• Non ci sono risultati.

REFERENCES 1.

N/A
N/A
Protected

Academic year: 2021

Condividi "REFERENCES 1."

Copied!
9
0
0

Testo completo

(1)

1. R. F. Harrington, Field Computation by Moment Method. New York: Macmillan, 1968; Melbourne, FL. Krieger, reprint 1982.

2. J. C. Chao, Y. J. Liu, F. J. Rizzo, P. A. Martin and L. Udps, “Regularized integral equations for curvilinear boundary elements for electromagnetic wave scattering in three dimensions”, IEEE Transaction on Antennas and Propagation, vol. 43, no. 12, pp. 1416-1422, December 1995.

3. A. W. Glisson and D. R. Wilton, “Simple and efficient methods for problems of electromagnetic radiation and scattering from surfaces”, IEEE Transaction on Antennas and Propagation, vol. AP-28, no. 5, pp. 593-603, September 1980.

4. K. A. Michalski and J. R. Mosig, “Multilayered Media Green’s Functions in Integral Equation Formulations”, IEEE Transaction on Antennas and Propagation, vol. 43, no. 3, pp. 508-519, March 1997. 5. Y. Hua and T. K. Sakar, “Generalized Pencil of Function Method for Extracting Poles of an EM System for Its Transient Response”, IEEE Transaction on Antennas and Propagation, vol. 37, no 2, pp. 229-234, February 1989.

6. W. C. Chew, Waves and Fields in Inhomogeneous Media, ser. Electromagnetic Waves. New York: IEEE Press, 1995.

7. K. A. Michalski, “Extrapolation method for the Sommerfeld integral tails”, IEEE Transaction on Antenna and Propagation, vol. 46, no. 10, pp. 1405-1418, October 1998.

8. A. Sidi, Practical Extrapolation Methods, Theory and Applications. Cambridge Monographs on Applied and Computational Mathematics, 2003.

9. A. D. Chave, “Numerical integration of related Hankel transforms by quadrature and continued fraction expansions”, Geophysics, vol. 48, no. 12, pp. 1671-1686, December 1983.

10. J. Lyness and G. Hines, “To Integration some Infinite Oscillating Tails”, Transaction on Applied Computational Mathematics, pp. 24-25, vol. 12, no. 1, March 1986.

11. S. K. Lucas and H. A. Stone “Evaluating infinite integrals involving Bessel functions of arbitrary order”, Journal of Computational and Applied Mathematics, vol. 64, no. 3, pp. 217-231, 1995.

(2)

12. D. G. Fang, J. J. Yang and G. Y. Delisle, “Discrete image theory for horizontal electric dipole in a multilayered medium”, Microwave, Antenna and Propagation, IEE Proceedings H, vol. 135, no. 5, pp. 297-303, October 1988.

13. Y. L. Chow, J. J. Yang D. G. Fang and G. E. Howard, “A closed-form spatial Green’s function for thick microstrip substrate”, IEEE Transaction on Microwave Theory and Technique, vol. 39, no. 3, pp. 588-592, Mach 1991.

14. J. J. Yang, Y. L. Chow, G. E. Howard and D. G. Fang, “Complex images of an electric dipole in a homogeneous and layered dielectric between two ground planes”, IEEE Transaction on Microwave Theory and Technique, vol. 40, no, 3, pp. 595-600, March 1992.

15. R. A. Kipp and C. H. Chan, “Complex image method for sources in a bounded regions of multilayer structures”, IEEE Transaction on Microwave Theory and Technique, vol. 42, no. 5, pp. 860-865, May 1994.

16. M. I. Aksun, “A robust approach for the derivation of closed-form Green’s functions”, IEEE Transaction on Microwave Theory and Technique, vol. 44, no. 5, pp. 651-658, May 1996.

17. G. Dural and M. I. Aksun, “Closed-form Green’s functions for general sources in stratified media”, IEEE Transaction on Microwave Theory and Technique, vol. 43,no. 7, pp. 1545-1552, July 1995.

18. M. I. Aksun and R. Mittra, “Closed-Form Green’s functions and their use in the Method of Moments”, in Electromagnetic Wave Interactions, edited by A. Guran, R. Mittra and P. J. Moser, Series on Vibration, Stability and Control Systems, Series B, vol. 12, pp. 1-37.

19. M. I. Aksun and G. Dural, “Clarification of Issues on the Closed-Form Green’s Functions in Stratified Media”, IEEE Transaction on Antennas and Propagation, vol. 53, no. 11, pp. 3644-3653, November 2005.

20. F. Ling and J. M. Jin, “Discrete complex image method for Green’s functions of general multilayered media”, IEEE Transaction on Microwave Guided Wave Letters, vol. 10, no. 10, pp. 400-402, October 2000.

(3)

21. A. F. Peterson, C. F. Smith and R. Mittra, Computational Methods for Electromagnetics, IEEE Press. 1998.

22. C. A. Balanis, Advanced Engineering Electromagnetics, Wiley &Sons, 1989.

23. S. M. Rao, D. R. Wilton and A. W. Glisson, “Electromagnetic Scattering by Surfaces of Arbitrary Shape”, IEEE Transaction on Antennas and Propagation, vol. 30, no. 3, pp. 409-418, May 1982. 24. E. Ubeda and J. M. Rius, “MFIE-MoM Formulation with

Curl-Conforming Basis Functions and Accurate Kernel Integration in the Analysis of Perfectly Conducting Sharp-Edge Objects”, Microwave and Optical Technology. Letters, vol. 44, no. 4, February 2005. 25. E. Ubeda and J. M. Rius, “The Evaluation of the MFIE Integrals with

the Use of Vector Triangle Basis Functions”, Microwave and Optical Technology. Letters, vol. 14, no. 1, January 1997.

26. A. W. Glisson, “On the development of numerical techniques for treating arbitrary shaped surfaces”, Ph.D. dissertation, University of Mississippi, 1978.

27. R. D. Graglia, “On the numerical integration of the linear shape functions times the 3D Green’s function and its gradient on a plane triangle”, IEEE Transaction on Antennas and Propagation, vol. 41, no. 10, pp. 1448-1455, October 1993.

28. J. Van Bladel, Electromagnetic Fields, New York: McGraw-Hill, 1964, p. 502.

29. A. W. Glisson and D. R. Wilton, “Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces”, IEEE Transaction on Antennas and Propagation, vol. 28, no. 5, pp. 593-603, September 1980.

30. O. C. Zienkiewicz, The Finite Element Method in Engineering Science, New York: McGraw-Hill, 1971.

31. P. C. Hammer, O. P. Marlowe and A. H. Stroud, “Numerical Integration over simplex and cones”, Math Tables Aids Comp., Vol. 10, pp. 130-137, 1956.

32. D. R. Wilton, S. M. Rao and A. W. Glisson, “Electromagnetic scattering by arbitrary surfaces”, Rome Air Development Center, Griffiss AFB, NY, Tech. Rep. RADC-TR-79-325, March 1980.

33. A. H. Stroud, Approximate calculation of multiple integrals, Englewood Cliffs, N. J.: Prentice Hall, 1971.

(4)

34. H. B. Dwight, Table of integrals and other mathematical data, New York, Macmillan, 1961.

35. J. J. H. Wang, Generalized Moment Methods in Electromagnetics, Wiley, 1991.

36. M. I. Aksun and R. Mittra, “Derivation of closed-form Green’s functions for a general microstrip geometry”, IEEE Transaction on Microwave Theory and Technique, vol. 40, no. 11, pp. 2055-2062, November 1992.

37. I. Park, R. Mittra and M. I. Aksun, “Numerically efficient analysis of planar microstrip configurations using closed-form Green’s functions”, IEEE Transaction on Microwave Theory and Technique, vol. 43, no. 2, pp. 394-400, February 1995.

38. J. R. Mosig, “Arbitrarily shaped microstrip structures and their analysis with a mixed potential integral equation”, IEEE Transaction on Microwave Theory and Technique, vol. 36, no. 2, pp. 314-323, February 1988.

39. E. H. Newman and D. Forrai, “Scattering from a microstrip patch”, IEEE Transaction on Antennas and Propagation, vol. 35, no. 3, pp. 245-251, March 1987.

40. E. H. Newman, “Generation of wide-band data from the method of moments by interpolating the impedance matrix”, IEEE Transaction on Antennas and Propagation, vol. 36, no. 12, pp. 1820-1824, December 1988.

41. K. Virga and Y. Rahmat-Samii, “Wide-band evaluation of communication antennas using [Z] matrix interpolation with the method of moments”, Proceedings of IEEE Antennas and Propagation Symposium, vol. 2, pp. 1262-1265, June 1995.

42. K. Virga and Y. Rahmat-Samii, “Efficient wide-band evaluation of mobile communication antennas using [Z] or [Y] matrix interpolation with the method of moments”, IEEE Transaction on Antennas and Propagation, vol. 47, no. 1, pp. 65-76, January 1999. 43. A. S. Barlevy and Y. Rahmat-Samii, “An efficient method for wide

band characterization of periodic structures using a modified Z matrix interpolation”, Proceedings of IEEE Antennas and Propagation Symposium, vol. 1, pp. 56-59, July 1997.

44. A. S. Barlevy and Y. Rahmat-Samii, “Characterization of electromagnetic band-gaps composed of multiple periodic tripods with interconnecting via: concept, analysis, and design”,

(5)

Proceedings of IEEE Antennas and Propagation Symposium, vol. 49, pp. 343-353, March 2001.

45. J. R. Mosig and F. E. Gardiol, “General integral equation formulation for microstrip antennas and scatterers Microwave, Antenna and Propagation, IEE Proceedings H, vol. 132, no. 7, pp. 424-432, December 1985.

46. J. R. Mosig and F. E. Gardiol, “Analytical and numerical techniques in the Green’s function treatment of microstrip antennas and scatterers”, Microwave, Antenna and Propagation, IEE Proceedings H, vol. 130, no. 2, pp. 175-182, March 1983.

47. Y. L. Chow and W. C. Tang, “3-D Green’s functions of microstrip separated into simpler terms – behavior, mutual interaction and formulas of the terms”, IEEE Transaction on Microwave Theory and Technique, vol. 49, no. 8, pp. 1483-1491, August 2001.

48. J. Yeo and R. Mittra, “An algorithm for interpolating the frequency variations of the Method of Moments matrices arising in the analysis of planar microstrip structures”, IEEE Transaction on Microwave Theory and Technique, vol. 51, no. 3, pp. 1018-1025, March 2003.

49. J.-S. Zhao, W. C. Chew, C.-C. Lu, E. Michielssen and J. Song, “Thin-stratified medium fast multipole algorithm for solving microstrip structures”, IEEE Transaction on Microwave Theory and Technique, vol. 46, no. 4, April 1998.

50. F. X. Canning, “Improved Matrix Localization Method”, IEEE Transaction on Antennas and Propagation, vol. 41, no. 5, pp. 659-667, May 1993.

51. K.F. Sabet, J.-C. Cheng, and L.P.B. Katehi, “Efficient wavelet-based modeling of printed circuit antenna arrays”, Microwaves, Antennas and Propagation, IEE Proceedings, vol. 146, no. 4, pp. 298-304, 1999.

52. V. V. S. Prakash, S. J. Kwon and R. Mittra, “An efficient solution of a dense system on linear equations arising in the method of moments”, Microwave and Optical Technology. Letters, vol. 33, no. 3, pp. 196-200, April 2002.

53. R. Mittra, V. V. S. Prakash, J. Ma, J. Yeo, N. Huang and S. J. Kwon, “MNM-A novel technique for iterative solution of matrix equations arising in the method-of-moments formulation”, Microwave and Optical Technology. Letters, vol. 33, no. 2, pp. 74-78, March 2002.

(6)

54. G. E. Howard and Y. L. Chow, “Diakoptic theory for microstrip strctures”, Antenna and Wireless Propagation International Symposium, Dallas TX, vol. 3, pp.1079-1082, May 1990.

55. F. Schwering, N.N. Puri, and C.M. Butler, “Modified Diakoptic Theory of Antennas”, IEEE Transaction on Antennas and Propagation, vol. 34, no. 11, pp. 1273-1281, 1986.

56. S. Ooms and D. D. Zutter, “A New Diakoptic-Based Moments Method for Planar Circuits”, IEEE Transaction on Microwave Theory and Technique vol. 46, no. 3, pp. 280-291, March 1998.

57. E. Suter and J. R. Mosing, “A subdomain multilevel approach for the efficient MoM analysis of large planar antennas”, Microwave and Optical Technology. Letters, vol. 26, no. 4, pp. 270-277, June 2000. 58. S. J. Kwon, K. Du and R. Mittra, “Characteristic basis function

method: A numerically efficient technique for analyzing microwave and RF circuits”, Microwave and Optical Technology. Letters, vol. 38, no. 6, pp. 444-448, July 2003.

59. V. V. S. Prakash and R. Mittra, “Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations”, Microwave and Optical Technology. Letters, vol. 36, no. 2, pp. 95-100, December 2002.

60. E. Lucente, A. Monorchio and R. Mittra, “An Iteration-Free MoM Approach Based on Excitation Independent Characteristic Basis Functions for Solving Large Multiscale Electromagnetic Scattering Problems”, IEEE Transaction on Antennas and Propagation, vol. 56, no. 4, pp. 999-1007, April. 2008.

61. Y. Liu, L.-W. Li, T.-S. Yeo and M.-S. Leong, “Application of DCIM to the MPIE-MoM Analysis of 3-D PEC Objects in Multilayered Media”, IEEE Trans. Antennas and Propagation, vol. 50, no. 2, pp. 157-162, Feb. 2002.

62. M. Yuan, Y. Zhang, A. De, Z. Ji and T. K. Sarkar, “Two-Dimensional Discrete Complex Image Method (DCIM) for Closed-Form Green’s Function of Arbitrary 3D Structures in General Multilayered Media”, IEEE Trans. Antennas and Propagation., vol. 56, no. 5, pp. 1350-1357, May 2008.

63. N. Kinayman and M. I. Aksun, “Efficient Use of Closed-Form Green’s Function for the Analysis of Planar Geometries with Vertical Connection”, IEEE Transaction on Microwave Theory and Technique, vol. 45, no. 5, pp. 593-603, May 1997.

(7)

64. T. Onal, M. I. Aksun and N. Kinayman, “An Efficient Full-Wave Simulation Algorithm for Multiple Vertical Conductors in Printed Circuits”, IEEE Transaction on Microwave Theory and Technique, vol. 54, no. 10, pp. 3739-3745, Oct. 2006.

65. C. H. Chan and R. A. Kipp, “Application of the complex image method to the characterization of microstrip vias”, Int. J. Microw. Millimeter-Wave Computer Aided Eng., vol. 7, issue 5, pp. 368-379, Jul. 1997.

66. C. Tokgoz and G. Dural, “Closed-Form Green’s Functions for Cylindrically Stratified Media”, I IEEE Transaction on Microwave Theory and Technique, vol. 48, no. 1, pp. 40-49, Jan. 2000.

67. G. Bianconi, S. Genovesi, A. Monorchio, R. Mittra and K. Du, “A New Technique for Efficient Evaluation of the Multilayered Green’s Function for Frequency Sweep Analysis of Planar Microstrip Circuits”, Antenna and Wireless Propagation Letters, pp.428-431, 2010.

68. G. Bianconi, R. Mittra, K. Du, S. Genovesi and A. Monorchio, “A New Technique for Efficient Simulation of Microstrip Circuits Etched in Layered Media”, IEEE Proceedings AP-S International, Toronto, July 2010.

69. E. Yamashita, K. Atsuki and T. Hirahata, “Microstrip Dispersion in a Wide-Frequency Range”, IEEE Transaction on Microwave Theory and Technique, vol. 29, no. 6, pp. 610-611, June 1981.

(8)
(9)

Riferimenti

Documenti correlati

In this study, we consider a disaster-survivable CN map- ping approach using risk assessment (similar to [ 17 ]), virtual- machine (VM) backup location, and

fixed-pinned beam with intermediate concentrated mass without rotary

Sano, “Multiband Artificial Magnetic Conductors Using Stacked Microstrip Patch Layers”, IEEE International Symposium on Microwave, Antenna, Propagation and EMC

International school on social networks security, privacy and trust The SNSPT 2016 school aims at bringing together members from the interna- tional security research community

Technique for Efficient Solution of Method of Moments Matrix Equations”, Microwave and Optical Technology Letters, vol.. Prakash, “Efficient Analysis of a Class

Turbulent flow in a baffled vessel stirred by a 60[deg] pitched blade impeller.. Chemical Engineering Science,

[1] Andrea Baiocchi e Nicola Bléfari Melazzi, “Steady-State Analysis of the MMPP/G/1/K Queue”, IEEE Transaction on Communications, Vol.. Ramaswami, “Efficient Algorithms for

Possenti ,“Techniques to Control the Electricity Generation in a series Hybrid Electrical Vehicle”, IEEE Transaction on Energy Conversion, Vol.17,