• Non ci sono risultati.

Bibliografia 122

N/A
N/A
Protected

Academic year: 2021

Condividi "Bibliografia 122"

Copied!
16
0
0

Testo completo

(1)
(2)

Adelmann, H. (1936). The problem of cyclopia, Pt. I. Q. Rev. Biol. 11,

161-182.

Alvarez Otero, R., Sotelo, C. and Alvarado-Mallart, R. M. (1993).

Chick/quail chimeras with partial cerebellar grafts: an analysis of the origin and migration of cerebellar cells. J Comp Neurol 333, 597-615.

Andreazzoli, M., Gestri, G., Angeloni, D., Menna, E. and Barsacchi, G.

(1999). Role of Xrx1 in Xenopus eye and anterior brain development. Development 126, 2451-60.

Andreazzoli, M., Gestri, G., Cremisi, F., Casarosa, S., Dawid, I. B. and Barsacchi, G. (2003). Xrx1 controls proliferation and neurogenesis in Xenopus

anterior neural plate. Development 130, 5143-54.

Balinsky, B. I. (1975). An introduction to embryology. Philadelphia:

Saunders.

Bard, J. (1990). Morphogenesis : the cellular and molecular basis of

developmental anatomy. Cambridge [England] ; New York: Cambridge University Press.

Belecky-Adams, T., Tomarev, S., Li, H. S., Ploder, L., McInnes, R. R., Sundin, O. and Adler, R. (1997). Pax-6, Prox 1, and Chx10 homeobox gene

expression correlates with phenotypic fate of retinal precursor cells. Invest Ophthalmol Vis Sci 38, 1293-303.

Bernier, G., Panitz, F., Zhou, X., Hollemann, T., Gruss, P. and Pieler, T.

(2000). Expanded retina territory by midbrain transformation upon overexpression of Six6 (Optx2) in Xenopus embryos. Mech Dev 93, 59-69.

Bernier, G., Vukovich, W., Neidhardt, L., Herrmann, B. G. and Gruss, P.

(2001). Isolation and characterization of a downstream target of Pax6 in the mammalian retinal primordium. Development 128, 3987-94.

Blitz, I. L. and Cho, K. W. (1995). Anterior neurectoderm is progressively

induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle. Development 121, 993-1004.

Bourguignon, C., Li, J. and Papalopulu, N. (1998). XBF-1, a winged helix

transcription factor with dual activity, has a role in positioning neurogenesis in Xenopus competent ectoderm. Development 125, 4889-900.

Bovolenta, P., Mallamaci, A., Puelles, L. and Boncinelli, E. (1998).

Expression pattern of cSix3, a member of the Six/sine oculis family of transcription factors. Mech Dev 70, 201-3.

Bray, S. (1998). Notch signalling in Drosophila: three ways to use a pathway.

(3)

Callaerts, P., Halder, G. and Gehring, W. J. (1997). PAX-6 in development

and evolution. Annu Rev Neurosci 20, 483-532.

Carl, M., Loosli, F. and Wittbrodt, J. (2002). Six3 inactivation reveals its

essential role for the formation and patterning of the vertebrate eye. Development 129, 4057-63.

Carruthers, S., Mason, J. and Papalopulu, N. (2003). Depletion of the

cell-cycle inhibitor p27(Xic1) impairs neuronal differentiation and increases the number of ElrC(+) progenitor cells in Xenopus tropicalis. Mech Dev 120, 607-16.

Casarosa, S., Andreazzoli, M., Simeone, A. and Barsacchi, G. (1997).

Xrx1, a novel Xenopus homeobox gene expressed during eye and pineal gland development. Mech Dev 61, 187-98.

Catala, M., Teillet, M. A., De Robertis, E. M. and Le Douarin, M. L. (1996).

A spinal cord fate map in the avian embryo: while regressing, Hensen's node lays down the notochord and floor plate thus joining the spinal cord lateral walls. Development 122, 2599-610.

Cepko, C. L., Austin, C. P., Yang, X., Alexiades, M. and Ezzeddine, D.

(1996). Cell fate determination in the vertebrate retina. Proc Natl Acad Sci U S A 93, 589-95.

Chiang, C., Litingtung, Y., Lee, E., Young, K. E., Corden, J. L., Westphal, H. and Beachy, P. A. (1996). Cyclopia and defective axial patterning in mice

lacking Sonic hedgehog gene function. Nature 383, 407-13.

Chitnis, A., Henrique, D., Lewis, J., Ish-Horowicz, D. and Kintner, C.

(1995). Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature 375, 761-6.

Chow, R. L., Altmann, C. R., Lang, R. A. and Hemmati-Brivanlou, A.

(1999). Pax6 induces ectopic eyes in a vertebrate. Development 126, 4213-22.

Chow, R. L. and Lang, R. A. (2001). Early eye development in vertebrates.

Annu Rev Cell Dev Biol 17, 255-96.

Chuang, J. C. and Raymond, P. A. (2001). Zebrafish genes rx1 and rx2

help define the region of forebrain that gives rise to retina. Dev Biol 231, 13-30.

Chuang, J. C. and Raymond, P. A. (2002). Embryonic origin of the eyes in

teleost fish. Bioessays 24, 519-29.

Cremisi, F., Philpott, A. and Ohnuma, S. (2003). Cell cycle and cell fate

interactions in neural development. Curr Opin Neurobiol 13, 26-33.

Crossley, P. H., Martinez, S. and Martin, G. R. (1996). Midbrain

(4)

Cvekl, A. and Piatigorsky, J. (1996). Lens development and crystallin gene

expression: many roles for Pax-6. Bioessays 18, 621-30.

Davis, R. J., Tavsanli, B. C., Dittrich, C., Walldorf, U. and Mardon, G.

(2003). Drosophila retinal homeobox (drx) is not required for establishment of the visual system, but is required for brain and clypeus development. Dev Biol

259, 272-87.

Dawson, S. R., Turner, D. L., Weintraub, H. and Parkhurst, S. M. (1995).

Specificity for the hairy/enhancer of split basic helix-loop-helix (bHLH) proteins maps outside the bHLH domain and suggests two separable modes of transcriptional repression. Mol Cell Biol 15, 6923-31.

de la Calle-Mustienes, E., Glavic, A., Modolell, J. and Gomez-Skarmeta, J. L. (2002). Xiro homeoproteins coordinate cell cycle exit and primary neuron

formation by upregulating neuronal-fate repressors and downregulating the cell-cycle inhibitor XGadd45-gamma. Mech Dev 119, 69-80.

Eagleson, G., Ferreiro, B. and Harris, W. A. (1995). Fate of the anterior

neural ridge and the morphogenesis of the Xenopus forebrain. J Neurobiol 28, 146-58.

Eagleson, G. W. and Dempewolf, R. D. (2002). The role of the anterior

neural ridge and Fgf-8 in early forebrain patterning and regionalization in Xenopus laevis. Comp Biochem Physiol B Biochem Mol Biol 132, 179-89.

Eagleson, G. W. and Harris, W. A. (1990). Mapping of the presumptive

brain regions in the neural plate of Xenopus laevis. J Neurobiol 21, 427-40.

Echevarria, D., Vieira, C., Gimeno, L. and Martinez, S. (2003).

Neuroepithelial secondary organizers and cell fate specification in the developing brain. Brain Res Brain Res Rev 43, 179-91.

Eggert, T., Hauck, B., Hildebrandt, N., Gehring, W. J. and Walldorf, U.

(1998). Isolation of a Drosophila homolog of the vertebrate homeobox gene Rx and its possible role in brain and eye development. Proc Natl Acad Sci U S A

95, 2343-8.

Ermakova, G. V., Alexandrova, E. M., Kazanskaya, O. V., Vasiliev, O. L., Smith, M. W. and Zaraisky, A. G. (1999). The homeobox gene, Xanf-1, can

control both neural differentiation and patterning in the presumptive anterior neurectoderm of the Xenopus laevis embryo. Development 126, 4513-23.

Fantl, V., Stamp, G., Andrews, A., Rosewell, I. and Dickson, C. (1995).

Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev 9, 2364-72.

Finkelstein, R. and Boncinelli, E. (1994). From fly head to mammalian

(5)

Finkelstein, R., Smouse, D., Capaci, T. M., Spradling, A. C. and Perrimon, N. (1990). The orthodenticle gene encodes a novel homeo domain

protein involved in the development of the Drosophila nervous system and ocellar visual structures. Genes Dev 4, 1516-27.

Forehand, C. J. and Farel, P. B. (1982). Spinal cord development in anuran

larvae: I. Primary and secondary neurons. J Comp Neurol 209, 386-94.

Furukawa, T., Kozak, C. A. and Cepko, C. L. (1997). rax, a novel

paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc Natl Acad Sci U S A 94, 3088-93.

Gammill, L. S. and Sive, H. (2001). otx2 expression in the ectoderm

activates anterior neural determination and is required for Xenopus cement gland formation. Dev Biol 240, 223-36.

Gamse, J. T. and Sive, H. (2001). Early anteroposterior division of the

presumptive neurectoderm in Xenopus. Mech Dev 104, 21-36.

Gilbert, S. F. (2000). Developmental biology, (ed. Sunderland, Mass.:

Sinauer Associates.

Glaser, T., Walton, D. S. and Maas, R. L. (1992). Genomic structure,

evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat Genet 2, 232-9.

Goudreau, G., Petrou, P., Reneker, L. W., Graw, J., Loster, J. and Gruss, P. (2002). Mutually regulated expression of Pax6 and Six3 and its implications

for the Pax6 haploinsufficient lens phenotype. Proc Natl Acad Sci U S A 99, 8719-24.

Granadino, B., Gallardo, M. E., Lopez-Rios, J., Sanz, R., Ramos, C., Ayuso, C., Bovolenta, P. and Rodriguez de Cordoba, S. (1999). Genomic

cloning, structure, expression pattern, and chromosomal location of the human SIX3 gene. Genomics 55, 100-5.

Grindley, J. C., Davidson, D. R. and Hill, R. E. (1995). The role of Pax-6 in

eye and nasal development. Development 121, 1433-42.

Grindley, J. C., Hargett, L. K., Hill, R. E., Ross, A. and Hogan, B. L.

(1997). Disruption of PAX6 function in mice homozygous for the Pax6Sey-1Neu mutation produces abnormalities in the early development and regionalization of the diencephalon. Mech Dev 64, 111-26.

Hallonet, M. and Alvarado-Mallart, R. M. (1997). The chick/quail chimeric

system: a model for early cerebellar development. Perspect Dev Neurobiol 5, 17-31.

Hanson, I. M., Seawright, A., Hardman, K., Hodgson, S., Zaletayev, D., Fekete, G. and van Heyningen, V. (1993). PAX6 mutations in aniridia. Hum

(6)

Hardcastle, Z. and Papalopulu, N. (2000). Distinct effects of XBF-1 in

regulating the cell cycle inhibitor p27(XIC1) and imparting a neural fate. Development 127, 1303-14.

Harland, R. (2000). Neural induction. Curr Opin Genet Dev 10, 357-62.

Harland, R. M. (1991). In situ hybridization: an improved whole-mount

method for Xenopus embryos. Methods Cell Biol 36, 685-95.

Harris, W. A. (1997). Cellular diversification in the vertebrate retina. Curr

Opin Genet Dev 7, 651-8.

Hartenstein, V. (1989). Early neurogenesis in Xenopus: the spatio-temporal

pattern of proliferation and cell lineages in the embryonic spinal cord. Neuron 3, 399-411.

Hatta, K., Puschel, A. W. and Kimmel, C. B. (1994). Midline signaling in the

primordium of the zebrafish anterior central nervous system. Proc Natl Acad Sci U S A 91, 2061-5.

Hay, E. D. (1979). Development of the vertebrate cornea. Int Rev Cytol 63,

263-322.

Heasman, J. (2002). Morpholino oligos: making sense of antisense? Dev

Biol 243, 209-14.

Heasman, J., Kofron, M. and Wylie, C. (2000). Beta-catenin signaling

activity dissected in the early Xenopus embryo: a novel antisense approach. Dev Biol 222, 124-34.

Hirsch, N. and Harris, W. A. (1997). Xenopus Pax-6 and retinal

development. J Neurobiol 32, 45-61.

Hogan, B. L., Horsburgh, G., Cohen, J., Hetherington, C. M., Fisher, G. and Lyon, M. F. (1986). Small eyes (Sey): a homozygous lethal mutation on

chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J Embryol Exp Morphol 97, 95-110.

Houart, C., Caneparo, L., Heisenberg, C., Barth, K., Take-Uchi, M. and Wilson, S. (2002). Establishment of the telencephalon during gastrulation by

local antagonism of Wnt signaling. Neuron 35, 255-65.

Houart, C., Westerfield, M. and Wilson, S. W. (1998). A small population of

anterior cells patterns the forebrain during zebrafish gastrulation. Nature 391, 788-92.

Hubrecht-Laboratorium (Embryologisch Instituut), Nieuwkoop, P. D. and Faber, J. (1967). Normal table of Xenopus laevis (Daudin). : A systematical

and chronological survey of the development from the fertilized egg till the end of metamorphosis. Amsterdam: North-Holland Pub. Co.

(7)

Isaacs, H. V., Andreazzoli, M. and Slack, J. M. (1999). Anteroposterior

patterning by mutual repression of orthodenticle and caudal-type transcription factors. Evol Dev 1, 143-52.

Jean, D., Bernier, G. and Gruss, P. (1999). Six6 (Optx2) is a novel murine

Six3-related homeobox gene that demarcates the presumptive pituitary/hypothalamic axis and the ventral optic stalk. Mech Dev 84, 31-40.

Kablar, B., Vignali, R., Menotti, L., Pannese, M., Andreazzoli, M., Polo, C., Giribaldi, M. G., Boncinelli, E. and Barsacchi, G. (1996). Xotx genes in

the developing brain of Xenopus laevis. Mech Dev 55, 145-58.

Keller, R., Shih, J., Sater, A. K. and Moreno, C. (1992). Planar induction of

convergence and extension of the neural plate by the organizer of Xenopus. Dev Dyn 193, 218-34.

Kenyon, K. L., Zaghloul, N. and Moody, S. A. (2001). Transcription factors

of the anterior neural plate alter cell movements of epidermal progenitors to specify a retinal fate. Dev Biol 240, 77-91.

Kiecker, C. and Niehrs, C. (2001). A morphogen gradient of

Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128, 4189-201.

Kobayashi, M., Toyama, R., Takeda, H., Dawid, I. B. and Kawakami, K.

(1998). Overexpression of the forebrain-specific homeobox gene six3 induces rostral forebrain enlargement in zebrafish. Development 125, 2973-82.

Koyano-Nakagawa, N., Kim, J., Anderson, D. and Kintner, C. (2000).

Hes6 acts in a positive feedback loop with the neurogenins to promote neuronal differentiation. Development 127, 4203-16.

Kozak, M. (1987). An analysis of 5'-noncoding sequences from 699

vertebrate messenger RNAs. Nucleic Acids Res 15, 8125-48.

Kumar, J. P. and Moses, K. (2001). Eye specification in Drosophila:

perspectives and implications. Semin Cell Dev Biol 12, 469-74.

Lagutin, O., Zhu, C. C., Furuta, Y., Rowitch, D. H., McMahon, A. P. and Oliver, G. (2001). Six3 promotes the formation of ectopic optic vesicle-like

structures in mouse embryos. Dev Dyn 221, 342-9.

Lagutin, O. V., Zhu, C. C., Kobayashi, D., Topczewski, J., Shimamura, K., Puelles, L., Russell, H. R., McKinnon, P. J., Solnica-Krezel, L. and Oliver, G. (2003). Six3 repression of Wnt signaling in the anterior neuroectoderm is

essential for vertebrate forebrain development. Genes Dev 17, 368-79.

Lee, J. E., Hollenberg, S. M., Snider, L., Turner, D. L., Lipnick, N. and Weintraub, H. (1995). Conversion of Xenopus ectoderm into neurons by

(8)

Li, H., Tierney, C., Wen, L., Wu, J. Y. and Rao, Y. (1997). A single

morphogenetic field gives rise to two retina primordia under the influence of the prechordal plate. Development 124, 603-15.

Li, H. S., Yang, J. M., Jacobson, R. D., Pasko, D. and Sundin, O. (1994).

Pax-6 is first expressed in a region of ectoderm anterior to the early neural plate: implications for stepwise determination of the lens. Dev Biol 162, 181-94.

Loosli, F., Koster, R. W., Carl, M., Krone, A. and Wittbrodt, J. (1998).

Six3, a medaka homologue of the Drosophila homeobox gene sine oculis is expressed in the anterior embryonic shield and the developing eye. Mech Dev

74, 159-64.

Loosli, F., Winkler, S., Burgtorf, C., Wurmbach, E., Ansorge, W., Henrich, T., Grabher, C., Arendt, D., Carl, M., Krone, A. et al. (2001).

Medaka eyeless is the key factor linking retinal determination and eye growth. Development 128, 4035-44.

Loosli, F., Winkler, S. and Wittbrodt, J. (1999). Six3 overexpression

initiates the formation of ectopic retina. Genes Dev 13, 649-54.

Lupo, G., Andreazzoli, M., Gestri, G., Liu, Y., He, R. Q. and Barsacchi, G.

(2000). Homeobox genes in the genetic control of eye development. Int J Dev Biol 44, 627-36.

Lupo, G., Harris, W. A., Barsacchi, G. and Vignali, R. (2002). Induction

and patterning of the telencephalon in Xenopus laevis. Development 129, 5421-36.

Ma, Q., Kintner, C. and Anderson, D. J. (1996). Identification of

neurogenin, a vertebrate neuronal determination gene. Cell 87, 43-52.

Makarenkova, H. P., Ito, M., Govindarajan, V., Faber, S. C., Sun, L., McMahon, G., Overbeek, P. A. and Lang, R. A. (2000). FGF10 is an inducer

and Pax6 a competence factor for lacrimal gland development. Development

127, 2563-72.

Marquardt, T., Ashery-Padan, R., Andrejewski, N., Scardigli, R., Guillemot, F. and Gruss, P. (2001). Pax6 is required for the multipotent state

of retinal progenitor cells. Cell 105, 43-55.

Martinez-Morales, J. R., Signore, M., Acampora, D., Simeone, A. and Bovolenta, P. (2001). Otx genes are required for tissue specification in the

developing eye. Development 128, 2019-30.

Mathers, P. H., Grinberg, A., Mahon, K. A. and Jamrich, M. (1997). The

Rx homeobox gene is essential for vertebrate eye development. Nature 387, 603-7.

Mathers, P. H. and Jamrich, M. (2000). Regulation of eye formation by the

(9)

Matsuo, I., Kuratani, S., Kimura, C., Takeda, N. and Aizawa, S. (1995).

Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev 9, 2646-58.

Matsuo, T., Osumi-Yamashita, N., Noji, S., Ohuchi, H., Koyama, E., Myokai, F., Matsuo, N., Taniguchi, S., Doi, H., Iseki, S. et al. (1993). A

mutation in the Pax-6 gene in rat small eye is associated with impaired migration of midbrain crest cells. Nat Genet 3, 299-304.

Matsuo-Takasaki, M., Lim, J. H., Beanan, M. J., Sato, S. M. and Sargent, T. D. (2000). Cloning and expression of a novel zinc finger gene, Fez,

transcribed in the forebrain of Xenopus and mouse embryos. Mech Dev 93, 201-4.

McConnell, S. K. and Kaznowski, C. E. (1991). Cell cycle dependence of

laminar determination in developing neocortex. Science 254, 282-5.

Moody, S. A. (1999). Cell lineage and fate determination. San Diego:

Academic Press.

Mukhopadhyay, M., Shtrom, S., Rodriguez-Esteban, C., Chen, L., Tsukui, T., Gomer, L., Dorward, D. W., Glinka, A., Grinberg, A., Huang, S. P. et al. (2001). Dickkopf1 is required for embryonic head induction and limb

morphogenesis in the mouse. Dev Cell 1, 423-34.

Munoz-Sanjuan, I. and Brivanlou, H. (2001). Early posterior/ventral fate

specification in the vertebrate embryo. Dev Biol 237, 1-17.

Myers, D. C., Sepich, D. S. and Solnica-Krezel, L. (2002). Bmp activity

gradient regulates convergent extension during zebrafish gastrulation. Dev Biol

243, 81-98.

Nasevicius, A. and Ekker, S. C. (2001). The zebrafish as a novel system for

functional genomics and therapeutic development applications. Curr Opin Mol Ther 3, 224-8.

Nieuwkoop, P. D. (1963). Pattern formation in artificially activated ectoderm

(Rana pipiens and Ambystoma punctatum). Dev Biol 7, 255-79.

Nieuwkoop PD, B., E. C., Kremer, A., Bloesma, F. F. S. N., Hoessels, E. L. M. J., Meyer, G., and Verheyen, F. J. (1952). Activation and organization of

the central nervous system in Amphibians. J. Exp. Zool., 1-108.

Nieuwkoop PD, N., G. V. (1954). Neural activation and transformation in

explants of competent ectoderm under the influence of fragments of anterior notochord in urodeles. J.Embryol. Exp. Morph. 2, 175-193.

Nievelstein, R. A., Hartwig, N. G., Vermeij-Keers, C. and Valk, J. (1993).

Embryonic development of the mammalian caudal neural tube. Teratology 48, 21-31.

(10)

Nutt, S. L., Bronchain, O. J., Hartley, K. O. and Amaya, E. (2001).

Comparison of morpholino based translational inhibition during the development of Xenopus laevis and Xenopus tropicalis. Genesis 30, 110-3.

Ohuchi, H., Tomonari, S., Itoh, H., Mikawa, T. and Noji, S. (1999).

Identification of chick rax/rx genes with overlapping patterns of expression during early eye and brain development. Mech Dev 85, 193-5.

Oliver, G., Loosli, F., Koster, R., Wittbrodt, J. and Gruss, P. (1996).

Ectopic lens induction in fish in response to the murine homeobox gene Six3. Mech Dev 60, 233-9.

Oliver, G., Mailhos, A., Wehr, R., Copeland, N. G., Jenkins, N. A. and Gruss, P. (1995). Six3, a murine homologue of the sine oculis gene,

demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121, 4045-55.

Pannese, M., Polo, C., Andreazzoli, M., Vignali, R., Kablar, B., Barsacchi, G. and Boncinelli, E. (1995). The Xenopus homologue of Otx2 is a maternal

homeobox gene that demarcates and specifies anterior body regions. Development 121, 707-20.

Papalopulu, N. and Kintner, C. (1996). A posteriorising factor, retinoic acid,

reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neuroectoderm. Development 122, 3409-18.

Pera, E. M. and De Robertis, E. M. (2000). A direct screen for secreted

proteins in Xenopus embryos identifies distinct activities for the Wnt antagonists Crescent and Frzb-1. Mech Dev 96, 183-95.

Pera, E. M. and Kessel, M. (1997). Patterning of the chick forebrain anlage

by the prechordal plate. Development 124, 4153-62.

Pera, E. M., Wessely, O., Li, S. Y. and De Robertis, E. M. (2001). Neural

and head induction by insulin-like growth factor signals. Dev Cell 1, 655-65.

Perron, M., Furrer, M. P., Wegnez, M. and Theodore, L. (1999a). Xenopus

elav-like genes are differentially expressed during neurogenesis. Mech Dev 84, 139-42.

Perron, M., Opdecamp, K., Butler, K., Harris, W. A. and Bellefroid, E. J.

(1999b). X-ngnr-1 and Xath3 promote ectopic expression of sensory neuron markers in the neurula ectoderm and have distinct inducing properties in the retina. Proc Natl Acad Sci U S A 96, 14996-5001.

Pogoda, H. M., Solnica-Krezel, L., Driever, W. and Meyer, D. (2000). The

zebrafish forkhead transcription factor FoxH1/Fast1 is a modulator of nodal signaling required for organizer formation. Curr Biol 10, 1041-9.

(11)

Puschel, A. W., Gruss, P. and Westerfield, M. (1992). Sequence and

expression pattern of pax-6 are highly conserved between zebrafish and mice. Development 114, 643-51.

Rohr, K. B., Barth, K. A., Varga, Z. M. and Wilson, S. W. (2001). The nodal

pathway acts upstream of hedgehog signaling to specify ventral telencephalic identity. Neuron 29, 341-51.

Rubenstein, J. L., Shimamura, K., Martinez, S. and Puelles, L. (1998).

Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 21, 445-77.

Rupp, R. A., Snider, L. and Weintraub, H. (1994). Xenopus embryos

regulate the nuclear localization of XMyoD. Genes Dev 8, 1311-23.

Saha, M. S., Servetnick, M. and Grainger, R. M. (1992). Vertebrate eye

development. Curr Opin Genet Dev 2, 582-8.

Saha, M. S., Spann, C. L. and Grainger, R. M. (1989). Embryonic lens

induction: more than meets the optic vesicle. Cell Differ Dev 28, 153-71.

Sambrook, J. and Russell, D. W. (2001). Molecular cloning : a laboratory

manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press.

Sasai, Y. and De Robertis, E. M. (1997). Ectodermal patterning in

vertebrate embryos. Dev Biol 182, 5-20.

Sasai, Y., Lu, B., Steinbeisser, H., Geissert, D., Gont, L. K. and De Robertis, E. M. (1994). Xenopus chordin: a novel dorsalizing factor activated by

organizer-specific homeobox genes. Cell 79, 779-90.

Schedl, A., Ross, A., Lee, M., Engelkamp, D., Rashbass, P., van Heyningen, V. and Hastie, N. D. (1996). Influence of PAX6 gene dosage on

development: overexpression causes severe eye abnormalities. Cell 86, 71-82.

Schier, A. F., Neuhauss, S. C., Helde, K. A., Talbot, W. S. and Driever, W.

(1997). The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 124, 327-42.

Schmahl, W., Knoedlseder, M., Favor, J. and Davidson, D. (1993).

Defects of neuronal migration and the pathogenesis of cortical malformations are associated with Small eye (Sey) in the mouse, a point mutation at the Pax-6-locus. Acta Neuropathol (Berl) 86, 126-35.

Shimamura, K., Hartigan, D. J., Martinez, S., Puelles, L. and Rubenstein, J. L. (1995). Longitudinal organization of the anterior neural plate and neural

tube. Development 121, 3923-33.

Shimamura, K. and Rubenstein, J. L. (1997). Inductive interactions direct

(12)

Simeone, A., Acampora, D., Mallamaci, A., Stornaiuolo, A., D'Apice, M. R., Nigro, V. and Boncinelli, E. (1993). A vertebrate gene related to

orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. Embo J 12, 2735-47.

Simeone, A., D'Apice, M. R., Nigro, V., Casanova, J., Graziani, F., Acampora, D. and Avantaggiato, V. (1994). Orthopedia, a novel

homeobox-containing gene expressed in the developing CNS of both mouse and Drosophila. Neuron 13, 83-101.

Sirotkin, H. I., Gates, M. A., Kelly, P. D., Schier, A. F. and Talbot, W. S.

(2000). Fast1 is required for the development of dorsal axial structures in zebrafish. Curr Biol 10, 1051-4.

Stern, C. D. (2001). Initial patterning of the central nervous system: how

many organizers? Nat Rev Neurosci 2, 92-8.

St-Onge, L., Sosa-Pineda, B., Chowdhury, K., Mansouri, A. and Gruss, P. (1997). Pax6 is required for differentiation of glucagon-producing alpha-cells

in mouse pancreas. Nature 387, 406-9.

Summerton, J. (1999). Morpholino antisense oligomers: the case for an

RNase H-independent structural type. Biochim Biophys Acta 1489, 141-58.

Summerton, J. and Weller, D. (1997). Morpholino antisense oligomers:

design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7, 187-95.

Tian, E., Kimura, C., Takeda, N., Aizawa, S. and Matsuo, I. (2002). Otx2 is

required to respond to signals from anterior neural ridge for forebrain specification. Dev Biol 242, 204-23.

Ton, C. C., Hirvonen, H., Miwa, H., Weil, M. M., Monaghan, P., Jordan, T., van Heyningen, V., Hastie, N. D., Meijers-Heijboer, H., Drechsler, M. et al.

(1991). Positional cloning and characterization of a paired box- and homeobox-containing gene from the aniridia region. Cell 67, 1059-74.

Tsuda, H., Sasai, N., Matsuo-Takasaki, M., Sakuragi, M., Murakami, Y. and Sasai, Y. (2002). Dorsalization of the neural tube by Xenopus tiarin, a

novel patterning factor secreted by the flanking nonneural head ectoderm. Neuron 33, 515-28.

Tucker, P., Laemle, L., Munson, A., Kanekar, S., Oliver, E. R., Brown, N., Schlecht, H., Vetter, M. and Glaser, T. (2001). The eyeless mouse mutation

(ey1) removes an alternative start codon from the Rx/rax homeobox gene. Genesis 31, 43-53.

Turner, D. L. and Cepko, C. L. (1987). A common progenitor for neurons

(13)

Turner, D. L. and Weintraub, H. (1994). Expression of achaete-scute

homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev 8, 1434-47.

Varga, Z. M., Wegner, J. and Westerfield, M. (1999). Anterior movement of

ventral diencephalic precursors separates the primordial eye field in the neural plate and requires cyclops. Development 126, 5533-46.

Vernon, A. E., Devine, C. and Philpott, A. (2003). The cdk inhibitor p27Xic1

is required for differentiation of primary neurones in Xenopus. Development

130, 85-92.

Vernon, A. E. and Philpott, A. (2003). The developmental expression of cell

cycle regulators in Xenopus laevis. Gene Expr Patterns 3, 179-92.

Viczian, A. S., Vignali, R., Zuber, M. E., Barsacchi, G. and Harris, W. A.

(2003). XOtx5b and XOtx2 regulate photoreceptor and bipolar fates in the Xenopus retina. Development 130, 1281-94.

Vignali, R., Colombetti, S., Lupo, G., Zhang, W., Stachel, S., Harland, R. M. and Barsacchi, G. (2000). Xotx5b, a new member of the Otx gene family,

may be involved in anterior and eye development in Xenopus laevis. Mech Dev

96, 3-13.

Wallis, D. E., Roessler, E., Hehr, U., Nanni, L., Wiltshire, T., Richieri-Costa, A., Gillessen-Kaesbach, G., Zackai, E. H., Rommens, J. and Muenke, M. (1999). Mutations in the homeodomain of the human SIX3 gene

cause holoprosencephaly. Nat Genet 22, 196-8.

Walther, C. and Gruss, P. (1991). Pax-6, a murine paired box gene, is

expressed in the developing CNS. Development 113, 1435-49.

Wassef, M. and Joyner, A. L. (1997). Early mesencephalon/metencephalon

patterning and development of the cerebellum. Perspect Dev Neurobiol 5, 3-16.

Weinstein, D. C. and Hemmati-Brivanlou, A. (1999). Neural induction.

Annu Rev Cell Dev Biol 15, 411-33.

Wettstein, D. A., Turner, D. L. and Kintner, C. (1997). The Xenopus

homolog of Drosophila Suppressor of Hairless mediates Notch signaling during primary neurogenesis. Development 124, 693-702.

Wilson, S. W. and Easter, S. S., Jr. (1992). Acquisition of regional and

cellular identities in the developing zebrafish nervous system. Curr Opin Neurobiol 2, 9-15.

Wilson, S. W. and Houart, C. (2004). Early steps in the development of the

forebrain. Dev Cell 6, 167-81.

Wilson, S. W. and Rubenstein, J. L. (2000). Induction and dorsoventral

(14)

Winkler, S., Loosli, F., Henrich, T., Wakamatsu, Y. and Wittbrodt, J.

(2000). The conditional medaka mutation eyeless uncouples patterning and morphogenesis of the eye. Development 127, 1911-9.

Xu, J., Liu, Z. and Ornitz, D. M. (2000). Temporal and spatial gradients of

Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures. Development 127, 1833-43.

Young, R. W. (1985). Cell differentiation in the retina of the mouse. Anat Rec 212, 199-205.

Zaraisky, A. G., Lukyanov, S. A., Vasiliev, O. L., Smirnov, Y. V., Belyavsky, A. V. and Kazanskaya, O. V. (1992). A novel homeobox gene

expressed in the anterior neural plate of the Xenopus embryo. Dev Biol 152, 373-82.

Zhang, L., Mathers, P. H. and Jamrich, M. (2000). Function of Rx, but not

Pax6, is essential for the formation of retinal progenitor cells in mice. Genesis

28, 135-42.

Zuber, M. E., Gestri, G., Viczian, A. S., Barsacchi, G. and Harris, W. A.

(2003). Specification of the vertebrate eye by a network of eye field transcription factors. Development 130, 5155-67.

Zuber, M. E., Perron, M., Philpott, A., Bang, A. and Harris, W. A. (1999).

(15)

E Grazie…

Adesso viene la parte più difficile. Chi mi conosce sa perché il soprannome che mi è stato dato è imperatore…spero davvero di non lasciare fuori nessuna delle persone a cui tengo, che sono un’infinità. Se non ci siete, ragazzi, non fatemene una colpa, non mi sono dimenticato, sono solo stanco morto.

Devo ringraziare prima di tutto i miei genitori, per avermi permesso di arrivare fin qui, per avere avuto una pazienza infinita e avere aspettato tutto questo tempo che loro figlio si laureasse: grazie, papà, grazie mamma. E grazie Giorgio, Geoffrey e Wendy di avermi sopportato fino a oggi.

Un doveroso grazie va alla professoressa Giuseppina Barsacchi e a Massimiliano, che mi hanno guidato in questo mio ultimo periodo di studi e a cui ho rovinato le vacanze di Pasqua con la correzione della tesi..mi spiace, vi sono veramente riconoscente.

Un grazie a Silvia che, poverina, mi ha dovuto sorbire negli ultimi tempi, un ciao a Cristina, un grazie a Marzia e Dona, senza cui probabilmente starei ancora a colare gel, e un sentito grazie a tutti i fontiniani perché l’ambiente che create fa sentire veramente a casa, tanto che ci piace passare pure le notti e i week-end, in laboratorio. Un sentito saluto in nessun ordine preciso quindi a Marco, Riccardo, Devid, Teresa (che mi ha insegnato a microiniettare), Sara (M.O.V.), Robert, Federico, Emanuele, Robertina, Gaia (che mi ha fatto vedere come NON si tiene un bancone), Andrea (arriverà il giornoin cui te le farò IO le domandine su Otx2), Simone, Simona, Claudio, e mi fermo qui altrimenti ci scrivo un’altra tesi.

Come studente lontano da casa (fuori sede si dice) ho cercato di trovare una nuova famiglia di amici che surrogasse alla famiglia che mi ero lasciato dietro. Continuo sempre a ripetermi che sono molto fortunato: ne ho trovate tantissime.

Prima la Vecchia Guardia: Antonio, Rocco, Vincenzo, Pie, Simo, basta rubare le caramelle ai bambini! Grazie ragazzi, non so cosa farei senza di voi, forse sarei migliore, alla fine se davvero avrò un reddito potei mettermi a giocare coi pupazzetti, e voi sapete di che parlo.

Poi tutto il gruppone degli scardacci, con cui ho sprecato tutti questi anni giocando e ridendo: ne è valsa e ne varrà ancora la pena. Soprattutto grazie Renato per avermi fatto vedere la via; grazie Marcello, fedele amico e timoroso seguace (aspetto ancora le offerte sacrificali) e Lillo che ha dato nuovo significato alla parola “giocare”, Pippo, compagno anti-ferrarista e anti-juventino, Remo, Albert, Marcelluzzo, Mattè, Paola, Angelo. Lucio, accidenti a te, non so dove infilarti (termina tu questa frase, please e poi dammi il poema che ne avrai tirato fuori).

Una citazione di gruppo a tutti quelli che hanno cominciato con me e con cui ho scherzato a lezione: Paolo (Facerchia), la cara Delfo (i NAB non hanno speranza), Gianmarco, coinquilino fresco di pacca, Monica, Francesco, Yuri (Elio), Paolina (saluto rispettosamente in qualità di Guardia), Eleonora, ed Ennio, inarrivabile.

Devo ringraziare in special modo Socrate e Erasmo da Rotterdam, chi sa capirà, perché è merito “loro” se negli ultimi tempi mi sono arricchito dell’amicizia vera di una congerie incredibile di straordinarie persone che mi hanno insegnato a essere europeo, in tutto, anche e soprattutto nel modo di festeggiare. Mi è davvero impossibile ringraziarvi uno per uno, sapete benissimo di essere centinaia, ma sappiate che i ricordi non mi

(16)

abbandoneranno mai. Un grazie ai “pionieri”, Guillermo, Virginia, Carlos, Diego, compagno milanista e acerrimo nemico ferrarista, Vanesa, Ana, Marcos (il Primo), Steffen, Benjamin. E poi la seconda ondata, Miguel, Javi, Pedro il Mitico, Luisa LuLu, Jose, Pilar, Virginia, Blanca, Laura, Nines. E ancora altre persone incredibili, Dani, Daniel, Angel, Carolina, Alice, Julien, Katrien, Coralie, Alfonso, Joao Pedro, Joao Nuno, Diogo (grande!), Jesus, Pedro. Mi fermo qui, a tutti gli altri, vi ringrazierò di persona…

Joana (Minogue), Marta, Hunor, Lilla, Carolineee, Kathrin, Susi, Leonardo (Pintalho), Anica, Nils, Norberto, Enrico, Kata: voi siete la mia famiglia Erasmus, probabilmente ho passato con voi uno dei periodi più belli in assoluto, è stato un anno indimenticabile, non mi vengono le parole per farvelo capire, ma davvero, grazie.

Continuo a ripetermi di essere una persona molto fortunata, accanto a questi cittadini europei eccezionali, ho trovato anche altre persone eccezionali. Zava, tu sei il primo perché dici che nessuno ti ringrazia mai nelle tesi; io si, ti ringrazio e anche di cuore per la tua amicizia, così come ringrazio Andrea, davvero, siete fondamentali. Per non parlare dell’altro Andrea, l’informatico surfista o di Francesco (senza il Papato in cui specchiarsi cosa sarebbe l’impero?) tutti e due conosciuti alla festa della lavatrice. E ci metto dentro pure i Geologi. Un ringraziamento speciale poi va ad Alfonso, fedele Ciambellano. Senza di te accanto forse passeggerei per strada più tranquillo, ma mi annoierei. Non cambiare. Zoran,Marco e Vincenzo non vi lascio fuori, non temete.

Sicuramente dimentico qualcuno. Perdono.

Spero di avervi dato qualcosa di mio; per parte mia sappiate che da tutti voi ho preso qualcosa, una frase, un pensiero, un atteggiamento, un modo di dire, e tutto questo fa di me quello che sono oggi.

Se da che ero così quando sono arrivato a Pisa:

ora sono così:

un po’ è anche colpa di tutti voi (e anche di Valeria e di tutti i ragazzi della palestra). Grazie.

Riferimenti

Documenti correlati

The procedure is repeated until convergence is reached (three iterations only are usually sufficient) and the equilibrium constant K is obtained as the ratio intercept/slope of

The dissociation constant of a weak acid with a pK A between 4 and 10 can not be determined spectrophotometrically by direct addition of a strong base to the weak acid because

Pereira L, Jenkins TM, Berghella V (2003) Conventional management of maternal red cell alloimmunization compared with management by Doppler assessment of middle cerebral artery

[r]

With a focus on the renowned Italian–Armenian novelist Antonia Arslan’s Genocide narrative La masseria delle allodole (2004; English translation Skylark Farm, Arslan 2006), I’ll

[19] it has been pointed out that, if EWSB is triggered by a light composite Higgs which is a pseudo-Goldstone boson related to some large scale strongly interacting dynamics,

To investigate whether illusionary ownership over a vir- tual body with a skinny abdomen would result in changes in body representations between the two groups, participants

In the first part of this paper we generalize Brylinski’s result in order to encompass this variant of the Radon transform, and also to treat arbitrary quasi-coherent D-modules, as