• Non ci sono risultati.

Pricing of American Options under the Rough Heston model

N/A
N/A
Protected

Academic year: 2022

Condividi "Pricing of American Options under the Rough Heston model"

Copied!
39
0
0

Testo completo

(1)

Pricing of American Options under the Rough Heston model

Elizabeth Zúñiga

Supervisors:

Etienne Chevalier Sergio Pulido

12th European Summer School in Financial Mathematics

LaMME and Fondation de Mathématiques Jacques Hadamard

September 5, 2019

(2)

Pricing of American Options under the Rough Heston model

1 Motivation

2 Heston and Rough Heston Model

3 Affine Volterra Processes

4 Markovian structure of Affine Volterra Processes

5 Pricing American Options

6 Numerical Results

(3)

Pricing of American Options under the Rough Heston model

1 Motivation

2 Heston and Rough Heston Model

3 Affine Volterra Processes

4 Markovian structure of Affine Volterra Processes

5 Pricing American Options

6 Numerical Results

(4)

Motivation

Classical models in finance assume that the log-asset priceXtis given by:

dXt=µtdt +σtdWt

where µtis the drift, Wtis a BM and σtis the volatility of the asset.

I Stochastic volatility models(Heston model): These models reproduce correctly the term structure of ATM skew

ψ(τ ) =

∂kσBS(k, τ ) k=0

for large maturities, but they fail to explain theconvexity to very short maturities

IEmpirical studies indicatevolatility is rougher than BM [Gatheral et al, 2014].

(5)

Motivation

Classical models in finance assume that the log-asset priceXtis given by:

dXt=µtdt +σtdWt

where µtis the drift, Wtis a BM and σtis the volatility of the asset.

I Stochastic volatility models(Heston model): These models reproduce correctly the term structure of ATM skew

ψ(τ ) =

∂kσBS(k, τ ) k=0

for large maturities, but they fail to explain theconvexity to very short maturities

IEmpirical studies indicatevolatility is rougher than BM [Gatheral et al, 2014].

(6)

Motivation

Classical models in finance assume that the log-asset priceXtis given by:

dXt=µtdt +σtdWt

where µtis the drift, Wtis a BM and σtis the volatility of the asset.

I Stochastic volatility models(Heston model): These models reproduce correctly the term structure of ATM skew

ψ(τ ) =

∂kσBS(k, τ ) k=0

for large maturities, but they fail to explain theconvexity to very short maturities

IEmpirical studies indicatevolatility is rougher than BM [Gatheral et al, 2014].

(7)

For small τ , in a model where the volatility is driven by afractional Brownian motionwith Hurst parameter H, ψ(τ ) = τH−1/2with H = 0.1.

(see Figure of S&P ATM volatility skews)

I New class of models: fractional stochastic volatility models(rough volatility models).

match roughness of time series data fit implied volatility smiles remarkably well

Drawback: Loss of tractability,neither Markov nor semi-martingales.

(8)

For small τ , in a model where the volatility is driven by afractional Brownian motionwith Hurst parameter H, ψ(τ ) = τH−1/2with H = 0.1.

(see Figure of S&P ATM volatility skews)

I New class of models: fractional stochastic volatility models(rough volatility models).

match roughness of time series data fit implied volatility smiles remarkably well

Drawback: Loss of tractability,neither Markov nor semi-martingales.

(9)

Pricing of American Options under the Rough Heston model

1 Motivation

2 Heston and Rough Heston Model

3 Affine Volterra Processes

4 Markovian structure of Affine Volterra Processes

5 Pricing American Options

6 Numerical Results

(10)

Heston Model

TheHestonmodel is a stochastic volatility model where:

dSt= St

pVtdWt

Vt= V0+ Z t

0

λ(θ − Vs)ds + Z t

0

λνVsdBs

λ, θ, V0 and ν positive. W and B are two BM with correlation ρ.

Proposition (The characteristic function in the Heston model) The characteristic function of the log-price Xt= log(St/S0) satisfies:

E[eiaXt] = exp(g(a, t) + V0h(a, t)), where h is the solution of the followingRiccati equation

th=1

2(−a2− ia) + λ(iaρν − 1)h(a, s) +(λν)2

2 h2(a, s), h(a, 0) = 0 and

g(a, t) = θλ Z t

0

h(a, s)ds

(11)

Heston Model

TheHestonmodel is a stochastic volatility model where:

dSt= St

pVtdWt

Vt= V0+ Z t

0

λ(θ − Vs)ds + Z t

0

λνVsdBs

λ, θ, V0 and ν positive. W and B are two BM with correlation ρ.

Proposition (The characteristic function in the Heston model) The characteristic function of the log-price Xt= log(St/S0) satisfies:

E[eiaXt] = exp(g(a, t) + V0h(a, t)), where h is the solution of the followingRiccati equation

th=1

2(−a2− ia) + λ(iaρν − 1)h(a, s) +(λν)2

2 h2(a, s), h(a, 0) = 0 and

g(a, t) = θλ Z t

0

h(a, s)ds

(12)

Rough Heston Model

dSt= St

pVtdWt, Vt= V0+

Z t 0

(t − s)α−1

Γ(α) (λ(θ − Vs)ds + λνVsdBs) where α ∈ (1/2, 1) governs the smoothness of the volatility.

Proposition (Characteristic function of the rough Heston [El Euch and Rosenbaum (2016)])

The characteristic function of the log-price Xt= log(St/S0) satisfies: E[eiaXt] = exp(g1(a, t) + V0g2(a, t))

g1(a, t) = θλ Z t

0

h(a, s)ds, g2(a, t) = I1−αh(a, t) where h is the solution of the followingfractional Riccati equation:

Dαh=1

2(−a2− ia) + λ(iaρν − 1)h(a, s) +(λν)2

2 h2(a, s), I1−αh(a, 0) = 0 Riemann-Liouville fractional integral and differential operators:

Irf (t) = 1 Γ(r)

Z t 0

(t − s)r−1f (s)ds, Drf (t) = 1 Γ(1 − r)

d dt

Z t 0

(t − s)−rf (s)ds r ∈ (0, 1],

(13)

Rough Heston Model

dSt= St

pVtdWt, Vt= V0+

Z t 0

(t − s)α−1

Γ(α) (λ(θ − Vs)ds + λνVsdBs) where α ∈ (1/2, 1) governs the smoothness of the volatility.

Proposition (Characteristic function of the rough Heston [El Euch and Rosenbaum (2016)])

The characteristic function of the log-price Xt= log(St/S0) satisfies:

E[eiaXt] = exp(g1(a, t) + V0g2(a, t)) g1(a, t) = θλ

Z t 0

h(a, s)ds, g2(a, t) = I1−αh(a, t) where h is the solution of the followingfractional Riccati equation:

Dαh=1

2(−a2− ia) + λ(iaρν − 1)h(a, s) +(λν)2

2 h2(a, s), I1−αh(a, 0) = 0

Riemann-Liouville fractional integral and differential operators: Irf (t) = 1

Γ(r) Z t

0

(t − s)r−1f (s)ds, Drf (t) = 1 Γ(1 − r)

d dt

Z t 0

(t − s)−rf (s)ds r ∈ (0, 1],

(14)

Rough Heston Model

dSt= St

pVtdWt, Vt= V0+

Z t 0

(t − s)α−1

Γ(α) (λ(θ − Vs)ds + λνVsdBs) where α ∈ (1/2, 1) governs the smoothness of the volatility.

Proposition (Characteristic function of the rough Heston [El Euch and Rosenbaum (2016)])

The characteristic function of the log-price Xt= log(St/S0) satisfies:

E[eiaXt] = exp(g1(a, t) + V0g2(a, t)) g1(a, t) = θλ

Z t 0

h(a, s)ds, g2(a, t) = I1−αh(a, t) where h is the solution of the followingfractional Riccati equation:

Dαh=1

2(−a2− ia) + λ(iaρν − 1)h(a, s) +(λν)2

2 h2(a, s), I1−αh(a, 0) = 0 Riemann-Liouville fractional integral and differential operators:

Irf (t) = 1 Γ(r)

Z t 0

(t − s)r−1f (s)ds, Drf (t) = 1 Γ(1 − r)

d dt

Z t 0

(t − s)−rf (s)ds r ∈ (0, 1], Elizabeth Zúñiga Pricing Options under the Rough Heston model

(15)

Pricing of American Options under the Rough Heston model

1 Motivation

2 Heston and Rough Heston Model

3 Affine Volterra Processes

4 Markovian structure of Affine Volterra Processes

5 Pricing American Options

6 Numerical Results

(16)

Affine Volterra Processes

We callstochastic Volterra equationsto the stochastic convolution equations of the form:

Xt= X0+ Z t

0

K(t − s)b(Xs)ds + Z t

0

K(t − s)σ(Xs)dWs, (1)

W is a multi-dimensional BM. K ∈ L2loc(R+, Rd×d) is called kernel. b and σ continuous and satisfy for some constant cLGthe linear growth conditions:

|b(x)|∨|σ(x)| ≤ cLG(1+|x|), x ∈ Rd (2)

We refer to the solutions of (1) asaffine Volterra processesif a(x) = σ(x)σ(x)T and b(x) areaffinemaps given by:

a(x) = A0+ x1A1+ . . . xdAd b(x) = b0+ x1b1 + . . . xdbd for some d−dimensional symmetric matrices Ai and vectors bi.

(17)

Affine Volterra Processes

We callstochastic Volterra equationsto the stochastic convolution equations of the form:

Xt= X0+ Z t

0

K(t − s)b(Xs)ds + Z t

0

K(t − s)σ(Xs)dWs, (1)

W is a multi-dimensional BM. K ∈ L2loc(R+, Rd×d) is called kernel.

b and σ continuous and satisfy for some constant cLGthe linear growth conditions:

|b(x)|∨|σ(x)| ≤ cLG(1+|x|), x ∈ Rd (2)

We refer to the solutions of (1) asaffine Volterra processesif a(x) = σ(x)σ(x)T and b(x) areaffinemaps given by:

a(x) = A0+ x1A1+ . . . xdAd b(x) = b0+ x1b1 + . . . xdbd for some d−dimensional symmetric matrices Ai and vectors bi.

(18)

Affine Volterra Processes

We callstochastic Volterra equationsto the stochastic convolution equations of the form:

Xt= X0+ Z t

0

K(t − s)b(Xs)ds + Z t

0

K(t − s)σ(Xs)dWs, (1)

W is a multi-dimensional BM. K ∈ L2loc(R+, Rd×d) is called kernel.

b and σ continuous and satisfy for some constant cLGthe linear growth conditions:

|b(x)|∨|σ(x)| ≤ cLG(1+|x|), x ∈ Rd (2)

We refer to the solutions of (1) asaffine Volterra processesif a(x) = σ(x)σ(x)T and b(x) areaffinemaps given by:

a(x) = A0+ x1A1+ . . . xdAd b(x) = b0+ x1b1 + . . . xdbd for some d−dimensional symmetric matrices Ai and vectors bi.

(19)

Pricing of American Options under the Rough Heston model

1 Motivation

2 Heston and Rough Heston Model

3 Affine Volterra Processes

4 Markovian structure of Affine Volterra Processes

5 Pricing American Options

6 Numerical Results

(20)

Laplace representation of the kernel

Theorem (Bernstein–Widder theorem)

If K iscompletely monotone, there exists µ positive such that

K(t) = Z +∞

0

e−tγµ(dγ) (3)

In thefractional casewith: K(t) =tΓ(α)α−1, µ(dγ) = Γ(α)Γ(1−α)γ−α dγ, α ∈ (1/2, 1).

We approximateµ(dγ)byPn

i=1ciδγi(dγ) [Carmona et al, 2000], then K by Kn

Kn(t)=

n

X

i=1

cie−γit.

(21)

Laplace representation of the kernel

Theorem (Bernstein–Widder theorem)

If K iscompletely monotone, there exists µ positive such that

K(t) = Z +∞

0

e−tγµ(dγ) (3)

In thefractional casewith: K(t) =tΓ(α)α−1, µ(dγ) = Γ(α)Γ(1−α)γ−α dγ, α ∈ (1/2, 1).

We approximateµ(dγ)byPn

i=1ciδγi(dγ) [Carmona et al, 2000], then K by Kn

Kn(t)=

n

X

i=1

cie−γit.

(22)

Multi-factor model

For n ∈ N, we define the following process:

Xtn= X0+ Z t

0

Kn(t − s)b(Xsn)ds + Z t

0

Kn(t − s)σ(Xsn)dWs, t ∈ [0, T ] (4)

For n ∈ N and t ≥ 0, we have

Xtn= X0+

n

X

i=1

ciYtγi

where for any i ∈ {1, ..., n}, Yγi is the affine process given by:

dYtγi=

−γiYtγi+ b0+ b1X0+ b1 n

X

j=1

cjYtγj

dt+σ

X0+

n

X

j=1

cjYtγj

dWt

(5) Y = (Yi))ni=1 isaffine, Markovian and can be simulated.

(23)

Multi-factor model

For n ∈ N, we define the following process:

Xtn= X0+ Z t

0

Kn(t − s)b(Xsn)ds + Z t

0

Kn(t − s)σ(Xsn)dWs, t ∈ [0, T ] (4) For n ∈ N and t ≥ 0, we have

Xtn= X0+

n

X

i=1

ciYtγi

where for any i ∈ {1, ..., n}, Yγi is the affine process given by:

dYtγi=

−γiYtγi+ b0+ b1X0+ b1 n

X

j=1

cjYtγj

dt+σ

X0+

n

X

j=1

cjYtγj

dWt

(5)

Y = (Yi))ni=1 isaffine, Markovian and can be simulated.

(24)

Multi-factor model

For n ∈ N, we define the following process:

Xtn= X0+ Z t

0

Kn(t − s)b(Xsn)ds + Z t

0

Kn(t − s)σ(Xsn)dWs, t ∈ [0, T ] (4) For n ∈ N and t ≥ 0, we have

Xtn= X0+

n

X

i=1

ciYtγi

where for any i ∈ {1, ..., n}, Yγi is the affine process given by:

dYtγi=

−γiYtγi+ b0+ b1X0+ b1 n

X

j=1

cjYtγj

dt+σ

X0+

n

X

j=1

cjYtγj

dWt

(5) Y = (Yi))ni=1 isaffine, Markovian and can be simulated.

(25)

Multi-factor model

Proposition (Convergence in law of Xn to X: Abi Jaber and El Euch (2018) )

Let Xn= (Xtn)t leT continuous weak solutions to (4), with the kernel Kn such that there exist γ > 0 and C > 0:

sup

n≥1

Z T −h 0

|Kn(u + h) − Kn(u)|2du + Z h

0

|Kn(u)|2du

!

≤ Ch, (6)

and

Z t 0

|K(u) − Kn(u)|2du → 0 (7)

for any t ∈ [0, T ] as n goes to infinity. Then(Xn)n≥1is tightfor the uniform topology and any point limit X is a solution of (1).

Proposition states theconvergence in lawof the familyXn to X whenever (1) admits a unique weak solution.

(26)

Pricing of American Options under the Rough Heston model

1 Motivation

2 Heston and Rough Heston Model

3 Affine Volterra Processes

4 Markovian structure of Affine Volterra Processes

5 Pricing American Options

6 Numerical Results

(27)

Adjusted forward process

Theadjusted forward process(ut)t≥0and its factor-representation (unt)t≥0

are defined as follows:

unt(x) = E

 Xt+xn

Z x 0

Kn(x − s)b(Xt+sn )ds

Ft



Lemma

Assume that Kn satisfies (6). Let T > 0 and p > 2/γ be such that supn≥1,t≤TE[|Xtn|p] is finite. Then for every s, t ∈ [0, T ] and x, y ∈ [0, M ]

E[|unt(y) − uns(x)|p] ≤ C(max (|t − s|, |y − x|))

where C = C(p, K, M, T ). As a consequence un admits a Hölder continuous modification of order α ∈ [0, γ − p/2[. Denoting this version by un, we have

E

 max

(t,y)6=(s,x)

|unt(y) − uns(x)|

|(t − s, y − x)|α

p

< ∞

Proposition (Convergence of (un))

unconverges in law to u under the uniform topology when n goes to infinity.

(28)

Adjusted forward process

Theadjusted forward process(ut)t≥0and its factor-representation (unt)t≥0

are defined as follows:

unt(x) = E

 Xt+xn

Z x 0

Kn(x − s)b(Xt+sn )ds

Ft



Lemma

Assume that Kn satisfies (6). Let T > 0 and p > 2/γ be such that supn≥1,t≤TE[|Xtn|p] is finite. Then for every s, t ∈ [0, T ] and x, y ∈ [0, M ]

E[|unt(y) − uns(x)|p] ≤ C(max (|t − s|, |y − x|))

where C = C(p, K, M, T ). As a consequence un admits a Hölder continuous modification of order α ∈ [0, γ − p/2[. Denoting this version by un, we have

E



max

(t,y)6=(s,x)

|unt(y) − uns(x)|

|(t − s, y − x)|α

p

< ∞

Proposition (Convergence of (un))

un converges in law to u under the uniform topology when n goes to infinity.

(29)

Conditional Fourier Laplace transform of the process

Xt= ln(St) =√

VtdW t −12Vtdt, ut(x) = V0+Rt

0K(t − s + x) λ(θ − V s)ds + ηVsdW s Theconditional Fourier Laplace transformof the process ({unt(.)}, (Xtn)t≥0) is given by:

E



exp



wXn T+

Z 0

hn(x)un T(x)dx

 Ft



= exp



wXn

t + φn(T − t, w) +

Z 0

Ψn(T − t, x, hn, w)un t (x)dx



fractionalRiccati equations:

tφn(t, w) = Rφn ψn(t, w)

, φn(0) = 0

Ψn(t, x, h, w) = hn(x−t)1{x≥t}+=Ψn w, ψn(t − x, w)

1{x<t}, Ψn(0, x) = hn(x) where

Rφn ψn(t, w)

= λθψn(t, w), =Ψn(w, ψn(t)) =1

2(w2− w) +



ρηw − λ +η2 2 ψn(t, w)



ψn(t, w)

ψn(t) = Z

0

hn(x)Kn(t + x)dx + K ∗ =Ψn ψn(., w) (t)

(30)

Pricing American Options

We denote the value of the American option at time i by Ui, i = 0, . . . .M .

Theorem

We will suppose that hn→ h uniformly in n, Kn→ K in L2loc(R+), (un, Xn) is tight and converges weakly to (u, X). Then,

U0n→ U0

uniformly in n.

IIdea of the proof:

Approximate the American option with Bermuda (uniformly in n) Show the convergence of the Bermuda: We prove the result by induction on the number of dates M of the Bermudan option. The convergence in law of the forward process is used alongside an argument of density (which comes from the Stone-Weierstrass theorem) that allows us to reduce the problem to payoffs of the form exp(wXT+R

h(x)uT(x)dx).

(31)

Pricing of American Options under the Rough Heston model

1 Motivation

2 Heston and Rough Heston Model

3 Affine Volterra Processes

4 Markovian structure of Affine Volterra Processes

5 Pricing American Options

6 Numerical Results

(32)

Numerical Simulation in the Rough Heston model

Time grid: tk= k∆t, k = 1, . . . , N , ∆t = T /N .

Euler schemefor the log priceXt= log(St) Xtk+1= Xtk+

 r −Vtk

2



∆t +p

(Vtk)+∆t(ρN (0, 1) +p

1 − ρ2N (0, 1))˜ Explicit-implicit Euler schemefor the variance processVn

Vtk= un0(tk) +

n

X

i=1

cniYtik, Y0i= 0 for all i = 1, . . . , n

Ytik+1= 1 1 + γi∆t



Ytik− λVtk∆t + ηp

(Vtk)+∆t



N (0, 1), i = 1, . . . , n with

un0(tk) = V0+ λθ

n

X

i=1

ci

1 − e−γnitk γin



and parameters

cni =(r1−αn − 1)r(α−1)(1+n/2) n

Γ(α)Γ(2 − α) rn(α−1)i, γin=1 − α 2 − α

r2−αn − 1

r1−αn − 1ri−1−n/2n

(33)

Numerical Simulation in the Rough Heston model

Time grid: tk= k∆t, k = 1, . . . , N , ∆t = T /N . Euler schemefor the log priceXt= log(St)

Xtk+1= Xtk+

 r −Vtk

2



∆t +p

(Vtk)+∆t(ρN (0, 1) +p

1 − ρ2N (0, 1))˜

Explicit-implicit Euler schemefor the variance processVn

Vtk= un0(tk) +

n

X

i=1

cniYtik, Y0i= 0 for all i = 1, . . . , n

Ytik+1= 1 1 + γi∆t



Ytik− λVtk∆t + ηp

(Vtk)+∆t



N (0, 1), i = 1, . . . , n with

un0(tk) = V0+ λθ

n

X

i=1

ci

1 − e−γnitk γin



and parameters

cni =(r1−αn − 1)r(α−1)(1+n/2) n

Γ(α)Γ(2 − α) rn(α−1)i, γin=1 − α 2 − α

r2−αn − 1

r1−αn − 1ri−1−n/2n

(34)

Numerical Simulation in the Rough Heston model

Time grid: tk= k∆t, k = 1, . . . , N , ∆t = T /N . Euler schemefor the log priceXt= log(St)

Xtk+1= Xtk+

 r −Vtk

2



∆t +p

(Vtk)+∆t(ρN (0, 1) +p

1 − ρ2N (0, 1))˜ Explicit-implicit Euler schemefor the variance processVn

Vtk= un0(tk) +

n

X

i=1

cniYtik, Y0i= 0 for all i = 1, . . . , n

Ytik+1= 1 1 + γi∆t



Ytik− λVtk∆t + ηp

(Vtk)+∆t



N (0, 1), i = 1, . . . , n with

un0(tk) = V0+ λθ

n

X

i=1

ci

1 − e−γnitk γin



and parameters

cni =(r1−αn − 1)r(α−1)(1+n/2) n

Γ(α)Γ(2 − α) rn(α−1)i, γin=1 − α 2 − α

r2−αn − 1

r1−αn − 1ri−1−n/2n

(35)

Numerical Simulation in the Rough Heston model

Time grid: tk= k∆t, k = 1, . . . , N , ∆t = T /N . Euler schemefor the log priceXt= log(St)

Xtk+1= Xtk+

 r −Vtk

2



∆t +p

(Vtk)+∆t(ρN (0, 1) +p

1 − ρ2N (0, 1))˜ Explicit-implicit Euler schemefor the variance processVn

Vtk= un0(tk) +

n

X

i=1

cniYtik, Y0i= 0 for all i = 1, . . . , n

Ytik+1= 1 1 + γi∆t



Ytik− λVtk∆t + ηp

(Vtk)+∆t



N (0, 1), i = 1, . . . , n with

un0(tk) = V0+ λθ

n

X

i=1

ci

1 − e−γnitk γin



and parameters

cni =(rn1−α− 1)r(α−1)(1+n/2) n

Γ(α)Γ(2 − α) rn(α−1)i, γin=1 − α 2 − α

r2−αn − 1

r1−αn − 1ri−1−n/2n

(36)

Pricing American Put options in the Rough Heston Model

Longstaff-Schwartz methodology.

T = 1, strike = 100, ρ = −0.7, θ = 0.02, λ = 0.3, ν = 0.3, V0= 0.02 α = 0.6

Figure:Put options with 105simulations, 50 time step, 20 factors and r20= 2.5

(37)

Optimal exercise surface

(a) α = 0.6 (b) α = 0.8

(c) α = 1

Figure:Optimal exercise surface of American Put options in the Rough Heston

(38)

References

E.Abi Jaber and O. El Euch.

Markovian structure of the Volterra Heston model.

arXiv:1803.00477, 2018.

E. Abi Jaber, M. Larsson and S. Pulido Affine Volterra processes.

The Annals of Applied Probability, 2019.

P. Carmona and L. Coutin and G. Montseny Approximation of Some Gaussian Processes.

Statistical Inference for Stochastic Processes, volume: 3, number: 1, pages: 161-171, 2000.

P. Carr and Dilip B. Madan

Option Valuation Using the Fast Fourier Transform

Journal of Computational Finance, 1999. volume: 2, pages: 61-73.

G.Drimus

Options on realized variance by transform methods: A non-affine stochastic volatility model

September, 2009.

(39)

References

O. El Euch and M. Rosenbaum.

The characteristic function of rough Heston models.

Mathematical Finance, 2019.

D. Filipovié and E. Mayerhofer E.

Affine Diffusion Processes: Theory and Applications.

arXiv:0901.4003v3. 2009.

Fukasawa and Masaaki

Asymptotic analysis for stochastic volatility: martingale expansion.

Finance and Stochastics, 2011. volume: 15, number: 4, pages: 635-654.

J. Gatheral, T. Jaisson and M. Rosenbaum Volatility is rough.

Available at SSRN 2509457, 2014.

C. Li and C. Tao

On the fractional Adams method.

Computers and Mathematics with Applications. July, 2009.

D. Revuz and M.Yor.

Continuous martingales and Brownian motion Springer-Verlag, 1991.

Riferimenti

Documenti correlati

Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare tutti i risultati visti a lezione (compresi quelli di cui non è stata fornita

Exhibit a family of compatible 2-dimensional distribions, which does not admit a process having those distributions as 2-dimensional marginals..

clarifying that the group of ductal carcinoma, accounting for approximately 80% of all types of breast carcinoma, contains an unpredictable number of different molecular subtypes.

In tabella si riportano le stime della regolarità del processo di vola- tilità per questo dataset di indici utilizzando come proxy di volatilità non solo la varianza realizzata ma

Some topics on modular functions, elliptic functions and transcendence theory. Sheet of

Prestigious worldwide-recognized marine ecologists, including the most known experts of marine regime shifts, signed critical reviews dedicated to indicators of resilience (Dakos