Polarization Basics
• The equations
represent a pair of plane waves: the two
components of the electrical field of an EM wave propagating in the z direction, not necessarily
monochromatic.
• The amplitudes Eox,y(t) and phases δx,y(t) fluctuate slowly with respect to the rapid oscillation of the carrier cos(ωt).
⎩⎨
⎧
+
=
+
=
)]
( cos[
) ( )
(
)]
( cos[
) ( )
(
t t
t E
t E
t t
t E
t E
y oy
y
x ox
x
δ ω
δ ω
z
Ex
Ey E
Polarization Basics
If we eliminate the term cos(ωt) between the two equations, and define δ(t)= δy(t)- δx(t), we find the polarization ellipse (valid in general at a given time), which is the locus of points described by the optical field as it propagates:
⎩⎨
⎧
+
=
+
=
)]
( cos[
) ( )
(
)]
( cos[
) ( )
(
t t
t E
t E
t t
t E
t E
y oy
y
x ox
x
δ ω
δ ω
) ( sin
) ( ) cos
( )
(
) ( )
( 2
) (
) ( )
( )
(
22 2 2
2
t t t
E t E
t E t E t
E
t E
t E
t E
oy oy
y x
oy y ox
x
+ − δ = δ
fast fast fast
slow slow slow
slow slow
t
) ( )
( )
(t E t E t Er rx ry
+
=
z
Ex
Ey E
Polarization Basics
• For purely monochromatic waves, amplitudes and phases must be constant with time:
And the polarization ellipse is also constant:
⎩⎨
⎧
+
=
+
=
] cos[
) (
] cos[
) (
y oy
y
x ox
x
t E
t E
t E
t E
δ ω
δ ω
δ
δ
22 2 2
2
sin ) cos
( )
( 2
) ) (
( + − =
oy ox
y x
oy y ox
x
E E
t E t E E
t E
E t E
fast fast fast
t
) ( )
( )
(t E t E t Er rx ry
+
=
z
Ex
Ey E
Polarization Basics
• In general a beam of light is “elliptically polarized”.
• The polarization ellipse degenerates to special forms for special values of the amplitudes and of the phases.
• Linear polarized waves: when the ellipse collapses to a line, i.e. when δ=0,π. The direction of the E vector remains constant.
• Circularily polarized waves: when the ellipse reduces to a circle, i.e. when
δ=π/2, 3π/2 and Eox=Eoy=Eo.
E x y
E x y
E x y
Polarization Basics
• The polarization ellipse is specified by the amplitude parameters Eox,Eoy,δ.
• But it can be expressed
equivalently by the elliptical parameters:
• Orientation angle ψ:
• Ellipticity angle χ :
• For linearly polarized light χ=0.
ψ b a
x y’
x’
y
2 2
cos 2 2
tan
oy ox
oy ox
E E
E E
= − δ
ψ
a
±b χ =
tan
2 2
sin 2 2
sin
oy ox
oy ox
E E
E E
= + δ
χ
Stokes Parameters
• Our detectors are too slow to follow the time
evolution of the EM field. What we can measure are time averages, over periods much longer than 2π/ω.
• Due to the periodicity of the EM waves, it is
enough to compute time averages over a single period of oscillation. These are represented by the symbol <…>.
• So we take the time average of the polarization ellipse:
δ
δ
22 2 2
2
sin ) cos
( )
( 2
) ( )
( + − =
oy ox
y x
oy y ox
x
E E
t E t
E E
t E
E
t
E
Stokes Parameters
• Multiplying by 4Eox2Eoy2 we find
• Since Ex(t) and Ey(t) are sine waves, we can
compute their time averages and substitute above:
• Since we want to express this in terms of
intensities, we can add and subtract Eox4+Eoy4:
2 2
2 2
2
) sin
2 ( cos
) ( )
( 2
8
) ( 4
) ( 4
δ δ
ox oyy x
oy ox
y ox
x oy
E E
t E t E E
E
t E
E t
E E
=
−
+ +
2 2
2 2
2 2
) sin
2 ( )
cos 2
(
2 2
δ
δ
ox oyoy ox
oy ox
ox oy
E E
E E
E E
E E
=
−
+
+
Stokes Parameters
• We find
• We define the Stokes Parameters:
• so that our equation reduces to
2 2
2 2 2
2 2 2
) sin 2
( )
cos 2
(
) (
) (
δ
δ
ox oyoy ox
oy ox
ox oy
E E
E E
E E
E E
=
−
+
−
− +
δ δ
sin 2
cos 2
3 2
2 2
1
2 2
oy ox
oy ox
oy ox
ox oy
o
E E
S
E E
S
E E
S
E E
S
=
=
−
=
+
=
2 3 2
2 2
1
2
S S S
S
o= + +
Stokes Parameters
• If light is not purely monochromatic, the amplitudes and phases fluctuate with time.
• It can be shown that, in general,
• The = sign is valid for fully polarized light, while the > sign is valid for
partially polarized or unpolarized light. P=degree of polarization:
• The intensity is related to So:
• The orientation of the polarization ellipse is related to S1 and S2:
• The ellipticity of the polarization ellipse is related to S3:
2 3 2
2 2
1
2 S S S
So ≥ + +
1 2 2
2
cos 2 2
tan S
S E
E E E
oy ox
oy
ox =
= − δ
ψ
o oy
ox oy ox
S S E
E E
E 3
2 2
sin 2 2
sin =
= + δ
χ
δ δ
sin 2
cos 2
3 2
2 2
1
2 2
oy ox
oy ox
oy ox
ox oy
o
E E
S
E E
S
E E
S
E E
S
=
=
−
=
+
=
2 2
ox oy
o E E
S = +
1 0
2 3 2
2 2
1
≤
≤
+
= +
= P
S
S S
S I
P I
o total
pol
Stokes Parameters
• Note that, for linear polarized light (δ=0), both parameters S1 and S2 represent the difference in intensity carried by two
orthogonal components:
• S1 is the difference in intensity between the components along axis x and y
• S2 is the difference in intensity between the components along two axis x’ and y’ rotated 45o with respect to x and y.
x y
x y
y’
x’
2 2
1
E
xE
yS = −
2 ' 2
' '
' '
'
2 2
1 2
1 2
1 2
2 1
2ExEy Ex Ey Ex Ey Ex Ey
S = −
⎥⎦⎤
⎢⎣⎡ +
⎥⎦⎤
⎢⎣⎡ −
=
=
Ex Ey
Ex’
Ey’ 45o
Stokes Parameters: examples
• Unpolarized light:
δ=random
<Eox2>=<Eoy2>=Io
• Linearly polarized light:
– Horizontal(Eoy=0) Vertical (Eox=0) +45o (Eoy= Eoy; δ= 0) θo
• Circular polarized light:
– Left Right
δ δ sin 2
cos 2
3 2
2 2
1
2 2
oy ox
oy ox
oy ox
ox oy
o
E E
S
E E
S
E E
S
E E
S
=
=
−
=
+
=
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
=
0 0 0 1 2Io Sr
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
=
0 0 1 1 Io
Sr
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
= −
0 0 1 1 Io
Sr
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
=
0 1 0 1 Io
Sr
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
=
0 2 sin
2 cos
1 θ
θ Io
Sr
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
−
=
1 0 0 1 Io
Sr
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
=
1 0 0 1 Io
Sr
Stokes Parameters
• The waves can be represented as complex functions:
• This helps in the time-averaging process needed to compute the Stokes Parameters. They can be
rewritten as follows (Stokes vector):
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
− +
=
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
− +
− +
=
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
δ δ
sin 2cos 2
) (
2 2
2 2
*
*
*
*
*
*
*
*
3 2 1
oy ox
oy ox
oy ox
oy ox
x y y
x
x y y
x
y y x
x
y y x
x o
E E
E E
E E
E E
E E E
E i
E E E
E
E E E
E
E E E
E
S S S S
⎩⎨
⎧
+
= +
=
+
= +
=
)]
( exp[
] cos[
) (
)]
( exp[
] cos[
) (
y oy
y oy
y
x ox
x ox
x
t i
E t
E t
E
t i
E t
E t
E
δ ω
δ ω
δ ω
δ
ω
Stokes Parameters
• The Stokes vector can also be expressed in terms of So, ψ, χ.
• From
• And from
• Using
we find S1, so we have:
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
=
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
χ
ψ χ
ψ χ
2 sin
2 sin 2
cos
2 cos 2
cos
1
3 2 1
o o
S S
S S S
δ ψ
ψ 2 cos we can write tan 2 2
tan 2 2 S2 S1
E E
E E
oy ox
oy
ox =
= −
δ χ
χ 2 sin we can write sin2 2
sin 2 2 3 o
oy ox
oy
ox S S
E E
E
E =
= +
2 3 2
2 2
1
2
S S S
S
o= + +
Poincare’
Classical measurement of the Stokes Parameters
• The measurement of the 4 Stokes Parameters needs two optical components:
– A retarder (wave plate): it is a phase-shifting element, whose effect is to advance the phase of the x component by φ/2 and to retard the phase of the y component by -φ/2 . So the field
emerging from the retarder is E’x= Ex ei φ/2 and E’y= Ey e-i φ/2 – A polarizer. The optical field can pass only along one axis, the
transmission axis. So the total field emerging from the polarizer is E”=E’xcosθ+E’ysinθ, where E’ is the incident field and θ is the angle of the transmission axis.
• So the beam arriving on the detector is
E”=Ex ei φ/2 cosθ+Eye-i φ/2 sinθ
φ θ
source retarder polarizer
detector
Classical measurement of the Stokes Parameters
• E”=Ex ei φ/2 cosθ+Eye-i φ/2 sinθ
• The detector measures its intensity, i.e. I= E”E”*
• So we get
• Which can be rewritten using the half-angle formulas:
φ θ
source retarder polarizer
detector
θ θ
θ θ
θ θ
φ ϑ
φ
φ sin cos sin cos
sin cos
) , (
*
*
2
* 2
*
i y x i
y x
y y x
x
e E E e
E E
E E E
E I
+ +
+ +
=
−
( ) ( )
( ) ( )
⎥⎥⎦
⎤
⎢⎢
⎣
⎡
− +
+ +
− +
= +
θ φ
θ φ
φ θ ϑ
2 sin sin
2 sin cos
2 ) cos
,
( * * * *
*
*
*
* 2
1
x y y
x x
y y
x
y y x
x y
y x
x
E E E
E i E
E E
E
E E E
E E
E E
I E
2 2 sin 2
2 cos 2 1
2 2 cos 2 1
cos sin
sin
cos θ = + θ θ = − θ θ θ = θ
[
θ φ θ φ θ]
φ
ϑ, ) cos2 cos sin 2 sin sin 2
( 21 S S1 S2 S3
I = o + + +
Classical measurement of the Stokes Parameters
• This is the formula derived in 1852 by Sir George
Gabriel Stokes.
• The first three parameters can be measured by
removing the retarder (φ=0) and measuring the intensity with three orientations of the polarizer θ=0o,45o,90o:
• The fourth parameter can be measured by inserting a 90o retarder (quarter wave plate):
φ θ
source retarder polarizer
detector
[
θ φ θ φ θ]
φ
ϑ, ) cos2 cos sin 2 sin sin 2
( 21 S S1 S2 S3
I = o + + +
[ ]
[ ]
[ ]
[ ]
⎪⎪
⎩
⎪⎪
⎨
⎧
+
=
−
=
+
=
+
=
2 3 1 2 1 1 2 2 1 2 1 1
) 90 , 45 (
) 0 , 90 (
) 0 , 45 (
) 0 , 0 (
S S
I
S S
I
S S
I
S S
I
o o
o
o o
o
o o
o
o o
o
⎪⎪
⎩
⎪⎪
⎨
⎧
−
−
=
−
−
=
−
=
+
=
) 0 , 90 ( )
0 , 0 ( )
90 , 45 ( 2
) 0 , 90 ( )
0 , 0 ( )
0 , 45 ( 2
) 0 , 90 ( )
0 , 0 (
) 0 , 90 ( )
0 , 0 (
3 2
1
o o o
o o
o
o o o
o o
o
o o o
o
o o o
o o
I I
I S
I I
I S
I I
S
I I
S
Classical measurement of the Stokes Parameters
• The great advantage of the Stokes Parameters is that they are observable. The polarization ellipse is not (too fast).
• Moreover, the Stokes parameters can be used to describe
unpolarized light: light which is not affected by the rotation of a polarizer or by the presence of a retarder. Stokes was the first one to describe mathematically unpolarized and partially polarized
light.
• It is evident from Stokes formula that, for unpolarized light, S1=S2=S3=0, while So>0.
• The fully polarized light had
• The intermediate state is partially polarized light, where
φ θ
source retarder polarizer
detector
[
θ φ θ φ θ]
φ
ϑ, ) cos2 cos sin 2 sin sin 2
( 21 S S1 S2 S3
I = o + + +
2 3 2
2 2
1
2 S S S
So = + +
2 3 2
2 2
1
2 S S S
So ≥ + +
Partially polarized light
• The Stokes parameters of a combination of independent waves are the sums of the respective Stokes parameters of the separate waves.
• If we combine a fully polarized wave with an
independent, unpolarized one, we find partially polarized light.
• This expression will be useful in the following.
1 0
2 3 2
2 2
1 + + ≤ ≤
=
= P
S
S S
S I
P I
o total
pol
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛ +
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
−
=
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
=
3 2 1
3 2 1
0 0 ) 0 1
(
S S S S P S
P S
S S S S
o o o
Polarization-active optical components
• When a beam of light interacts with matter its polarization state is almost always changed.
• It can be changed by
– changing the amplitudes – changing the phases
– changing the directions
of the orthogonal field components.
• Their effect can be described by means of the Mueller matrices: M is a 4x4 matrix such that the emerging Stokes vector is S’=M S .
Polarizer (Diattenuator)
Rotator
Wave-plate (Retarder)
1) Polarizer or Diattenuator
• It attenuates the orthogonal
components of an optical beam unequally:
• Using the definitions of S and S’
• And inserting the expressions for E’
we get
⎪⎩
⎪⎨
⎧
=
=
y y y
x x x
E p E
E p E
' '
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
− +
− +
=
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
) ( ' '* ' '*
'*
' '*
'
'*
' '*
'
'*
' '*
'
' 3
' 2
' 1 '
x y y
x
x y y
x
y y x
x
y y x
o x
E E E
E i
E E E
E
E E E
E
E E E
E
S S S S
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
− +
− +
=
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
)
( * *
*
*
*
*
*
*
3 2 1
x y y
x
x y y
x
y y x
x
y y x
x o
E E E
E i
E E E
E
E E E
E
E E E
E
S S S S
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
+
−
− +
=
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
3 2 1 2
2 2
2
2 2
2 2
' 3
' 2
' 1 '
2 0
0 0
0 2
0 0
0 0
0 0
2 1
S S S S
p p p
p p
p p
p
p p
p p
S S S
S o
y x y
x y
x y
x
y x
y o x
Special cases
• If the diattenuator is simply an attenuator, i.e. if px=py=p we
have a neutral density filter:
• If the Polarizer is
ideal and horizontal, i.e. if py=0 we have
• If the Polarizer is
ideal and vertical, i.e.
if px=0 we have
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
=
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
3 2 2 1
' 3
' 2
' 1 '
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
S S S S p
S S S
So o
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
=
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
3 2 1 2
' 3
' 2
' 1 '
0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1
2
S S S S p
S S S
S o
x o
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
+
−
− +
=
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
3 2 1 2
2 2
2
2 2
2 2
' 3 ' 2
' 1 '
2 0
0 0
0 2
0 0
0 0
0 0
2 1
S S S S
p p p
p p
p p
p
p p
p p
S S S
S o
y x y
x y
x y
x
y x
y o x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
−
−
=
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
3 2 1 2
' 3 ' 2 ' 1 '
0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1
2
S S S S p
S S S
S o
y o
Polarizer:
• The characteristics of the polarizer px and py can be rewritten in terms of new
parameters p and α:
• With these parameters the Mueller matrix of a polarizer is:
• An ideal polarizer converts any
incoming beam into a linearly polarized
beam:
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
+
−
− +
=
y x y
x y
x y
x
y x
y x
P
p p p
p p
p p
p
p p
p p
M
2 0
0 0
0 2
0 0
0 0
0 0
2
1 2 2 2 2
2 2
2 2
sin cos
⎪⎩
⎪⎨
⎧
=
=
α α p
p
p p
y def x def
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
=
α α
α
α
2 sin 0
0 0
0 2
sin 0
0
0 0
1 2
cos
0 0
2 cos 1
2 p2
MP
( )
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
± ±
=
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
±
±
=
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
0 0 1 1 2
1 0
0 0
0
0 0 0
0
0 0 1
1
0 0 1 1
2 1
1
3 2 1
' 3
' 2
' 1 '
S S
S S S S
S S S S
o o o