration

% 2

% (

2

#

< ( &

! % 2

% (

102 103 104

−10

−8

−6

−4

−2 0 2 4 6 8

f

20*log10|H(f)|

Loudspeaker 1 and 4 Tranfer Functions To centre

Loudspeaker 1 Loudspeaker 2

& 6

#

' 2 ( &

44( #

2

% 2

' ( &

102 103 104

−10

−8

−6

−4

−2 0 2 4 6 8

f

20*log10|H(f)|

Loudspeaker 4 and 5: Tranfer function to centre

Loudspeaker 4 Loudspeaker 5

7 6

(8)

; 2 ' 49 ( &

2

> 2

' % %

2 &

& # %

3.3.1. System sensitivity to little variations of measurement points

D : E 9BB9 ' (

& 2 &

' % @ # & ( '

% # #

" #" & & $ (

B ' % $

$ ( % 4< H

I4 )

3.4. System characterization: conclusions

( % % '

>

% !=B '

# B = 4=B

$ $ '

=B

$ & &

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

−20

−15

−10

−5 0 5 10 15 20 25

loudspeaker

ITD(samples)

ITD in two different situations

:!; -

4. MEASUREMENT

# 2 & (

'

# 2

2 % 2

( : E 9BB9 4=

( . -

# >

2 # ' 2

= # & ' <<4BB $

> #

& # 8 :

'

& #1

: E 9BB9 ,

% &

( 2

%

* '

' 1

% 2 2 %

' 34B5

$ '

( %

H & : E 9BB9

2 >

#

(9)

#1 3F5 % '

$ 5. PROCESSING

# & 2 ,

( $

& & ( #1 $

4= #

# ' 9B

# &

' 2

& & ( &

& & > 9 4B9<

# $ $

5.1. Equalization

# %

'

* #

& 2 ' (

& J # & %

% )

%

# 4>

# %

( (

( . . 0

. = (

& . =. 5.'. . .4. ./(

& & &

( (

( & &

( (

( B

B .

.

. = (

( (

( B

B .

.

.4 = 4 4

D ( B

. B ( B

.4B

% B

% -

& & &

( B .

(

( B B

B

B . . .

. .

.5 ' 4 / (

!

" # $

" "

% & "

' # ( #") $

* + ( ", ( #") $

- "$ ) - "$.

+ #) /", ( #") $

01 23 4 4 21 1 4 4

!

- "$ ) - "$.

5 02 4 4

(10)

&

( . 67

( (

( . .

. 4

3 + -

( (

(

( . B . . 0

. = 67

D & 2 % #1( &

$ ( &

H ( % '

& D &

'

$ ( &

& $

# $ & (

3445( $

% &

$ D

1 D

' % '

$ H %

34<5

L K K 4B

L

4B 4B. 4B.

8 = ( &

.K $

D . ' ,

=

= 9 8 : 9

4

4 9

(

& E % & &

11# '

'

8 : =

# ' % % &

& & ( % &

5.1.1. Electro-acoustic chain equalization

# % & '

2 (

% 49 $

# % ( %

( %

( &

( $ '

: ' 2

&

M

D & & $ ( %

2 2 4 ( &

(

$ 2 D

$ $ &

$ '

( &

3495

# % * &

2 , '

%

% 6 *

( % '

(

#

( % ' % %

$

( & 3445(

E 2 % ' 1 34!5 #

' & &

&#) 6

&76

&#68 9 & 68 9 &/68 9

&:6

&#"6 θ

& # 68 9

θ

(11)

< / 02 < =/ 02

5 - B F! = @=

- B F< < @<

! *

# % & % !

2

4@ 4F - $ & 2

2 , '

$ % % '

2 ' %

# & 2 %

& 2 %

% '

' % % '

0 2 4 6 8 10 12

0 0.2 0.4 0.6 0.8 1 1.2 1.4

1.6 EQUALIZATION

loudspeaker

mean deviation

DRC perfect DRC smoothed

4 <

5.1.2. Separated equalization

D & $

& ( &

D 2 $

$

$

D % (

( %

2 &

4 ( 2

' B( ' (

'

#

& ' % ( % $

& ( %

B

& 2 H (

( (

(

% (

2 ( & '

'

0 2 4 6 8 10 12

0 1 2 3 4 5

6 EQUALIZATION

loudspeaker

max deviation

DRC perfect DRC smoothed

) < =

H % $

2 ( & % $ #

( & . $

2 4( % E 2 % '

$ (

& $ (

$

Electronic chain equalization

# % %

$

( % ' D 2

& 2 4

$ % &

2 &

(12)

> 2 # &

$ 2 4

# & % <

< / 02 < =/ 02

5 - B ?= 9 @

- B @= < =

! * (

D % ' $

& # % %

' '

% '

% ( %

0 2 4 6 8 10 12

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

1.3 EQUALIZATION

loudspeaker

mean deviation

DIRECT perfect DIRECT smoothed

8 <

Acoustic chain equalization

H $ ' %

% & $ (

' % $ # & %

$ ( &

#

% =

< / 02 < =/ 02

5 - B @9 ?=

- 4 49 4=

! * "

D & % &

$

0 2 4 6 8 10 12

1.5 2 2.5 3 3.5 4

4.5 EQUALIZATION

loudspeaker

max deviation

DIRECT perfect DIRECT smoothed

< =

D % ' $

% '

( $ ' &

$

# % % & %

$ ( % %

2 ' % (

' % ' 4B E $

D

% $ ( % (

% ' (

2 = (

$ (

' ( &

$ -

(13)

$

0 2 4 6 8 10 12

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

2 EQUALIZATION

loudspeaker

mean deviation

DIRECT perfect DIRECT smoothed

<

5.1.3. Conclusions

# 2 2 $

<B ( &

<BB ( '

4B ) # %

( % & &

H ( & &

!=B & &

% & 4=B $

0 2 4 6 8 10 12

0 2 4 6 8 10 12 14

16 EQUALIZATION

loudspeaker

max deviation

DIRECT perfect DIRECT smoothed

< =

% #

2

% '

2 & %. 2

& ' % & %.

& <BB $(

& & ' <B

% & 2

D 2 % '

!=B & & & <BB

$( 2 (

% &

& & . 2

!=B( &

0 200 400 600 800 1000 1200

−0.3

−0.2

−0.1 0 0.1 0.2 0.3 0.4

0.5 Esualized impulse response

samples

Amplitude

;

# & &

!=B 4B9< &

% &

<BB $( %

&

& &

5.2. FREQUENCY DEPENDENT WINDOWING 5.2.1. Hard Frequency Dependent Time

Windowing

; 2 9=

( &

F=( F?( 44( 4> 4? ( '

!> ) &

(14)

( &

>BBB $( & 2 9> (

&

H (

& & &

<BBB $( & 9? &

' (

& ' &

4B

Time

Frequency

0 0.005 0.01 0.015 0.02

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

( ;

D

4 !=B

(

Time

Frequency

0 0.005 0.01 0.015 0.02

0.6 0.8 1 1.2 1.4 1.6 1.8

2x 104

; - -+

& & & ( &

# 2 & & & 9@ ( &

' (

' & ( &

& &

& & !=B 4B9<( &

# 2 & & D &

& 9B '

3 ; +

# 1 "

# D & 1"#D

$ (

0 100 200 300 400 500 600 700 800 900 1000

−1

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8 1

response windowing

samples

amplitude

4 -

(15)

&

'

% D

2 ( &

6 * 1"#D H &% 2

( & ' % # 2 D &

' ( %

% & &

# ' %

9F( & &

1"#D

H & ' % & &

6 * 1"#D &

) + ;!>

5.2.2. Frequency-dependent-soft windowing

1"#D % ( & " %

% " $ 34<5

' 8 &

' (

2

" 8 % ( & &

& % & &

& # &

( '

% % %

% & & &

% , & & &

'

& & '

# % 2

& &

%% #

% 2 % 1"#D '

#

& & &

& & &

& & %

; 6

6 0 L

4

= +

D D & & ( 1 $

( N

% & &

8 > =

D & &

& &

D ' %

% ( &

9F

; 6

0 6 L

4

= + (

(16)

& 1

# 1"#D

!4

Time

Frequency

0 0.005 0.01 0.015 0.02

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

+ ;!>

6. HRIR DIRECT CUSTOMIZATION

# & % ' %

8 - 8 8 : ; # C # &

% % & #

$ '

$ %

6.1. CIPIC Database 6.1.1. Coordinates

# 8 - 8 % <?

%. # ' %

8 - 8 ; % A '

8 1 %. 9? '

% '

& (

?=B

#

!" # ' =B

' 9= $ ( & '

& !9

: +

θ $ 3@B( @B5(

3<=( <=5 +ϕ

' 3<=(9!B >9=5(

& = >9=

# ' *

% > & & ' C #

( 8 - 8

θθθθ,ϕϕϕϕ 5 ! θθθθ,ϕϕϕϕ ?:%:?

B(B B B

!B(B !B(B

FB(4= @B(4> @?=B

>B(49B >=( 4=4 @?=B

>B(49B >=(4=4(@?=B

>B(4= >=(4> @?=B

! * 3

% ( &

8 - 8 (

C # & .

3FB(4=5 ( %

$ ( =

D $ =

$ 4 @?=B '

6.1.2. Measurement and Compensation

# ' % &

% (

?8 %

(17)

#

> < )

2 ' % #

' % & & & 9BB & & < = ' 2

# ' % &

$ %

&

%

8 - 8 %

D % % &

K . 0

. .

. 0ϕθ2/-/2 = ϕθ ϕθ ϕθ

D . 0ϕθ2/-/2 1 #

8 - 8 (

K .

.

.ϕθ ϕθ = ϕθ2/-/2 % 8 - 8

2 8 - 8

8 - 8

$

6.2. IRCAM LISTEN Database

# 8 : ; # C %

=4 %. # ' %

8 : - 1

%. 9? '

' % ' & (

#

4B '

<=O PFBO 4=O ' #

' 9< 4 FBO '

& ( 4@?

# ' C #

6.2.1. Measurement and Compensation

# % & #

>BB 2 ( &

E & 1J!!9F % %

#

" $ ( & & & =49

& & ' %

; # C & % &

& 8 - 8( & % 8 :

K .

.

.ϕθ ϕθ = ϕθ/ 2 4

6.3. DIRECT Customization

& & % ( &

K .

.

.ϕθ ϕθ = ϕθ& C # %

" $ &

4 .

.

.ϕθ& = ϕθ2/-/2 = ϕθ/ 2 4 = (

& &

% $ '

; ' C

: % % D

"1# E "

$ &

!9 D % &

% #1 %

% & & #1 #

% % & &

9 4

4

=

= 9 8

8 . 0 . 0

1 9

H &

(

9 4

4

=

= 9 8

8 . 0 . 0

1 9 ψ

# % ( (

#

' '

(18)

% ' $ C

& & % &

( & $

& %

%. %

6.4. INTEGRATIVE Direct Customization

" $ ( %

#1 % ( !" #1

# (

#1 % #

#1 & #1

2 2 .

!" % & #1 ( %

#1 %

$ %

'

= ( $

& #1 &

& ( ,

# & % #1

H ( 9 #1 % (

( &

% %

$ ( &

& # &

% ( & % #

& ' % 6 * # (

$ % ( $

%

; ' #1 &

( )( &

% '

#1 ) $ % D

& ,

. 0 .

. 0 = ϕθ (

. 0 .

. 0 = ϕθ Q4,C

# ' % )

4 . 0 .ϕθ

ϕ =

;

#1 & %

. . 0 .

ϕϑ

ϕ = ϕϑ

=

Φ (

. 0 .

. 0 Φ = ϕϑ

$

; ;

0 2 $

; ; 0

2

<

=

= & 1

&

6

4 4 4

4

=

= & 1

&

6

4 9 9

4

=

= & 8

8 1

&

6

4

4

=

= & 4

4 1

&

6

4

4

; ;

; ;

; ;

( #( :(

8 86

=

(19)

D Φ % $ , Φ

% $ % 2 & %

% %

D ' Φ

( %

2

' % ! # %

% $ ( &

=

Φ &

& 4

4 ϕ

( &

$

7. CONCLUSIONS AND FUTURE WORKS

#

$ #

' % % &

#

( $

& & % %

%

# & $

' B F< < @< )

' (

$ & (

B ?= 9 @ ) $

& &

# ' 2 %

' %

( '

% % ; $

$ ' %

' & < %.

#

' $ % %

& 2 & &

& ' %. (

#

2 & ,

4 # ' $

9 # ' &

! # ' $ (

%

% 2 % % 2 &

$ 8. REFERENCES

345" C R 2 ( " & ( ; " ' (

@? * $ ; A( - %##%

/ 2 1

E ( ( 9 =( 9BB9

395S $( H " ( " : # 8

' ( @!- ?:%:? "! ; * A,-

%##( / 6

- FF

4B9( : 2 : ( C & - $( CG(

H 94 9<( 9BB4

3!5 ,77 7 7 7 7

3<5) E $( @0 -

7 - + :

" B, ( 44B =

C ' % 9BB4

3=5 8 : % 2 ( : RH (

@% - - ,

7

A, ( 4B@ > ( " % 9BBB 3>58 ) & ( H " @$

0 - A, #

( > = ( % 4FF@

3?58 ( -; ( ; ( 8 ( 8 (

* 7 7

- A, - 1

- 8 : ( 9BBB

3@58 1 ( G 8 ; ( @9 - +

" +! +;

& A(

4F( 4<4 4=? 9BB!

3F5 1 ( @

: " ; -

! - A, 4@B 8 ' ( 9BBB

1 % 4F99( - ( 1

(20)

34B5" ( : ( @

- - - A( (

4BB 4 ( 4FF>

3445- $ ( C : . ( @C

+9 7 - $

" A, ( <@ < ( 9BBB(

3495H E 2 % ( - % 2( 1 ( @

; 7 , D ;

" A( T

34!5 ,77&&& 7 7

34<5 ,77 7

Riferimenti

Documenti correlati

We have implemented a technique that is based on a throat-activated microphone and it is able to find the effective level of a real speaker’s voice inside a noisy space in realistic

PanAmbio 4.1 is a surround system where two Stereo Dipoles, are positioned around the listener, one in the front and the other in the rear [7], like showed in Figure 5.. This

Binaural and stereophonic (O.R.T.F.) room impulse responses, which had been recorded in five concert auditoria, were used in this study to test the spatial audio quality of

The listening test points out the importance of taking into account auditory capability of theatergoers for an accurate evaluation of theaters, concert hall and

The method chosen, based on an exponential sweep test signal with aperiodic deconvolution, provides a good answer to three above problems: the noise rejection is better than with

The use of Eigenmike coupled with virtual microphones methodology allowed to inspect the sound field inside a car’s cabin with higher spatial resolution compared with

If the source is placed on the stage (Figure 5) the polar plots show that the first reflection comes from the back of the stage after 40 ms from the direct sound; if the source is

The “Urban Sounds” project, born from a cooperation of the Industrial Engineering Department - University of Parma with the municipal institution La Casa della Musica, aims to