• Non ci sono risultati.

References 1.

N/A
N/A
Protected

Academic year: 2021

Condividi "References 1."

Copied!
22
0
0

Testo completo

(1)

References

1.

Cybulsky MI, Iiyama K, Li H et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 2001;107:1255-1262.

2.

Amorino GP, Hoover RL. Interactions of monocytic cells with human endothelial cells stimulate monocytic metalloproteinase production. Am J Pathol 1998;152:199-207.

3.

Clinton SK, Underwood R, Hayes L et al. Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. Am J Pathol 1992;140:301-316.

4.

Kruth HS. Sequestration of aggregated low-density lipoproteins by macrophages. Curr Opin Lipidol 2002;13: 483-488.

5.

Robertson AK, Hansson GK. T cells in atherogenesis: for better or for worse?. Arterioscler Thromb Vasc Biol 2006;26:2421-2432.

6.

Raines EW, Ferri N. Thematic review series: the immune system and atherogenesis, cytokines affecting endothelial and smooth muscle cells in vascular disease. J Lipid Res 2005;46:1081-1092.

7.

Gerdes N, Sukhova GK, Libby P et al. Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for atherogenesis. J Exp Med 2002;195:245-257.

8.

Okamura H, Tsutsi H, Komatsu T et al. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature (Lond) 1995;378:88-91.

9.

Moulton KS, Vakili K, Zurakowski D et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci U S A 2003;100:4736-4741.

(2)

10.

Croce K, Libby P. Intertwining of thrombosis and inflammation in atherosclerosis. Curr Opin Hematol 2007;14:55-61.

11.

Libby P, Simon DI. Inflammation and thrombosis: the clot thickens. Circulation 2001;103:1718-1720.

12.

Bavendiek U, Libby P, Kilbride M et al. Induction of tissue factor expression in human endothelial cells by CD40 ligand is mediated via activator protein 1, nuclear factor kappa B, and Egr-1. J Biol Chem 2002;277:25032-25039.

13.

Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation 2005;111:3481-3488.

14.

Amento EP, Ehsani N, Palmer H et al. Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 1991;11:1223-1230.

15.

Gough PJ, Gomez IG, Wille PT et al. Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest 2006;116:59-69.

16.

Vaughan DE. PAI-1 and atherothrombosis. J Thromb Haemost 2005;3:1879-1883.

17.

Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007;292(1):C82-97.

18.

Israili ZH. Clinical pharmacokinetics of angiotensin II (AT1) receptor blockers in hypertension. J Hum Hypertens 2000;14 Suppl 1:S73-86.

19.

Suzuki Y, Ruiz-Ortega M, Lorenzo O et al. Inflammation and angiotensin II. Int J Biochem Cell Biol 2003;35:881–900.

20.

Alvarez A, Cerda-Nicolas M, Naim Abu NY et al. Direct evidence of leukocyte adhesion in arterioles by angiotensin II. Blood 2004;104:402–408.

(3)

21.

Kranzhofer R, Schmidt J, Pfeiffer CA et al. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1999;19:1623–1629.

22.

Ni W, Kitamoto S, Ishibashi M et al. Monocyte chemoattractant protein-1 is an essential inflammatory mediator in angiotensin II-induced progression of established atherosclerosis in hypercholesterolemic mice. Arterioscler Thromb Vasc Biol 2004;24:534–539.

23.

Chen HJ, Li DY, Saldeen T et al. Attenuation of tissue P-selectin and MCP-1 expression and intimal proliferation by AT(1) receptor blockade in hyperlipidemic rabbits. Biochem Biophys Res Commun 2001;282:474–479.

24.

Hayashidani S, Tsutsui H, Shiomi T et al. Anti-monocyte chemoattractant protein-1 gene therapy attenuates left ventricular remodelling and failure after experimental myocardial infarction. Circulation 2003;108:2134–2140.

25.

Ito T, Ikeda U, Yamamoto K, Shimada K. Regulation of interleukin-8 expression by HMG-CoA reductase inhibitors in human vascular smooth muscle cells. Atherosclerosis 2002;165:51–55.

26.

deBlois D, Lombardi DM, Su EJ et al. Angiotensin II induction of osteopontin expression and DNA replication in rat arteries. Hypertension 1996;28:1055–1063.

27.

Biswas P, Delfanti F, Bernasconi S et al. Interleukin-6 induces monocyte chemotactic protein-1 in peripheral blood mononuclear cells and in the U937 cell line. Blood 1998;91:258–265.

28.

Brasier AR, Recinos A III, Eledrisi MS. Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol 2002;22:1257–1266.

29.

Weiss D, Taylor RW. Deoxycorticosterone acetate salt hypertension in apolipoprotein E-/- mice results in accelerated atherosclerosis: the role of angiotensin II.

(4)

30.

Lopez-Farre A, Sanchez dM, Monton M et al. Angiotensin II AT(1) receptor antagonists and platelet activation. Nephrol Dial Transplant 2001;16(Suppl.1):45–49.

31.

Wolf G, Wenzel UO. Angiotensin II and cell cycle regulation. Hypertension. 2004;43:693-698.

32.

Su EJ, Lombardi DM, Wiener J et al. Mitogenic effect of angiotensin II on rat carotid arteries and type II or III mesenteric microvessels but not type I mesenteric microvessels is mediated by endogenous basic fibroblast growth factor. Circ Res 1998;82:321–327.

33.

Wong J, Rauhoft C, Dilley RJ et al. Angiotensin-converting enzyme inhibition abolishes medial smooth muscle PDGF-AB biosynthesis and attenuates cell proliferation in injured carotid arteries: relationships to neointima formation. Circulation 1997;96:1631–1640.

34.

Chua CC, Hamdy RC, Chua BH. Upregulation of vascular endothelial growth factor by angiotensin II in rat heart endothelial cells. Biochim Biophys Acta 1998;1401:187– 194.

35.

Ruperez M, Lorenzo O, Blanco-Colio LM et al. Connective tissue growth factor is a mediator of angiotensin II-induced fibrosis. Circulation 2003;108:1499–1505.

36.

Griendling KK, Ushio-Fukai M. Reactive oxygen species as mediators of angiotensin II signaling. Regul Pept 2000;91:21–27.

37.

Mollnau H, Wendt M, Szocs K et al. Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res 2002;90:E58–E65.

38.

Seshiah PN, Weber DS, Rocic P et al. Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res 2002;91:406–413.

39.

(5)

40.

Ruiz-Ortega M, Lorenzo O, Ruperez M et al. Systemic infusion of angiotensin II into normal rats activates nuclear factor-kappaB and AP-1 in the kidney: role of AT(1) and AT(2) receptors. Am J Pathol 2001;158:1743–1756.

41.

Muller DN, Mervaala EM, Dechend R et al. Angiotensin II (AT(1) receptor blockade reduces vascular tissue factor in angiotensin II-induced cardiac vasculopathy. Am J Pathol 2000;157:111–1122.

42.

Liu J, Yang F, Yang XP et al. NAD(P)H oxidase mediates angiotensin II-induced vascular macrophage infiltration and medial hypertrophy. Arterioscler Thromb Vasc Biol 2003;23:776–782.

43.

Ortiz MC, Manriquez MC, Romero JC, Juncos LA. Antioxidants block angiotensin II-induced increases in blood pressure and endothelin. Hypertension 2001;38:655–659.

44.

Guzik TJ, Hoch NE, Brown KA et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 2007; 204:2449–2460.

45.

Koh KK, Ahn JY, Han SH et al. Pleiotropic effects of angiotensin II receptor blocker in hypertensive patients. J Am Coll Cardiol 2003;42(5):905-910.

46.

Dohi Y, Ohashi M, Sugiyama M et al. Candesartan reduces oxidative stress and inflammation in patients with essential hypertension. Hypertens Res 2003;26(9):691-697.

47.

Rosei EA, Rizzoni D, Muiesan ML et al. CENTRO (CandEsartaN on aTherosclerotic Risk factors) study investigators: Effects of candesartan cilexetil and enalapril on inflammatory markers of atherosclerosis in hypertensive patients with non-insulin-dependent diabetes mellitus. J Hypertens 2005;23(2):435-444.

48.

Ogawa S, Mori T, Nako K et al. Angiotensin II type 1 receptor blockers reduce urinary oxidative stress markers in hypertensive diabetic nephropathy. Hypertension 2006;47(4):699-705.

(6)

49.

Schram MT, van Ittersum FJ, Spoelstra-de Man A et al. Aggressive antihypertensive therapy based on hydrochlorothiazide, candesartan or lisinopril as initial choice in hypertensive type II diabetic individuals: effects on albumin excretion, endothelial function and inflammation in a double-blind, randomized clinical trial. J Hum Hypertens 2005;19(6):429-437.

50.

Tsutamoto T, Wada A, Maeda K et al. Angiotensin II type 1 receptor antagonist decreases plasma levels of tumor necrosis factor alpha, interleukin-6 and soluble adhesion molecules in patients with chronic heart failure. J Am Coll Cardiol 2000;35(3):714-721.

51.

White M, Lepage S, Lavoie J et al. Effects of combined candesartan and ACE inhibitors on BNP, markers of inflammation and oxidative stress, and glucose regulation in patients with symptomatic heart failure. J Card Fail 2007;13(2):86-94.

52.

Johnstone MT, Perez AS, Nasser I et al. Angiotensin receptor blockade with candesartan attenuates atherosclerosis, plaque disruption, and macrophage accumulation within the plaque in a rabbit model. Circulation 2004;110(14):2060-2065.

53.

Fujita M, Okuda H, Tsukamoto O et al. Blockade of angiotensin II receptors reduces the expression of receptors for advanced glycation end products in human endothelial cells. Arterioscler Thromb Vasc Biol 2006;26(10):e138-e142.

54.

Hallevi H, Hazan-Halevy I, Paran E. Modification of neutrophil adhesion to human endothelial cell line in acute ischemic stroke by dipyridamole and candesartan. Eur J Neurol 2007;14(9):1002-1007.

55.

Ando H, Zhou J, Macova M et al. Angiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats. Stroke 2004;35(7):1726-1731.

(7)

56.

Zhou J, Ando H, Macova M et al. Angiotensin II AT1 receptor blockade abolishes brain microvascular inflammation and heat shock protein responses in hypertensive rats. J Cereb Blood Flow Metab 2005;25(7):878-886.

57.

Ozacmak VH, Sayan H, Cetin A, Akyildiz-Igdem A. AT1 receptor blocker candesartan-induced attenuation of brain injury of rats subjected to chronic cerebral hypoperfusion. Neurochem Res 2007;32(8):1314-1321.

58.

Matsumoto N, Manabe H, Ochiai J et al. An AT1-receptor antagonist and an angiotensin-converting enzyme inhibitor protect against hypoxia-induced apoptosis in human aortic endothelial cells through upregulation of endothelial cell nitric oxide synthase activity. Shock 2003;19(6):547-552.

59.

Dorenkamp M, Riad A, Stiehl S et al. Protection against oxidative stress in diabetic rats: role of angiotensin AT(1) receptor and beta 1-adrenoceptor antagonism. Eur J Pharmacol 2005;520(1-3):179-187.

60.

Fan Q, Liao J, Kobayashi M et al. Candesartan reduced advanced glycation end-products accumulation and diminished nitro-oxidative stress in type 2 diabetic KK/Ta mice. Nephrol Dial Transplant 2004;19(12):3012-3020.

61.

Onozato ML, Tojo A, Goto A et al. Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: effects of ACEI and ARB. Kidney Int 2002;61(1):186-194.

62.

Yu C, Gong R, Rifai A et al. Long-term, high-dosage candesartan suppresses inflammation and injury in chronic kidney disease: nonhemodynamic renal protection. J Am Soc Nephrol 2007;18(3):750-759.

63.

Zorad S, Dou JT, Benicky J et al. Long-term angiotensin II AT1 receptor inhibition produces adipose tissue hypotrophy accompanied by increased expression of adiponectin and PPARgamma. Eur J Pharmacol 2006;552(1-3):112-122.

(8)

64.

Ko SH, Hong OK, Kim JW et al. High glucose increases extracellular matrix production in pancreatic stellate cells by activating the renin-angiotensin system. J Cell Biochem 2006;98(2):343-355.

65.

Bregonzio C, Armando I, Ando H et al. Anti-inflammatory effects of angiotensin II AT1 receptor antagonism prevent stress-induced gastric injury. Am J Physiol Gastrointest Liver Physiol 2003;285(2):G414-G423.

66.

Okuda T, Yoshida N, Takagi T et al. CV-11974, angiotensin II type I receptor antagonist, reduces the severity of indomethacin-induced rat enteritis. Dig Dis Sci 2008;53(3):657-663.

67.

Uemura H, Ishiguro H, Nagashima Y et al. Antiproliferative activity of angiotensin II receptor blocker through cross-talk between stromal and epithelial prostate cancer cells. Mol Cancer Ther 2005;4(11):1699-1709.

68.

Ram CV. Angiotensin blockade with eprosartan: vascular and functional implications. Curr Med Res Opin 2007;23(Suppl5):S5-S11.

69.

Rahman ST, Lauten WB, Khan QA et al. Effects of eprosartan versus hydrochlorothiazide on markers of vascular oxidation and inflammation and blood pressure (renin-angiotensin system antagonists, oxidation, and inflammation). Am J Cardiol 2002;89(6):686-690.

70.

Behr TM, Willette RN, Coatney RW et al. Eprosartan improves cardiac performance, reduces cardiac hypertrophy and mortality and downregulates myocardial monocyte chemoattractant protein-1 and inflammation in hypertensive heart disease. J Hypertens 2004;22(3):583-592.

71.

Navalkar S, Parthasarathy S, Santanam N, Khan BV. Irbesartan, an angiotensin type 1 receptor inhibitor, regulates markers of inflammation in patients with premature atherosclerosis. J Am Coll Cardiol 2001;37(2):440-444.

(9)

72.

Biasucci LM, Lombardi M, Piro M et al. Irbesartan significantly reduces C reactive protein concentrations after 1 month of treatment in unstable angina. Heart 2005;91(5):670-671.

73.

Schieffer B, Bünte C, Witte J et al. Comparative effects of AT1-antagonism and angiotensin-converting enzyme inhibition on markers of inflammation and platelet aggregation in patients with coronary artery disease. J Am Coll Cardiol 2004;44(2):362-368.

74.

Dol F, Martin G, Staels B et al. Angiotensin AT1 receptor antagonist irbesartan decreases lesion size, chemokine expression, and macrophage accumulation in apolipoprotein E-deficient mice. J Cardiovasc Pharmacol 2001;38(3):395-405.

75.

Westermann D, Rutschow S, Jäger S et al. Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of angiotensin type 1 receptor antagonism. Diabetes 2007;56(3):641-646.

76.

Proudfoot JM, Croft KD, Puddey IB, Beilin LJ. Angiotensin II type 1 receptor antagonists inhibit basal as well as low-density lipoprotein and platelet-activating factor-stimulated human monocyte chemoattractant protein-1. J Pharmacol Exp Ther 2003;305:846–853.

77.

Li P, Fukuhara M, Diz DI et al. Novel angiotensin II AT(1) receptor antagonist irbesartan prevents thromboxane A(2)-induced vasoconstriction in canine coronary arteries and human platelet aggregation. J Pharmacol Exp Ther 2000;292(1):238-246.

78.

Han SH, Koh KK, Quon MJ et al. The effects of simvastatin, losartan, and combined therapy on soluble CD40 ligand in hypercholesterolemic, hypertensive patients. Atherosclerosis 2007;190(1):205-211.

79.

Prasad A, Tupas-Habib T, Schenke WH et al. Acute and chronic angiotensin-1 receptor antagonism reverses endothelial dysfunction in atherosclerosis. Circulation

(10)

80.

Koh KK, Quon MJ, Han SH et al. Additive beneficial effects of losartan combined with simvastatin in the treatment of hypercholesterolemic, hypertensive patients. Circulation 2004;110(24):3687-3692.

81.

Graninger M, Reiter R, Drucker C et al. Angiotensin receptor blockade decreases markers of vascular inflammation. J Cardiovasc Pharmacol 2004;44(3):335-339.

82.

Prasad A, Koh KK, Schenke WH et al. Role of angiotensin II type 1 receptor in the regulation of cellular adhesion molecules in atherosclerosis. Am Heart J 2001;142(2):248-253.

83.

Martinez LL, Oliveira MA, Miguel AS et al. Losartan attenuates the antimigratory effect of diclofenac in spontaneously hypertensive rats. J Cardiovasc Pharmacol 2005;46(2):190-199.

84.

Chang LT, Sun CK, Chiang CH et al. Impact of simvastatin and losartan on antiinflammatory effect: in vitro study. J Cardiovasc Pharmacol 2007;49(1):20-26.

85.

Strawn WB, Ferrario CM. Angiotensin II AT(1) receptor blockade normalizes CD11b(+) monocyte production in bone marrow of hypercholesterolemic monkeys. Atherosclerosis 2008;196(2):624-632.

86.

Suzuki J, Bayna E, Li HL et al. Lipopolysaccharide activates calcineurin in ventricular myocytes. J Am Coll Cardiol 2007;49(4):491-499.

87.

Bahk TJ, Daniels MD, Leon JS et al. Comparison of angiotensin converting enzyme inhibition and angiotensin II receptor blockade for the prevention of experimental autoimmune myocarditis. Int J Cardiol 2008;125(1):85-93.

88.

Chen H, Li D, Mehta JL. Modulation of matrix metalloproteinase-1, its tissue inhibitor, and nuclear factor-kappa B by losartan in hypercholesterolemic rabbits. J Cardiovasc Pharmacol 2002;39(3):332-339.

(11)

89.

Awad AS, Webb RL, Carey RM, Siragy HM. Renal nitric oxide production is decreased in diabetic rats and improved by AT1 receptor blockade. J Hypertens 2004;22(8):1571-1577.

90.

Takai S, Kirimura K, Jin D et al. Significance of angiotensin II receptor blocker lipophilicities and their protective effect against vascular remodeling. Hypertens Res 2005;28(7):593-600.

91.

Kalinowski L, Matys T, Chabielska E et al. Angiotensin II AT1 receptor antagonists inhibit platelet adhesion and aggregation by nitric oxide release. Hypertension 2002;40(4):521-527.

92.

Sato Y, Fujii S, Imagawa S et al. Platelet aggregability in patients with hypertension treated with angiotensin II type 1 receptor blockers. J Atheroscler Thromb 2007;14(1):31-35.

93.

Krämer C, Sunkomat J, Witte J et al. Angiotensin II receptor-independent antiinflammatory and antiaggregatory properties of losartan: role of the active metabolite EXP3179. Circ Res 2002;90(7):770-776.

94.

Watanabe T, Suzuki J, Yamawaki H et al. Losartan metabolite EXP 3179 activates Akt and endoyhelial nitric oxide synthase via vascular endothelial growth factor receptor-2 in endothelial cells: angiotensin II type 1 receptor independent effect of EXP3179. Circ 2005;112(12):1798-1805.

95.

Andersen S, van Nieuwenhoven FA, Tarnow L et al. Reduction of urinary connective tissue growth factor by Losartan in type 1 patients with diabetic nephropathy. Kidney Int 2005;67(6):2325-2329.

96.

Li C, Sun BK, Lim SW et al. Combined effects of losartan and pravastatin on interstitial inflammation and fibrosis in chronic cyclosporine-induced nephropathy. Transplantation 2005;79(11):1522-1529.

(12)

97.

Tokuyama H, Kelly DJ, Zhang Y et al. Macrophage infiltration and cellular proliferation in the non-ischemic kidney and heart following prolonged unilateral renal ischemia. Nephron Physiol 2007;106(3):p54-p62.

98.

Vaziri ND, Bai Y, Ni Z et al. Intra-renal angiotensin II/AT1 receptor, oxidative stress, inflammation, and progressive injury in renal mass reduction. J Pharmacol Exp Ther 2007;323(1):85-93.

99.

Chan YC, Leung PS. Angiotensin II type 1 receptor-dependent nuclear factor-kappaB activation-mediated proinflammatory actions in a rat model of obstructive acute pancreatitis. J Pharmacol Exp Ther 2007;323(1):10-18.

100.

Phull H, Salkini M, Purves T et al. Angiotensin II plays a role in acute murine experimental autoimmune cystitis. BJU Int 2007;100(3):664-667.

101.

Molina-Molina M, Serrano-Mollar A, Bulbena O et al. Losartan attenuates bleomycin induced lung fibrosis by increasing prostaglandin E2 synthesis. Thorax 2006;61(7):604-610.

102.

Jerng JS, Hsu YC, Wu HD et al. Role of the renin-angiotensin system in ventilator-induced lung injury: an in vivo study in a rat model. Thorax 2007;62(6):527-535.

103.

Price A, Lockhart JC, Ferrell WR et al. Angiotensin II type 1 receptor as a novel therapeutic target in rheumatoid arthritis: in vivo analyses in rodent models of arthritis and ex vivo analyses in human inflammatory synovitis. Arthritis Rheum 2007;56(2):441-447.

104.

Fliser D, Buchholz K, Haller H. EUropean Trial on Olmesartan and Pravastatin in Inflammation and Atherosclerosis (EUTOPIA) Investigators: Antiinflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation 2004;110(9):1103-1107.

(13)

105.

Lee TM, Lin MS, Chou TF, Chang NC. Additive effects of combined blockade of AT1 receptor and HMG-CoA reductase on left ventricular remodeling in infarcted rats. Am J Physiol Heart Circ Physiol 2006;291(3):H1281-H1289.

106.

Kato M, Sada T, Mizuno M et al. Effect of combined treatment with an angiotensin II receptor antagonist and an HMG-CoA reductase inhibitor on atherosclerosis in genetically hyperlipidemic rabbits. J Cardiovasc Pharmacol 2005;46(4):556-562.

107.

Nishio M, Sakata Y, Mano T et al. Therapeutic effects of angiotensin II type 1 receptor blocker at an advanced stage of hypertensive diastolic heart failure. J Hypertens 2007;25(2):455-461.

108.

Tanabe Y, Morikawa Y, Kato T et al. Effects of olmesartan, an AT1 receptor antagonist, on hypoxia-induced activation of ERK1/2 and pro-inflammatory signals in the mouse lung. Naunyn Schmiedebergs Arch Pharmacol 2006;374(3):235-348.

109.

Kurata A, Nishizawa H, Kihara S et al. Blockade of angiotensin II type-1 receptor reduces oxidative stress in adipose tissue and ameliorates adipocytokine dysregulation. Kidney Int 2006;70(10):1717-1724.

110.

Nagai N, Izumi-Nagai K, Oike Y et al. Suppression of diabetes-induced retinal inflammation by blocking the angiotensin II type 1 receptor or its downstream nuclear factor-kappaB pathway. Invest Ophthalmol Vis Sci 2007;48(9):4342-4350.

111.

Jung KH, Chu K, Lee ST et al. Blockade of AT1 receptor reduces apoptosis, inflammation, and oxidative stress in normotensive rats with intracerebral hemorrhage. J Pharmacol Exp Ther 2007;322(3):1051-1058.

112.

Takaya T, Kawashima S, Shinohara M et al. Angiotensin II type 1 receptor blocker telmisartan suppresses superoxide production and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. Atherosclerosis 2006;186(2):402-410.

113.

(14)

114.

Clasen R, Schupp M, Foryst-Ludwig A et al. PPARgamma-activating angiotensin type-1 receptor blockers induce adiponectin. Hypertension 2005;46(1):137-143.

115.

Derosa G, Cicero AF, D'Angelo A et al. Telmisartan and irbesartan therapy in type 2 diabetic patients treated with rosiglitazone: effects on insulin-resistance, leptin and tumor necrosis factor-alpha. Hypertens Res 2006;29(11):849-856.

116.

Fujimoto M, Masuzaki H, Tanaka T et al. An angiotensin II AT1 receptor antagonist, telmisartan augments glucose uptake and GLUT4 protein expression in 3T3-L1 adipocytes. FEBS Lett 2004;576(3):492-497.

117.

Yano Y, Hoshide S, Ishikawa J et al. The differential effects of angiotensin II type 1 receptor blockers on microalbuminuria in relation to low-grade inflammation in metabolic hypertensive patients. Am J Hypertens 2007;20(5):565-572.

118.

Koulouris S, Symeonides P, Triantafyllou K et al. Comparison of the effects of ramipril versus telmisartan in reducing serum levels of high-sensitivity C-reactive protein and oxidized low-density lipoprotein cholesterol in patients with type 2 diabetes mellitus. Am J Cardiol 2005;95(11):1386-1388.

119.

Ceriello A, Piconi L, Esposito K, Giugliano D. Telmisartan shows an equivalent effect of vitamin C in further improving endothelial dysfunction after glycemia normalization in type 1 diabetes. Diabetes Care 2007;30(7):1694-1698.

120.

Shao J, Nangaku M, Inagi R et al. Receptor-independent intracellular radical scavenging activity of an angiotensin II receptor blocker. J Hypertens 2007;25(8):1643-1649.

121.

Ishiguro H, Ishiguro Y, Kubota Y, Uemura H. Regulation of prostate cancer cell growth and PSA expression by angiotensin II receptor blocker with peroxisome proliferator-activated receptor gamma ligand like action. Prostate 2007;67(9):924-932.

(15)

122.

Fujita K, Yoneda M, Wada K et al. Telmisartan, an angiotensin II type 1 receptor blocker, controls progress of nonalcoholic steatohepatitis in rats. Dig Dis Sci 2007;52(12):3455-3464.

123.

Kurihara T, Ozawa Y, Shinoda K et al. Neuroprotective effects of angiotensin II type 1 receptor (AT1R) blocker, telmisartan, via modulating AT1R and AT2R signaling in retinal inflammation. Invest Ophthalmol Vis Sci 2006;47(12):5545-5552.

124.

Nagai N, Oike Y, Izumi-Nagai K et al. Angiotensin II type 1 receptor-mediated inflammation is required for choroidal neovascularization. Arterioscler Thromb Vasc Biol 2006;26(10):2252-2259.

125.

Baykal Y, Yilmaz MI, Celik T et al. Effects of antihypertensive agents, alpha receptor blockers, beta blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers and calcium channel blockers, on oxidative stress. J Hypertens 2003;21(6):1207-1211.

126.

Ichihara A, Kaneshiro Y, Takemitsu T, Sakoda M. Effects of amlodipine and valsartan on vascular damage and ambulatory blood pressure in untreated hypertensive patients. J Hum Hypertens 2006;20(10):787-794.

127.

Liu L, Zhao SP, Zhou HN et al. Effect of fluvastatin and valsartan, alone and in combination, on postprandial vascular inflammation and fibrinolytic activity in patients with essential hypertension. J Cardiovasc Pharmacol 2007;50(1):50-55.

128.

Yasunari K, Maeda K, Watanabe T et al. Comparative effects of valsartan versus amlodipine on left ventricular mass and reactive oxygen species formation by monocytes in hypertensive patients with left ventricular hypertrophy. J Am Coll Cardiol 2004;43(11):2116-2123.

129.

Dandona P, Kumar V, Aljada A et al. Angiotensin II receptor blocker valsartan suppresses reactive oxygen species generation in leukocytes, nuclear factor-ĸB, in

(16)

mononuclear cells of normal subjects: evidence of an antiinflammatory action. J Clin Endocrinol Metab 2003;88(9):4496-4501.

130.

Willemsen JM, Westerink JW, Dallinga-Thie GM et al. Angiotensin II type 1 receptor blockade improves hyperglycemia-induced endothelial dysfunction and reduces proinflammatory cytokine release from leukocytes. J Cardiovasc Pharmacol 2007;49(1):6-12.

131.

Li Z, Iwai M, Wu L et al. Fluvastatin enhances the inhibitory effects of a selective AT1 receptor blocker, valsartan, on atherosclerosis. Hypertension 2004;44(5):758-763.

132.

Horiuchi M, Cui TX, Li Z et al. Fluvastatin enhances the inhibitory effects of a selective angiotensin II type 1 receptor blocker, valsartan, on vascular neointimal formation. Circulation 2003;107(1):106-112.

133.

Sironi L, Gelosa P, Guerrini U et al. Anti-inflammatory effects of AT1 receptor blockade provide end-organ protection in stroke-prone rats independently from blood pressure fall. J Pharmacol Exp Ther 2004;311(3):989-995.

134.

Siragy HM, Awad A, Abadir P, Webb R. The angiotensin II type 1 receptor mediates renal interstitial content of tumor necrosis factor-alpha in diabetic rats. Endocrinology 2003;144(6):2229-2233.

135.

Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis 2003;170:191–203.

136.

Madamanchi NR,VendrovA, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005;25:29–38.

137.

Ruiz-Ortega M, Esteban V, Ruperez M et al. Renal and vascular hypertension-induced inflammation: role of angiotensin II. Curr Opin Nephrol Hypertens 2006;15:159–166.

138.

(17)

139.

Sierra C, de la Sierra A. Antihypertensive, cardiovascular, and pleiotropic effects of angiotensin-receptor blockers. Curr Opin Nephrol Hypertens 2005;14:435–441.

140.

Ries UJ, Mihm G, Narr B et al. 6-Substituted benzimidazoles as new nonpeptide angiotensin II receptor antagonists: synthesis, biological activity, and structure activity relationships. J Med Chem 1993;36:4040–4051.

141.

Sharma AM. Telmisartan: the ACE of ARBs? Hypertension 2006;47:822–833.

142.

Collins T, Read MA, Neish AS et al. Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB J 1995;9: 899–909.

143.

Ritchie SA, Connell JM. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis 2007;17:319–326.

144.

Griendling KK, Sorescu D, Lassegue B et al. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 2000;20:2175–2183.

145.

Jaffe EA, Nachman RL, Becker CG et al. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 1973;52:2745–2756.

146.

Sargent JM. The use of the MTT assay to study drug resistance in fresh tumour samples. Recent Results Cancer Res 2003;161:13–25.

147.

Colognato R, Laurenza I, Fontana I et al. Modulation of hydrogen peroxide-induced DNA damage, MAPKs activation and cell death in PC12 by ergothioneine. Clin Nutr 2006;25:135–145.

148.

Franzoni F, Quinones-Galvan A, Regoli F, Ferrannini E, Galetta F. A comparative study of the in vitro antioxidant activity of statins. Int J Cardiol 2003;90:317–321.

(18)

149.

Blaschke F, Caglayan E, HsuehWA. Peroxisome proliferator-activated receptor gamma agonists: their role as vasoprotective agents in diabetes. Endocrinol Metab Clin North Am 2006;35:561–574.

150.

Lee H, Finck BN, Jones LA et al. Synthesis and evaluation of a bromine-76-labeled PPARgamma antagonist 2-bromo-5-nitro-N-phenylbenzamide. Nucl Med Biol 2006;33:847–8454.

151.

Leesnitzer LM, Parks DJ, Bledsoe RK et al et al. Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 2002;41:6640–6650.

152.

De Caterina R, Basta G, Lazzerini G et al. Soluble vascular cell adhesion molecule-1 as a biohumoral correlate of atherosclerosis. Arterioscler Thromb Vasc Biol 1997;17:2646–2654.

153.

Kramer C, Sunkomat J, Witte J et al. Angiotensin II receptor-independent antiinflammatory and antiaggregatory properties of losartan: role of the active metabolite EXP3179. Circ Res 2002;90:770–776.

154.

Neve BP, Fruchart JC, Staels B. Role of the peroxisome proliferator activated receptors (PPAR) in atherosclerosis. Biochem Pharmacol 2000;60:1245–1250.

155.

Migita H, Morser J. 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) signals through retinoic acid receptor-related orphan receptor-alpha but not peroxisome proliferator-activated receptor-gamma in human vascular endothelial cells: the effect of 15d-PGJ2 on tumor necrosis factor-alpha-induced gene expression. Arterioscler Thromb Vasc Biol 2005;25(4):710-716.

156.

Imamoto E, Yoshida N, Uchiyama K et al. Inhibitory effect of pioglitazone on expression of adhesion molecules on neutrophils and endothelial cells. Biofactors 2004;20(1):37-47.

(19)

157.

Pasceri V, Wu HD, Willerson JT et al. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation 2000;101(3):235-238.

158.

Sasaki M, Jordan P, Welbourne T et al. Troglitazone, a PPAR-gamma activator prevents endothelial cell adhesion molecule expression and lymphocyte adhesion mediated by TNF-alpha. BMC Physiol 2005;6;5(1):3.

159.

Wolle J, Hill RR, Ferguson E et al. Selective inhibition of tumor necrosis factor-induced vascular cell adhesion molecule-1 gene expression by a novel flavonoid. Lack of effect on transcription factor NF-kappa B. Arterioscler Thromb Vasc Biol 1996;16:1501–8.

160.

Gille J, Paxton LL, Lawley TJ et al. Retinoic acid inhibits the regulated expression of vascular cell adhesion molecule-1 by cultured dermal microvascular endothelial cells. J Clin Invest 1997;99:492–500.

161.

Marui N, Offermann MK, Swerlick R et al. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant sensitive mechanism in human vascular endothelial cells. J Clin Invest 1993;92:1866– 1874.

162.

Weber C, Erl W, Pietsch A et al. Aspirin inhibits nuclear factor kappa B mobilization and monocyte adhesion in stimulated human endothelial cells. Circulation 1995;91:1914–1917.

163.

Chen JW, Lin FY, Chen YH et al. Carvedilol inhibits tumor necrosis factor-alpha-induced endothelial transcription factor activation, adhesion molecule expression, and adhesiveness to human mononuclear cells. Arterioscler Thromb Vasc Biol 2004;24:2075–2081.

(20)

164.

Kunsch C, Luchoomun J, Grey JY et al. Selective inhibition of endothelial and monocyte redox-sensitive genes by AGI-1067: a novel antioxidant and anti-inflammatory agent. J Pharmacol Exp Ther 2004;308:820–829.

165.

van de Stolpe A, Caldenhoven E, Stade BG, Koenderman L, Raaijmakers JA, Johnson JP, van der Saag PT. 12-O-tetradecanoylphorbol-13-acetate- and tumor necrosis factor alpha-mediated induction of intercellular adhesion molecule-1 is inhibited by dexamethasone. Functional analysis of the human intercellular adhesion molecular-1 promoter. J Biol Chem. 1994;269:6185-6192.

166.

Iuchi T, Akaike M, Mitsui T, Ohshima Y, Shintani Y, Azuma H, Matsumoto T. Glucocorticoid excess induces superoxide production in vascular endothelial cells and elicits vascular endothelial dysfunction. Circ Res 2003;92:81-87.

167.

Garg AK, Aggarwal BB. Reactive oxygen intermediates in TNF signaling. Mol Immunol 2002;39:509–517.

168.

Yung LM, Leung FP, Yao X et al. Reactive oxygen species in vascular wall. Cardiovasc Hematol Disord Drug Targets 2006; 6:1-19.

169.

Harrison D, Griendling KK, Landmesser U et al. Role of oxidative stress in atherosclerosis. Am J Cardiol 2003;91:7A-11A.

170.

Burlacu A, Jinga V, Gafencu AV et al. Severity of oxidative stress generates different mechanisms of endothelial cell death. Cell Tissue Res 2001;306:409-416.

171.

Zheng Y, Shen X. H2O2 directly activates inositol 1,4,5-trisphosphate receptors in endothelial cells. Redox Rep 2005;10:29-36.

172.

Dimmeler S, Zeiher AM. Reactive oxygen species and vascular cell apoptosis in response to angiotensin II and pro-atherosclerotic factors. Regul Pept 2000;90:19–25.

(21)

173.

Rueckschloss U, Quinn MT, Holtz J et al. Dose-dependent regulation of NAD(P)H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2002;22:1845–1851.

174.

Cai H, Li Z, Dikalov S et al. NAD(P)H oxidase-derived hydrogen peroxide mediates endothelial nitric oxide production in response to angiotensin II. J Biol Chem 2002;277:48311-48317.

175.

Kakuta H, Sudoh K, Sasamata M et al. Telmisartan has the strongest binding affinity to angiotensin II type 1 receptor: comparison with other angiotensin II type 1 receptor blockers. Int J Clin Pharmacol Res 2005;25:41-46.

176.

Saez GT, Tormos C, Giner V et al. Factors related to the impact of antihypertensive treatment in antioxidant activities and oxidative stress by-products in human hypertension. Am J Hypertens 2004 ;17:809-816.

177.

Termini J. Hydroperoxide-induced DNA damage and mutations. Mutat Res 2000;450:107–124.

178.

Regoli F, Winston GW. Quantification of total oxidant scavenging capacity (TOSC) of antioxidants for peroxynitrite, peroxyl radicals and hydroxyl radicals. Toxicol Appl Pharmacol 1999;156:96–105.

179.

Biswas K, Bandyopadhyay U, Chattopadhyay I et al. A novel antioxidant and antiapoptotic role of omeprazole to block gastric ulcer through scavenging of hydroxyl radical. J Biol Chem 2003;278(13):10993–11001.

180.

Meng CQ, Somers PK, Hoong LK et al. Discovery of novel phenolic antioxidants as inhibitors of vascular cell adhesion molecule-1 expression for use in chronic inflammatory diseases. J Med Chem 2004;47:6420–6432.

(22)

181.

Stangier J, Su CA, Roth W. Pharmacokinetics of orally and intravenously administered telmisartan in healthy young and elderly volunteers and in hypertensive patients. J Int Med Res 2000;28:149–167.

182.

Muller-Ehmsen J, Schwinger RH. TNF and congestive heart failure: therapeutic possibilities. Expert Opin Ther Targets 2004;8:203–209.

183.

Swedberg K. Effective implementation of the new ESC guidelines for the management of chronic heart failure in routine clinical practice. J Renin Angiotensin Aldosterone Syst 2005;6(S2):S6–10.

184.

Karagiannis A, Mikhailidis DP, Athyros VG et al. The role of rennin–angiotensin system inhibition in the treatment of hypertension in metabolic syndrome: are all the angiotensin receptor blockers equal? Expert Opin Ther Targets 2007;11:191–205.

Riferimenti

Documenti correlati

The rule “the right drug at the right dose at the appro- priate time in the right patient” may appear to be a very ambitious goal in drug therapy, but an overview

Furthermore, we observed that having a psychiatric dis- order is significantly associated with attending school full- time, possibly due to the fact that families having children

5 we plot the time evolution of the rms of the horizontal and vertical velocities for three different sim- ulations of the effective model: one for the standard RT with α = 0 and

In recent years, some emerging evidence has indicated that p53 is not the only factor controlling the relationship between ribosome biogenesis and cell proliferation, thus revealing

The effect of TT temperature on CZTS thin film samples, obtained from 0.2 g/mL ink spread at a 6000 rpm spin rate, was studied in terms of its surface morphology, grain growth,

Il fallimento del clown sul palco, infine, permette al performer che lo interpreta di tracciare linee di fuga (ligne de fuite) nella propria vita e, pertanto, la clown-poiesi può

In quest’articolo, alla luce delle teorie di inflazione delle credenziali e della modernizzazione, guardiamo alla variazione nel tempo dei ritorni occupazionali dei titoli

Per ridare speranza ai giovani occorre quindi lavorare su più versanti: un versante or- ientativo, finalizzato alla definizione di un progetto professionale e/o for-