• Non ci sono risultati.

Plan • Present*and*future*challenges •

N/A
N/A
Protected

Academic year: 2021

Condividi "Plan • Present*and*future*challenges •"

Copied!
9
0
0

Testo completo

(1)

1

Plan

•  Present*and*future*challenges

•  The*technological*growth

•  Impact*on*business*and*job*market

•  Managers*role*?*

•  Ethical*and*Philosophical*issues

2

Why*now?**

ExponenAal*growth*in*compuAng*power

ExponenAal*grown*in*compuAng*power

1996 2006 (9 years later!)

ASCI Red, the world faster

supercomputer Sony PlayStation 3

$55 million $500

1,600 square feet 1/10 of a square feet

1.8 teraflops (1.8 trillion, i.e. 1012 operations per second)

1.8 teraflops

800,000 watts per hour 200 watts per hour

PRINTED BY: Maurizio Gabbrielli <[email protected]>. Printing is for personal, private use only. No part of this book may be reproduced or transmitted without publisher's prior permission. Violators will be prosecuted.

(2)

5

How*much*would*an*iPhone*have*cost*in*1991?

32GB*of*flash*memory:*$1,44*million

1*GB*in*1991:*$45,000,*now*it*costs*$0.55 Processor:*$*620,000

ConnecAvity:*$1,5*million

!*$3,56*million!

Plus*camera,*moAonUdetecAon,*operaAng*system,*display,*

etc.

6

So*much*more*processing*power*now!

Our*phone*has*the*same*power*as*all*of*NASA*in*1969,*when*they*

sent*a*man*to*the*moon!

The*chip*in*our*birthday*cards*is*more*powerful*than*all*allied*

forces*in*1945!

Google*has*1,800,000*servers,*43*petaflops!

1*petaflop:*1,000*trillions*=*1015*operaAons*per*second

7

Why*now?

Cheap*parallel*computaAon Big*data

Incredible*amount*of*data*available*about*world,*

human*behavior

They*can*be*used*as*examples,*teaching*AIs*to*be*

smarter

Be\er*algorithms*and*models

Deep*learning

Good*reusable*openUsource*so^ware

8

More%and%more%people%connected%every%day%

(3)

9

More%and%more%people%connected%every%day%

10

Not%just%people,%but%also%things%

Everybody%can%be%an%innovator!%

More*than*6*billion*mobile*phones*in*2012

All*these*people*can Search*the*web Read*wikipedia Follow*online*courses

Share*opinions*in*blogs,*twi\er,*etc.

Impact*on*businesses*and*job*market

cognitive manual

routine Processing

payments, Bank tellers, cashiers, mail clerks, translation, accounting, driving, Secretary, real estate

Machine operators, cement masons, janitors, house cleaning

Non-routine Handling customers’

questions, Financial analysis

Hair-dressing

(4)

13

Tehnology*changes*and*jobs

Kodak:*

1984:*45,000*people 2012:*bankrupt!

Instagram:

2012:*13*people,*sold*to*FB*for*$1*Billion

Foxconn*(electronics*components*manifacturing)

$100*Billion 1,2*Million*people

Is*gedng*an*army*of*1*Million*robots!

*

Same*at*Canon*and*many*others

14

The*future*of*jobs

Oxford*researchers*using*machine*learning*(2013)*:*

47%* of* jobs* in* US* will* be* replaced* in* 20* years* by**

automaAon.*Three*steps

1.  People* replaced* in* vulnerable* fields:* producAons,*

transportaAon/logisAcs,*administraAve*support**

2.  Slow* down* of* replacement* due* to* engineering*

bo\leneck:* creaAve* intelligence,* social* intelligence,*

percepAon*and*manipulaAoon*

3.  AI* will* allow* to* replace* jobs* in* management,* science,*

engineering,*arts*

*" The" future" of" employment.* C.* Benedikt* Frey* and* M.* Osborne.* Oxford*

MarAn**School*at*the*University*of*Oxford.*2013.

15

The*future*of*jobs

More*recent*study***(2016)

1.  77%*of*jobs*in*China*and*69%*of*jobs*in*India*at*risk 2.  Greater* inequaliAes:* divergence* in* penetraAon* rates* of*

technology* adopAon* can* account* for* the* 82%* of* the*

increase* in* the* income* gap* across* the* globe* in* the* last*

180*years.*

In*1820,*incomes*in*Western*countries*were*1.9*Ames*those*in*

the*nonU Western.*In*2000,*7.2*Ames*!

***Technology"at"Work"v2.0:"The"Future"Is"Not"What"It"Used"To"Be.*CiA*GPS*

and*the*Oxford*MarAn*School*at*the*University*of*Oxford.*2016*.

16

On*the*other*hand*…

1.  InnovaAon*is*important*for*the*growth 2.  AI*is*important*for*innovaAon*

(5)

17

AI*and*management

18

Five*pracAces*that*successful*managers*will*need*to*master*[1]*

*

1)*Leave*AdministraAon*to*AI

Data*analyAcs*company*Tableau*and*NPL*company*NarraAve*Science*developed**a*

so^ware*that*automaAcally*creates*wri\en*explanaAons*for*Tableau*graphics.

86%*of*the*surveyed**managers*like*AI*support*for*monitoring*and*reporAng.

2)*Focus*on*Judgment*Work

Many*decisions*require*knowledge*of*organizaAonal*history*and*culture,*empathy,*

ethical*reflecAon.*AI*provides*support*for*decision,*not*replacement

3)*Treat*AI*Machines*as*“colleagues”*not*compeAtors

AI*can*provide*decision*support,*dataUdriven*simulaAons,*search*and*discovery*

acAviAes.*

78%*believe*they*will*trust*the*advice*of**AI*in*making*business*decisions Kensho*Technologies*system*allows*investment*managers*to*ask**quesAons*in*

plain*English,*such*as,*“What*sectors*and*industries*perform*best*three*months*

before*and*a^er*a*rate*hike?”

[1]*How"ArDficial"Intelligence"Will"Redefine"Management.*Vegard*Kolbjørnsrud,*

Richard*Amico,*and*Robert*J.*Thomas.*November*2016.*Harvard*business*review.

19

Five*pracAces*that*successful*managers*will*need*to*master*[1]*

4)*Work*Like*a*designer

ability*to*harness*others’*creaAvity

33%* of* the* managers* idenAfied* creaAve* thinking* and* experimentaAon* as* a* key*

skill*area*they*need*to*learn*to*stay*successful

5)*Develop*Social*Skills*and*Networks

The* managers* undervalued* the* social* skills* criAcal* to* networking,* coaching,* and*

collaboraAng* that* will* help* them* in* a* world* where* AI* carries* out* many* of* the*

administraAve*and*analyAcal*tasks*they*perform*today.

More*SuggesAons

a) Explore*AI*early.*DisrupAon*is*arriving

b)  Adopt*new*key*performance*indicators.*AI*will*bring*new*criteria*for*success:*

collaboraAon* capabiliAes,* informaAon* sharing,* learning* and* decisionUmaking*

effecAveness,*and*the*ability*to*reach*beyond*the*organizaAon*for*insights.

c)  Develop* training* and* recruitment* strategies*for* creaAvity,* collaboraAon,*

empathy,*and*judgment*skills.*Leaders*should*develop*a*diverse*workforce

20

Philosophical*and*ethical*issues*

Weak*AI

Can*we*build*machines*that*could*act*as*if*they*were*

intelligent*?

Strong**AI

Can*we*build*machines*that*are*actually*intelligent*?

Depend*very*much*on*the*meaning*of*“intelligence”

AI*researchers*take*weak*AI*for*granted*(and*do*not*care*

too*much*about*strong*AI*hypothesis)

(6)

21

Consciousness*ObjecAon*to*AI

Can*machines*think*?*Turing*recognized*this*as*an*a*illUposed*quesAon*U>*Turing*

test*

Many* claim* that* a* machine* that* passes* the* Turing* Test* would* not* be* actually*

thinking,* but* would* be* only* a* simulaAon* of* thinking:*Chinese* room* (J* Searle.*

1980**and*G.*Jefferson*1949):

“Not* unAl* a* machine* could* write* a* sonnet* or* compose* a* concerto* because* of*

thoughts* and* emoAons* felt,* and* not* by* the* chance* fall* of* symbols,* could* we*

agree*that*machine*equals*brain—that*is,*not*only*write*it*but*know*that*it*had*

wri\en*it”.

Turing*had*foreseen*this*consciousness*objecAon.*His*answer*is*interesAng:

“In* ordinary* life* we* never* have* any* direct* evidence* about* the* internal* mental*

states*of*other*humans.*Instead*of*arguing*conAnually*over*this*point,*it*is*usual*

to*have*the*polite*convenAon*that*everyone*thinks.”

*

22

Other*objecAons*to*AI*(some**foreseen*by*Turing)

1.  The*Theological*ObjecAon*(only*beings*created*by*God*can*think)

2.  The* MathemaAcal* ObjecAon.* J.R.* Lucas* 1961,* R.* Penrise* 1994* (based* on*

Goedel* incompleteness* theorem* 1930:* any* formal* theory* as* strong* as*

Peano* arithmeAc* contain* true* statements* that* have* no* proof* within* the*

theory*itself).

3.  Various* DisabiliAes*(cannot* be* kind,* resourceful,* beauAful,* friendly,* have*

iniAaAve,*have*a*sense*of*humor,*fall*in*love,*enjoy*strawberries*and*cream) 4.  Lady* Lovelace's* ObjecAon*"The* AnalyAcal* Engine* has* no* pretensions* to*

originate* anything.* It* can* do* whatever* we* know* how* to* order* it* to*

perform”.*Lady*Lovelace*(*1842)

5.  Informality*of*Behaviour**(impossible*to*provide*rules*that*describe*how*to*

behave*in*any*possible*situaAon)

23

Two*opposite*views

1:* Biological* naturalism:* mental* states* are* highUlevel* emergent* features* that*

are* caused* by* lowUlevel* physical* processes* in* the* neurons,* and* it* is* the*

(unspecified)*properAes*of*the*neurons*that*ma\er.*Searle*1980.

Chinese*room

Monolingual*English*speaker*hand*tracing*

a*natural*language*understanding*program For*Chinese*following*instrucAons*wri\en*

In*English

From*the*outside*we*see*a*system*that*answer*

In*Chinese*but*there*is*no*understanding*of*

Chinese

24

Two*opposite*views

2.*FuncAonalism:*a*mental*state*is*any*intermediate*causal*condiAon*between*

input* and* output.* Any* two* systems* with* isomorphic* causal* processes* would*

have*the*same*mental*states.*Therefore,*a*computer*program*could*have*the*

same*mental*states*as*a*person.*The*assumpAon*is*that*there*is*some*level*of*

abstracAon*below*which*the*specific*implementaAon*does*not*ma\er.

Brain*replacement*experiment*(H.*Moravec*1988):

•  Piecemeal* replacement* of* neurons* by* funcAonally* equivalent* electronic*

devices.*

•  The*external*behaviour*remain*the*same

•  For* funcAonalists* (e.g.* Moravec)* the* internal* behaviour* (i.e.* the*

consciousness)*would*remain*the*same.

•  For*biological*naturalists*(Searle)*the*consciousness*would*vanish

A*more*general*Mind*Body*problem

(7)

25

Ethical*issues***

Machine*ethics

ComputaAonal*and*philosophical*assumpAons*for*

machines*which*can*take*autonomous*moral*decisions

Autonomous*vehicles:*who*should*be*killed*in*case*of*

accident*?

Medical*robots:*should*they*always*tell*the*truth*to*

paAents*?

**With*the*help*of*Daniela*Tofani.

26

Machine*ethics*

How*can*we*guarantee*that*machines*do*not*take*

“immoral”*decisions*?

1.  *Simple*rules*(e.g.*Asimov*three*roboAcs*laws)*are*not*

enough,*given*the*complex*contextual*informaAon 2.  SimulaAon*of*moral*decision*and*acAons*of*humans*is*

not*enough,*since*humans*take*also*bad*moral*

decisions:*machines*need*to*be*“saint”

Machine*ethics*

We*would*need

1.  A*normaAve*ethics*which*solves*all*exisAng*moral*

dilemmas*and*which*is*accepted*by*most*humans 2.  A*translaAon*of*such*an*ethics*in*computaAonal*terms 3.  The*ability*to*incorporate*commonsense*reasoning*in*

machines

Three*huge*problems*!

Machine*ethics*

Moreover,*human*behaviours*and*machine*behaviours*are*

ruled*by*different*laws*!!

*An*example*with*the*(famous)*trolley*problem

(8)

29

Machine*ethics*

Moreover,*human*behaviours*and*machine*behaviours*are*

ruled*by*different*laws*!!*(That*is*differnet*legal*liabiliAes*

apply)

An*example*with*the*famous*(modified)*trolley*problem

Electronic copy available at: https://ssrn.com/abstract=2881280

A B C

Figure 1: Three scenarios involving imminent unavoidable harm

c. The AV can either stay on course and kill several pedestrians or swerve and kill its own passenger.

The common factor in all these scenarios is that harm to persons is unavoid- able, so that a choice needs to be made as to which person will be harmed:

passengers, pedestrians, or passersby.

This raises the issue of who should select the criteria the AV should follows in making such choices: should the same mandatory ethics setting (MES) be implemented in all cars or should every driver have the choice to select his or her own personal ethics setting (PES).

Gogoll and M¨uller (2016) submit that despite the advantages of a PES, a mandatory MES is actually in the best interest of society as a whole. In par- ticular, they argue that (1) implementing a PES will lead to socially unwanted outcomes; (2) a MES that minimizes the risk of people being harmed in traffic is in the considered interest of society; and (3) AVs, at least under some cir- cumstances, should sacrifice their drivers in order to save a greater number of lives.

Millar (2015) observes that technologies may act as moral proxies, imple- menting moral choices. He argues that user/owners, rather than designers should maintain responsibility for such choices. In particular “designers [...]

should reasonably strive to build options into self driving cars allowing the choice to be left to the user.”

According to a study by Bonnefon et al (2016), through three on-line surveys conducted in June 2015, people are comfortable with the idea that AVs should

2

30

Trolley*problem*liability*analysis*

1:*Human*driven*car*

In*scenario*(a),*the*choice*to*stay*on*course*and*let*several*pedestrians*be*

killed,*rather*than*to*swerve*and*kill*one*passerby,*can*be*jusAfied*on*the*

moralUlegal*stance*condemning*the*wilful*causaAon*of*death*(as*

disAnguished*by*ledng*death*result*from*one’s*omission).*

In*scenario*(b),*the*choice*to*stay*on*course*can*be*jusAfied*by*invoking*

the*state*of*necessity,*since*this*choice*is*necessary*to*save*the*life*of*the*

driver.*

The*same*jusAficaAon*applies*to*scenario*(c),*even*though*in*this*case*the*

driver’s*choice*to*save*his*or*her*own*life*leads*to*the*death*of*several*

other*persons.*

**The*Ethical*Knob:*EthicallyUCustomisable*Automated*Vehicles*and*the*Law.*Giuseppe*ConAssa*

Francesca*Lagioia*Giovanni*Sartor.*2017*

31

Trolley*problem*liability*analysis*

2:*PreUprogrammed*Autonomous*Vehicle*

In* scenario* (a)*it* is* doub|ul* whether* the* programmer* would* be* jusAfied*when* choosing* to*

program*an*AV*so*that*it*stays*on*course*and*kills*several*pedestrians*rather*than*swerving*and*

killing* just* one* passerby.* In* fact,* the* disAncAon* between* omidng* to* intervene* (ledng* the* car*

follow*its*path)*and*act*in*a*determined*way*(choosing*to*swerve)—a*disAncAon*that*in*the*case*

of*a*manned*car*may*jusAfy*the*human*choice*of*allowing*the*car*to*keep*going*straight—does*

not*seem*to*apply*to*the*programmer,*since*the*la\er*would*deliberately*choose*to*sacrifice*a*

higher*number*of*lives.*

Scenario* (b):* When* the* perpetrator* is* not* directly* in* danger* and* does* not* act* out* of* selfU preservaAon* (or* kinUpreservaAon),* the* applicability* of* the* general* stateUofUnecessity* defence* is*

controversial.*For*instance,*Santoni*de*Sio*(2017)*argues*that*the*law*does*not*generally*allow*an*

innocent*person*to*be*killed*for*saving*other*people’s*life.*On*this*basis*he*rejects*the*uAlitarian*

preUprogramming* of* AVs.*If* the* legal* jurisdicAon* allows* for* such* parAcular* case* of* state* of*

necessity,*then*the*programmer*would*not*be*punishable*for*either*choice.*Otherwise,*if*this*is*

not*accepted*by*the*jurisdicAon,*then*it*is*very*doub|ul*whether*preproU*gramming*the*car*either*

to* go* straight* (killing* a* pedestrian)* or* to* swerve* (killing* the* passenger)* would* be* legally*

acceptable:*in*both*cases*the*programmer*would*arbitrarily*choose*between*two*lives.* In*scenario*(c),*it*seems*that*preprogramming*the*car*to*conAnue*on*its*trajectory,*causing*the*

death*of*a*higher*number*of*people,*could*not*be*morally*and*legally*jusAfied*in*any*jurisdicAon:*

it*would*amount*to*an*arbitrary*choice*to*kill*many*rather*than*one.*

**The*Ethical*Knob:*EthicallyUCustomisable*Automated*Vehicles*and*the*Law.*Giuseppe*ConAssa*Francesca*

Lagioia*Giovanni*Sartor.*2017*

32

Conclusions:*developing*a*society*of*minds*and*machines**…**

•  Cheap,*reliable,*digital*smartness*running*behind*everything,*

almost*invisible

•  As* machines* will* replace* and* augment* humans* in* more* and*

more*tasks,*we*will*be\er*understand*what*makes*us*humans*

and*what*intelligence*means*

•  More*free*Ame,*less*need*for*working*

•  Amplifying*human*and*collecAvity*capabiliAes

(9)

33

…*but*should*we*really*do*that?*

• Many*jobs*will*be*lost:*need*to*redefine*policies*and*economies

• People*might*lose*their*sense*of*being*unique

•  Humanity*has*survived*other*setbacks*(Copernicus,*Darwin*…)

• AI*systems*might*be*used*toward*undesirable*ends

•  U.S.*military*deployed*over*17*000*autonomous*vehicles*in*Iraq*

• The*use*of*AI*systems*might*result*in*a*loss*of*accountability

•  Responsibility*for*wrong*diagnosis/decisions*?*Health,*finance,*cars*…

• The*success*of*AI*might*mean*the*end*of*the*human*race

•  AI*system’s*state*esAmaAon*may*be*incorrect

•  Right*uAlity*funcAon*for*an*AI*system*to*maximize*(human*suffering…)

•  Learning*allow*to*develop*unintended*behaviour:*technological*singularity

34

A*last*word*by**A.*Turing

We"can"see"only"a"short"distance"ahead,"

but"we"can"see"that"much"remains"to"be"done.

Thanks

*

Suggested*readings

•  The"second"machine"age.*Erik*Brynjolfsson*and*Andrew*

McAfee,*Norton,*2014

•  Physics"of"the"future."Michio*Kaku,*Anchor,*2012

•  Superintelligence:"path,"dangers,"strategies."Nick*

Bostrom,*Oxford*Univ.*Press,*2014

•  Smarter"than"us:"the"rise"of"machine"intelligence.*Stuart*

Armstrong,*MIRI,*2014

•  The"glass"cage:"automaDon"and"us."Nicholas*Carr,*Norton,*

2014 but*also*…*

•  A.*Turing.*CompuDng"Machinery"and"Intelligence.*1950.*

Riferimenti

Documenti correlati

Abstract: Non-Celiac Gluten Sensitivity (NCGS) is a syndrome characterized by intestinal and extra-intestinal symptoms related to the ingestion of gluten-containing food, in

Our research seeks to find good variable order metrics and good variable or- der heuristics for MDDs encoding sets of fixed-size vectors, when these vectors satisfy some

Schaufeli and Taris, 2014 ), this study aims to contribute to the understanding of the relationship between supplemental work during off-work hours assisted by technology

While hysteresis thresholding and region growing base the membership to a segment on the value of the X-Ray absorption at a specific voxel, Sobel algorithm is based on the search

Several exclusive search regions are defined based on the number of jets and b-tagged jets, the scalar sum of the jet transverse momenta, and the scalar sum of the missing

Furthermore, the index S p gives no information on fracture propagation when spalling occurs, this limitation being critical in the case - for instance - of

Il rilievo di Treviso e di Ceneda, entrambe sedi di ducato nel regno longobardo, all’interno di quella porzione nordorientale dello stesso che, dall’VIII secolo, le fonti

Abstract Small area estimation (SAE) based on linear mixed models can be in- efficient to deal with semicontinuous variables that have a portion of values equal to zero and