• Non ci sono risultati.

Polarization Basics

N/A
N/A
Protected

Academic year: 2021

Condividi "Polarization Basics"

Copied!
87
0
0

Testo completo

(1)

Polarization Basics

• The equations

represent a pair of plane waves: the two

components of the electrical field of an EM wave propagating in the z direction, not necessarily

monochromatic.

• The amplitudes Eox,y(t) and phases δx,y(t) fluctuate slowly with respect to the rapid oscillation of the carrier cos(ωt).

⎩⎨

+

=

+

=

)]

( cos[

) ( )

(

)]

( cos[

) ( )

(

t t

t E

t E

t t

t E

t E

y oy

y

x ox

x

δ ω

δ ω

z

Ex

Ey E

(2)

Polarization Basics

If we eliminate the term cos(ωt) between the two equations, and define δ(t)= δy(t)- δx(t), we find the polarization ellipse (valid in general at a given time), which is the locus of points described by the optical field as it propagates:

⎩⎨

+

=

+

=

)]

( cos[

) ( )

(

)]

( cos[

) ( )

(

t t

t E

t E

t t

t E

t E

y oy

y

x ox

x

δ ω

δ ω

) ( sin

) ( ) cos

( )

(

) ( )

( 2

) (

) ( )

( )

(

2

2 2 2

2

t t t

E t E

t E t E t

E

t E

t E

t E

oy oy

y x

oy y ox

x

+ − δ = δ

fast fast fast

slow slow slow

slow slow

t

) ( )

( )

(t E t E t Er rx ry

+

=

z

Ex

Ey E

(3)

Polarization Basics

• For purely monochromatic waves, amplitudes and phases must be constant with time:

And the polarization ellipse is also constant:

⎩⎨

+

=

+

=

] cos[

) (

] cos[

) (

y oy

y

x ox

x

t E

t E

t E

t E

δ ω

δ ω

δ

δ

2

2 2 2

2

sin ) cos

( )

( 2

) ) (

( + − =

oy ox

y x

oy y ox

x

E E

t E t E E

t E

E t E

fast fast fast

t

) ( )

( )

(t E t E t Er rx ry

+

=

z

Ex

Ey E

(4)

Polarization Basics

• In general a beam of light is “elliptically polarized”.

• The polarization ellipse degenerates to special forms for special values of the amplitudes and of the phases.

• Linear polarized waves: when the ellipse collapses to a line, i.e. when δ=0,π. The direction of the E vector remains constant.

• Circularily polarized waves: when the ellipse reduces to a circle, i.e. when

δ=π/2, 3π/2 and Eox=Eoy=Eo.

E x y

E x y

E x y

(5)

Polarization Basics

• The polarization ellipse is specified by the amplitude parameters Eox,Eoy,δ.

• But it can be expressed

equivalently by the elliptical parameters:

• Orientation angle ψ:

• Ellipticity angle χ :

• For linearly polarized light χ=0.

ψ b a

x y’

x’

y

2 2

cos 2 2

tan

oy ox

oy ox

E E

E E

= δ

ψ

a

±b χ =

tan

2 2

sin 2 2

sin

oy ox

oy ox

E E

E E

= + δ

χ

(6)

Stokes Parameters

• Our detectors are too slow to follow the time

evolution of the EM field. What we can measure are time averages, over periods much longer than 2π/ω.

• Due to the periodicity of the EM waves, it is

enough to compute time averages over a single period of oscillation. These are represented by the symbol <…>.

• So we take the time average of the polarization ellipse:

δ

δ

2

2 2 2

2

sin ) cos

( )

( 2

) ( )

( + − =

oy ox

y x

oy y ox

x

E E

t E t

E E

t E

E

t

E

(7)

Stokes Parameters

• Multiplying by 4Eox2Eoy2 we find

• Since Ex(t) and Ey(t) are sine waves, we can

compute their time averages and substitute above:

• Since we want to express this in terms of

intensities, we can add and subtract Eox4+Eoy4:

2 2

2 2

2

) sin

2 ( cos

) ( )

( 2

8

) ( 4

) ( 4

δ δ

ox oy

y x

oy ox

y ox

x oy

E E

t E t E E

E

t E

E t

E E

=

+ +

2 2

2 2

2 2

) sin

2 ( )

cos 2

(

2 2

δ

δ

ox oy

oy ox

oy ox

ox oy

E E

E E

E E

E E

=

+

+

(8)

Stokes Parameters

• We find

• We define the Stokes Parameters:

• so that our equation reduces to

2 2

2 2 2

2 2 2

) sin 2

( )

cos 2

(

) (

) (

δ

δ

ox oy

oy ox

oy ox

ox oy

E E

E E

E E

E E

=

+

− +

δ δ

sin 2

cos 2

3 2

2 2

1

2 2

oy ox

oy ox

oy ox

ox oy

o

E E

S

E E

S

E E

S

E E

S

=

=

=

+

=

2 3 2

2 2

1

2

S S S

S

o

= + +

(9)

Stokes Parameters

• If light is not purely monochromatic, the amplitudes and phases fluctuate with time.

• It can be shown that, in general,

• The = sign is valid for fully polarized light, while the > sign is valid for

partially polarized or unpolarized light. P=degree of polarization:

• The intensity is related to So:

• The orientation of the polarization ellipse is related to S1 and S2:

• The ellipticity of the polarization ellipse is related to S3:

2 3 2

2 2

1

2 S S S

So ≥ + +

1 2 2

2

cos 2 2

tan S

S E

E E E

oy ox

oy

ox =

= δ

ψ

o oy

ox oy ox

S S E

E E

E 3

2 2

sin 2 2

sin =

= + δ

χ

δ δ

sin 2

cos 2

3 2

2 2

1

2 2

oy ox

oy ox

oy ox

ox oy

o

E E

S

E E

S

E E

S

E E

S

=

=

=

+

=

2 2

ox oy

o E E

S = +

1 0

2 3 2

2 2

1

+

= +

= P

S

S S

S I

P I

o total

pol

(10)

Stokes Parameters

• Note that, for linear polarized light (δ=0), both parameters S1 and S2 represent the difference in intensity carried by two

orthogonal components:

• S1 is the difference in intensity between the components along axis x and y

• S2 is the difference in intensity between the components along two axis x’ and y’ rotated 45o with respect to x and y.

x y

x y

y’

x’

2 2

1

E

x

E

y

S = −

2 ' 2

' '

' '

'

2 2

1 2

1 2

1 2

2 1

2ExEy Ex Ey Ex Ey Ex Ey

S = −

⎥⎦⎤

⎢⎣⎡ +

⎥⎦⎤

⎢⎣⎡ −

=

=

Ex Ey

Ex’

Ey’ 45o

(11)

Stokes Parameters: examples

• Unpolarized light:

δ=random

<Eox2>=<Eoy2>=Io

• Linearly polarized light:

– Horizontal(Eoy=0) Vertical (Eox=0) +45o (Eoy= Eoy; δ= 0) θo

• Circular polarized light:

Left Right

δ δ sin 2

cos 2

3 2

2 2

1

2 2

oy ox

oy ox

oy ox

ox oy

o

E E

S

E E

S

E E

S

E E

S

=

=

=

+

=

⎟⎟

⎜⎜

=

0 0 0 1 2Io Sr

⎟⎟

⎜⎜

=

0 0 1 1 Io

Sr

⎟⎟

⎜⎜

=

0 0 1 1 Io

Sr

⎟⎟

⎜⎜

=

0 1 0 1 Io

Sr

⎟⎟

⎜⎜

=

0 2 sin

2 cos

1 θ

θ Io

Sr

⎟⎟

⎜⎜

=

1 0 0 1 Io

Sr

⎟⎟

⎜⎜

=

1 0 0 1 Io

Sr

(12)

Stokes Parameters

• The waves can be represented as complex functions:

• This helps in the time-averaging process needed to compute the Stokes Parameters. They can be

rewritten as follows (Stokes vector):

⎟⎟

⎟⎟

⎜⎜

⎜⎜

− +

=

⎟⎟

⎟⎟

⎜⎜

⎜⎜

− +

− +

=

⎟⎟

⎟⎟

⎜⎜

⎜⎜

δ δ

sin 2

cos 2

) (

2 2

2 2

*

*

*

*

*

*

*

*

3 2 1

oy ox

oy ox

oy ox

oy ox

x y y

x

x y y

x

y y x

x

y y x

x o

E E

E E

E E

E E

E E E

E i

E E E

E

E E E

E

E E E

E

S S S S

⎩⎨

+

= +

=

+

= +

=

)]

( exp[

] cos[

) (

)]

( exp[

] cos[

) (

y oy

y oy

y

x ox

x ox

x

t i

E t

E t

E

t i

E t

E t

E

δ ω

δ ω

δ ω

δ

ω

(13)

Stokes Parameters

• The Stokes vector can also be expressed in terms of So, ψ, χ.

• From

• And from

• Using

we find S1, so we have:

⎟⎟

⎟⎟

⎜⎜

⎜⎜

=

⎟⎟

⎟⎟

⎜⎜

⎜⎜

χ

ψ χ

ψ χ

2 sin

2 sin 2

cos

2 cos 2

cos

1

3 2 1

o o

S S

S S S

δ ψ

ψ 2 cos we can write tan 2 2

tan 2 2 S2 S1

E E

E E

oy ox

oy

ox =

=

δ χ

χ 2 sin we can write sin2 2

sin 2 2 3 o

oy ox

oy

ox S S

E E

E

E =

= +

2 3 2

2 2

1

2

S S S

S

o

= + +

Poincare’

(14)

Classical measurement of the Stokes Parameters

• The measurement of the 4 Stokes Parameters needs two optical components:

– A retarder (wave plate): it is a phase-shifting element, whose effect is to advance the phase of the x component by φ/2 and to retard the phase of the y component by -φ/2 . So the field

emerging from the retarder is E’x= Ex ei φ/2 and E’y= Ey e-i φ/2 – A polarizer. The optical field can pass only along one axis, the

transmission axis. So the total field emerging from the polarizer is E”=E’xcosθ+E’ysinθ, where E’ is the incident field and θ is the angle of the transmission axis.

• So the beam arriving on the detector is

E”=Ex ei φ/2 cosθ+Eye-i φ/2 sinθ

φ θ

source retarder polarizer

detector

(15)

Classical measurement of the Stokes Parameters

• E”=Ex ei φ/2 cosθ+Eye-i φ/2 sinθ

• The detector measures its intensity, i.e. I= E”E”*

• So we get

• Which can be rewritten using the half-angle formulas:

φ θ

source retarder polarizer

detector

θ θ

θ θ

θ θ

φ ϑ

φ

φ sin cos sin cos

sin cos

) , (

*

*

2

* 2

*

i y x i

y x

y y x

x

e E E e

E E

E E E

E I

+ +

+ +

=

( ) ( )

( ) ( )

+

+ +

+

= +

θ φ

θ φ

φ θ ϑ

2 sin sin

2 sin cos

2 ) cos

,

( * * * *

*

*

*

* 2

1

x y y

x x

y y

x

y y x

x y

y x

x

E E E

E i E

E E

E

E E E

E E

E E

I E

2 2 sin 2

2 cos 2 1

2 2 cos 2 1

cos sin

sin

cos θ = + θ θ = θ θ θ = θ

[

θ φ θ φ θ

]

φ

ϑ, ) cos2 cos sin 2 sin sin 2

( 21 S S1 S2 S3

I = o + + +

(16)

Classical measurement of the Stokes Parameters

• This is the formula derived in 1852 by Sir George

Gabriel Stokes.

• The first three parameters can be measured by

removing the retarder (φ=0) and measuring the intensity with three orientations of the polarizer θ=0o,45o,90o:

• The fourth parameter can be measured by inserting a 90o retarder (quarter wave plate):

φ θ

source retarder polarizer

detector

[

θ φ θ φ θ

]

φ

ϑ, ) cos2 cos sin 2 sin sin 2

( 21 S S1 S2 S3

I = o + + +

[ ]

[ ]

[ ]

[ ]

+

=

=

+

=

+

=

2 3 1 2 1 1 2 2 1 2 1 1

) 90 , 45 (

) 0 , 90 (

) 0 , 45 (

) 0 , 0 (

S S

I

S S

I

S S

I

S S

I

o o

o

o o

o

o o

o

o o

o

=

=

=

+

=

) 0 , 90 ( )

0 , 0 ( )

90 , 45 ( 2

) 0 , 90 ( )

0 , 0 ( )

0 , 45 ( 2

) 0 , 90 ( )

0 , 0 (

) 0 , 90 ( )

0 , 0 (

3 2

1

o o o

o o

o

o o o

o o

o

o o o

o

o o o

o o

I I

I S

I I

I S

I I

S

I I

S

(17)

Classical measurement of the Stokes Parameters

• The great advantage of the Stokes Parameters is that they are observable. The polarization ellipse is not (too fast).

• Moreover, the Stokes parameters can be used to describe

unpolarized light: light which is not affected by the rotation of a polarizer or by the presence of a retarder. Stokes was the first one to describe mathematically unpolarized and partially polarized

light.

• It is evident from Stokes formula that, for unpolarized light, S1=S2=S3=0, while So>0.

• The fully polarized light had

• The intermediate state is partially polarized light, where

φ θ

source retarder polarizer

detector

[

θ φ θ φ θ

]

φ

ϑ, ) cos2 cos sin 2 sin sin 2

( 21 S S1 S2 S3

I = o + + +

2 3 2

2 2

1

2 S S S

So = + +

2 3 2

2 2

1

2 S S S

So + +

(18)

Partially polarized light

• The Stokes parameters of a combination of independent waves are the sums of the respective Stokes parameters of the separate waves.

• If we combine a fully polarized wave with an

independent, unpolarized one, we find partially polarized light.

• This expression will be useful in the following.

1 0

2 3 2

2 2

1 + +

=

= P

S

S S

S I

P I

o total

pol

⎟⎟

⎜⎜

+

⎟⎟

⎜⎜

=

⎟⎟

⎜⎜

=

3 2 1

3 2 1

0 0 ) 0 1

(

S S S S P S

P S

S S S S

o o o

(19)

Polarization-active optical components

• When a beam of light interacts with matter its polarization state is almost always changed.

• It can be changed by

– changing the amplitudes – changing the phases

– changing the directions

of the orthogonal field components.

• Their effect can be described by means of the Mueller matrices: M is a 4x4 matrix such that the emerging Stokes vector is S’=M S .

Polarizer (Diattenuator)

Rotator

Wave-plate (Retarder)

(20)

1) Polarizer or Diattenuator

• It attenuates the orthogonal

components of an optical beam unequally:

• Using the definitions of S and S’

• And inserting the expressions for E’

we get

⎪⎩

⎪⎨

=

=

y y y

x x x

E p E

E p E

' '

+

+

=

) ( ' '* ' '*

'*

' '*

'

'*

' '*

'

'*

' '*

'

' 3

' 2

' 1 '

x y y

x

x y y

x

y y x

x

y y x

o x

E E E

E i

E E E

E

E E E

E

E E E

E

S S S S

+

+

=

⎟⎟

⎜⎜

)

( * *

*

*

*

*

*

*

3 2 1

x y y

x

x y y

x

y y x

x

y y x

x o

E E E

E i

E E E

E

E E E

E

E E E

E

S S S S

⎟⎟

⎜⎜

+

+

=

3 2 1 2

2 2

2

2 2

2 2

' 3

' 2

' 1 '

2 0

0 0

0 2

0 0

0 0

0 0

2 1

S S S S

p p p

p p

p p

p

p p

p p

S S S

S o

y x y

x y

x y

x

y x

y o x

(21)

Special cases

• If the diattenuator is simply an attenuator, i.e. if px=py=p we

have a neutral density filter:

• If the Polarizer is

ideal and horizontal, i.e. if py=0 we have

• If the Polarizer is

ideal and vertical, i.e.

if px=0 we have

⎟⎟

⎜⎜

⎟⎟

⎜⎜

=

3 2 2 1

' 3

' 2

' 1 '

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

S S S S p

S S S

So o

⎟⎟

⎜⎜

⎟⎟

⎜⎜

=

3 2 1 2

' 3

' 2

' 1 '

0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1

2

S S S S p

S S S

S o

x o

⎟⎟

⎜⎜

+

+

=

3 2 1 2

2 2

2

2 2

2 2

' 3 ' 2

' 1 '

2 0

0 0

0 2

0 0

0 0

0 0

2 1

S S S S

p p p

p p

p p

p

p p

p p

S S S

S o

y x y

x y

x y

x

y x

y o x

⎟⎟

⎜⎜

⎟⎟

⎜⎜

=

3 2 1 2

' 3 ' 2 ' 1 '

0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1

2

S S S S p

S S S

S o

y o

(22)

Polarizer:

• The characteristics of the polarizer px and py can be rewritten in terms of new

parameters p and α:

• With these parameters the Mueller matrix of a polarizer is:

• An ideal polarizer converts any

incoming beam into a linearly polarized

beam:

+

+

=

y x y

x y

x y

x

y x

y x

P

p p p

p p

p p

p

p p

p p

M

2 0

0 0

0 2

0 0

0 0

0 0

2

1 2 2 2 2

2 2

2 2

sin cos

⎪⎩

⎪⎨

=

=

α α p

p

p p

y def x def

⎟⎟

⎜⎜

=

α α

α

α

2 sin 0

0 0

0 2

sin 0

0

0 0

1 2

cos

0 0

2 cos 1

2 p2

MP

( )

⎟⎟

⎜⎜

± ±

=

⎟⎟

⎜⎜

⎟⎟

⎜⎜

±

±

=

0 0 1 1 2

1 0

0 0

0

0 0 0

0

0 0 1

1

0 0 1 1

2 1

1

3 2 1

' 3

' 2

' 1 '

S S

S S S S

S S S S

o o o

Riferimenti

Documenti correlati

33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department

33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department

The expected production cross section of an isolated photon in association with jets as a function of the photon transverse energy E T γ is estimated using JETPHOX 1.3 [1].. JETPHOX

The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton–proton collision data with a centre-of-mass energy of

Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong

63 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America. 64 Joint Institute for Nuclear Research, JINR Dubna,

Events in this region have exactly two identified lepton candidates with the same charge (but any.. Expected and observed event yields for all validation regions. The

33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department