• Non ci sono risultati.

Matricola __________________ Nome _____________________ Cognome __________________

N/A
N/A
Protected

Academic year: 2021

Condividi "Matricola __________________ Nome _____________________ Cognome __________________"

Copied!
2
0
0

Testo completo

(1)

Università degli Studi di Udine

Corsi di laurea in Ingegneria Elettronica e Ingegneria Gestionale Architettura dei calcolatori / Fondamenti di Informatica II 23 settembre 2014 - Prova scritta

Matricola __________________

Nome _____________________

Cognome __________________

ISTRUZIONI (da leggere attentamente)

1) Lo studente è tenuto a scrivere, correggere, compilare ed eseguire su computer (a casa o in laboratorio) gli esercizi di programmazione prima della prova orale. Alla prova orale lo studente deve portare una memoria USB disk contenente i sorgenti dei programmi corretti e le stampe dei relativi file.

2) Non è consentito l’uso di libri, appunti, calcolatrici, telefoni cellulari.

3) Rispondere sinteticamente negli spazi di fianco o seguenti le domande, oppure sul retro del foglio.

1. (3 punti) Si eseguano le seguenti operazioni utilizzando la rappresentazione in complemento a 2 su 8 bit. Si scrivano i risultati in esadecimale e si indichino le eventuali condizioni di overflow. Riportare tutti i passaggi effettuati.

FD

h

+ AA

h

= _____

h

[ ] overflow

-64

10

- 64

10

= _____

h

[ ] overflow

2. (3 punti) In un sistema di trasmissione che fa uso di codici di Hamming a 1 bit viene ricevuta la parola 00111001000

2

. 1) è corretta?

2) se no, qual è il valore corretto della parola?

(scrivere tutti i passaggi necessari all’elaborazione della risposta)

3. (2 punti) Completare:

Dato un codice con distanza di Hamming pari a 7, è possibile rilevare un massimo di ________ bit errati e correggere un massimo di ______ bit errati.

Si consideri la libreria in linguaggio C per manipolare file bitmap vista a lezione, così definita:

typedef unsigned char byte;

typedef unsigned short int word;

typedef unsigned long int dword;

#define BMPFILETYPE 0x4D42

typedef struct tagCOLORTRIPLE {

byte blue;

byte green;

byte red;

} COLORTRIPLE;

typedef struct tagFILEHEADER {

word ImageFileType;

dword FileSize;

word Reserved1;

word Reserved2;

dword ImageDataOffset;

} FILEHEADER;

typedef struct tagBMPHEADER {

dword HeaderSize;

dword ImageWidth;

dword ImageHeight;

word NumberOfImagePlanes;

word BitsPerPixel;

dword CompressionMethod;

dword SizeOfBitmap;

dword HorizonalResolution;

dword VerticalResolution;

dword NumberOfColorsUsed;

dword

NumberOfSignificantColors;

} BMPHEADER;

typedef struct tagBITMAP {

dword width;

dword height;

COLORTRIPLE *pixel;

FILEHEADER fileheader;

BMPHEADER bmpheader;

} BITMAP;

#define PIXEL(image, row, column) \ image.pixel [(row( * image.width +

(column)]

BITMAP ReadBitmap (FILE *fp);

void WriteBitmap (BITMAP bitmap, FILE *fp);

BITMAP CreateEmptyBitmap

(dword height, dword width);

void ReleaseBitmapData (BITMAP *bitmap);

4. (10 punti) Una semplice tecnica per creare ombreggiature in un’immagine o enfatizzare quelle esistenti consiste nell’aumentare la luminosità dei pixel che sono adiacenti, in una data direzione, a un pixel meno luminoso.

Si scriva un programma in linguaggio C che riceva sulla riga di comando il nome di un file .BMP di ingresso, il nome di un file .BMP di uscita e un numero K. Il programma deve copiare nel file di uscita l’immagine di ingresso

modificandola come sopra descritto, aumentando di un valore percentuale pari a K la luminosità di ogni pixel alla cui destra compare un pixel meno luminoso. Si veda l’esempio nel riquadro a lato (K=40).

(svolgere sul retro)

Immagine originale Immagine modificata

(2)

Un elaboratore (il modello didattico SimCPU visto a lezione) dispone di CPU (a 16 bit) con 16 registri di uso generale (R0, R1, ..., R15) più il Program Counter, l’Instruction Register, lo Stack Pointer e 4 flag Z (zero), N (negative), C (carry) e V (overflow). Si ricorda che il linguaggio assembler di tale elaboratore dispone delle seguenti istruzioni:

5. La seguente funzione riceve in ingresso una stringa (rappresentata nello stesso formato del linguaggio C) il cui indirizzo è contenuto, al momento della chiamata, nel registro R1 e restituisce un valore nel registro R0.

A. (3 punti) Si decodifichi il linguaggio macchina traducendolo in linguaggio assembly.

F0 | FNZ: LDBI R15 30 ; codice ASCII 11 | ; del carattere '0' 30 |

00 | LDWI R0 0 10 |

00 | 00 |

21 | LOOP: ___________________

31 |

0C | ______________________________

C2 |

10 | ______________________________

48 |

00 | ______________________________

4A |

F2 | ______________________________

41 |

02 | ______________________________

C2 |

00 | ______________________________

48 |

F0 | ______________________________

C1 |

00 | END: RET C9 |

B. (2 punti) Che valore restituisce la funzione se la stringa di ingresso contiene “110”?

C. (2 punti) Cosa calcola, in generale, la funzione?

6. (2 punti) Dove risiede il page file?

[ ] nella CPU [ ] nella MMU

[ ] nella memoria centrale [ ] nella memoria di massa [ ] nella RAM

[ ] nella ROM

6. (3 punti) Nel seguente foglio elettronico, la cella B1 contiene l’espressione =IF(A1>A$1+1; A1+1; 0) , che viene copiata nel range di celle B1:C5. Si scrivano i valori che vengono visualizzati in tali celle.

assembly inst. name machine code action

LDWI d X load word 00010000dddd0000 DATA(16) d <- X LDWA d A load word 00100000dddd0000 ADDR(16) d <- mem[A]

LDWR d a load word 00110000ddddaaaa d <- mem[a]

LDBI d X load byte 00010001dddd0000 DATA(8) d <- X LDBA d A load byte 00100001dddd0000 ADDR(16) d <- mem[A]

LDBR d a load byte 00110001ddddaaaa d <- mem[a]

STWA s A store word 00100010ssss0000 ADDR(16) mem[A] <- s STWR s a store word 00110010ssssaaaa mem[a] <- s STBA s A store byte 00100011ssss0000 ADDR(16) mem[A] <- s STBR s a store byte 00110011ssssaaaa mem[a] <- s MV s d move 00000100ssssdddd d <- s PUSH s push 00001000ssss0000 push (s) POP d pop 00001001dddd0000 d <- pop () SPRD d read SP 00001101ssss0000 d <- SP SPWR s write SP 00001110ssss0000 SP <- s

ADD s d add 01000000ssssdddd d <- d + s SUB s d subtract 01000001ssssdddd d <- d - s NOT r bitwise NOT 01000010rrrr0000 r <- ~r AND s d bitwise AND 01000011ssssdddd d <- d & s OR s d bitwise OR 01000100ssssdddd d <- d | s XOR s d bitwise XOR 01000101ssssdddd d <- d ^ s INC r increment 01001000rrrr0000 r <- r + 1 DEC r decrement 01001001rrrr0000 r <- r + 1 LSH r left shift 01001010rrrr0000 r <- r << 1 RSH r right shift 01001011rrrr0000 r <- r >> 1

assembly inst. name machine code action

INW d A input word 10000000dddd0000 IN_ADDR(16) d <- read[A]

INB d A input byte 10000001dddd0000 IN_ADDR(16) d <- read[A]

OUTW s A out word 10000010ssss0000 OUT_ADDR(16) out[A] <- s OUTB s A out byte 10000011ssss0000 OUT_ADDR(16) out[A] <- s

TSTI A test input 1000010000000000 IN_ADDR(16) if completed then Z <- 1 else Z <- 0

TSTO A test output 1000010100000000 OUT_ADDR(16) if completed then Z <- 1 else Z <- 0

BR A branch 1100000000000000 ADDR(16) PC <- A JMP F jump 11000001FFFFFFFF PC <- PC + F

JMPZ F jump if zero 11000010FFFFFFFF if (z == 1) PC <- PC + F JMPNZ F jump if not zero 11000011FFFFFFFF if (z == 0) PC <- PC + F JMPN F jump if negative 11000100FFFFFFFF if (N == 1) PC <- PC + F JMPNN F jump if not neg. 11000101FFFFFFFF if (N == 0) PC <- PC + F JMPC F jump if carry 11000110FFFFFFFF if (C == 1) PC <- PC + F JMPV F jump if overflow 11000111FFFFFFFF if (V == 1) PC <- PC + F CALL A subroutine call 1100100000000000 ADDR(16) push (PC); PC <- A RET return from sub. 1100100100000000 PC <- pop() HLT halt 1100111100000000 halt

LEGENDA:

- lettere minuscole = registri; lettere maiuscole = dati numerici - ‘r’ = registro letto e modificato

- ‘s’ = registro soltanto letto - ‘d’ = registro modificato

- ‘a’ = registro il cui contenuto è usato come indirizzo - FFFFFFFF = offset (in complemento a 2)

Riferimenti

Documenti correlati

(3 punti) Indicare le associazioni corrette (attenzione: non tutte le voci a sinistra hanno una corrispondenza con quelle a destra e viceversa, e alcune voci possono avere

(4 punti) Si descriva la differenza tra un server sequenziale e uno parallelo e si illustri con un esempio la struttura del programma (sequenza delle

I tre canali sono unidirezionali e vanno da ogni client collegato al servizio a un server centrale, dal quale altri tre canali analoghi vengono trasmessi ad ogni client.. Indicate,

(4 punti) Si disegni uno schema di rete aziendale con due sottoreti IP ciascuna con 4 computer e un server, e un collegamento a Internet via ADSL con indirizzo pubblico

(2 punti) Che messaggi ICMP sono utilizzati dal comando unix traceroute (tracert in Windows)?. (4 punti) Descrivere il funzionamento del controllo di flusso del

(3 punti) Si disegni una rete in cui possa verificarsi l’invio di un messaggio ICMP “redirect” da parte di un router.. (3 punti) Si disegni una rete in cui si verifichi il

Non sono ammessi appunti, libri, calcolatrici, personal computer, tablet, telefoni cellulari, ecc. Il cablaggio strutturato è già stato realizzato. Le attività nei diversi

(5 punti) Si descriva il problema della stazione nascosta in una rete wireless e come lo standard 802.11 lo risolve.4. (5 punti) Si descriva con un semplice esempio il