• Non ci sono risultati.

TABLE OF CONTENTS

N/A
N/A
Protected

Academic year: 2021

Condividi "TABLE OF CONTENTS"

Copied!
6
0
0

Testo completo

(1)

TABLE OF CONTENTS

1. INTRODUCTION 1

1.1. MARINE BIOFOULING 1

1.1.1. BACTERIAL BIOFILM: GENERAL INTRODUCTION 3

1.1.2. A SLIME FORMING DIATOM: NAVICULA 4

1.1.3. A GREEN MACROALGA: ULVA 5

1.1.4. INTRODUCTION TO MARINE INVERTEBRATES 6

1.1.4.1. Barnacles 7

1.1.4.2. Mytilus edulis 8

1.2. ANTIFOULING/FOULING RELEASE COATINGS 9

1.2.1. MAIN PROPERTIES OF A FOULING RELEASE COATING 10

1.3. NANOSTRUCTURED SURFACES FOR MARINE ANTIFOULING COATINGS 13

1.4. SURFACE TENSION 14

1.4.1. DETERMINATION OF SOLID SURFACE TENSION BY STATIC CONTACT ANGLE 15

1.5. POLYSILOXANES 18

1.5.1. UNIQUE FLEXIBILITY OF SILOXANE BACKBONE 18

1.5.2. SILOXANE BOND ENERGY AND PARTIALLY IONIC CHARACTER 19

1.6. FLUOROPOLYMERS 20

1.6.1. SELF ASSEMBLY OF FLUORINATED MATERIALS IN THE BULK AND AT THE SURFACE 21

1.6.2. LIQUID CRYSTALLINE POLYMERS 22

1.7. BLOCK COPOLYMERS 25

1.7.1. PHASE BEHAVIOR AND MORPHOLOGY OF BLOCK COPOLYMERS 26

1.8. CONTROLLED RADICAL POLYMERIZATION 28

1.8.1. ATOM TRANSFER RADICAL POLYMERIZATION (ATRP) 30

1.8.1.1. Components in ATRP 31

1.8.1.1.1. Monomers 31

1.8.1.1.2. Initiator 32

1.8.1.1.3. Catalyst 33

1.8.1.1.4. Solvents 34

1.8.1.1.5. Temperature and reaction time 35

(2)

II

1.8.1.2.1. Kinetics of ATRP reaction 35

1.8.1.2.2. Molecular weight and molecular weight distribution 37

1.8.1.3. Limitations of ATRP 38

2. OBJECTIVES OF THE WORK 41

3. RESULTS AND DISCUSSION 45

3.1. AMPHIPHILIC POLYSTYRENE BLOCK COPOLYMERS 45

3.1.1. SYNTHESIS OF THE MONOMER 45

3.1.2. HOMOPOLYMERIZATION AND RANDOM COPOLYMERIZATION EXPERIMENTS 46

3.1.3. SYNTHESIS OF POLYSTYRENE MACROINITIATORS 47

3.1.4. SYNTHESIS OF BLOCK COPOLYMERS 49

3.1.5. THERMAL PROPERTIES 54

3.1.6. PREPARATION OF POLYMER FILMS 57

3.1.7. WETTING BEHAVIOR AND SURFACE ENERGY 60

3.1.7.1. Static contact angle measurements and surface tension 60 3.1.7.2. Contact angle dependence on time immersion in water 65 3.1.7.2.1. Advancing and receding contact angle measurements 66 3.1.7.2.2. Static contact angle measurements as a function of immersion time 69

3.1.8. CHEMICAL SURFACE ANALYSIS 70

3.1.8.1. XPS analysis 70

3.1.9. NEXAFS SPECTROSCOPY 78

3.1.10. SIMS ANALYSIS 83

3.1.11. ANALYSIS OF MORPHOLOGY: GISAXS AND AFM 86

3.1.12. MECHANICAL ANALYSES 92

3.1.12.1. Dynamic-mechanical tests (DMTA) 92

3.1.12.2 . Mechanical tensile tests 96

3.1.13. BIOLOGICAL ASSAYS 98

3.1.13.1. Preparation of samples 98

3.1.13.2. Surface properties of bilayer coatings 100 3.1.13.2.1. Static contact angle and surface energy 100

(3)

III

3.1.13.3. Marine antifouling properties 103 3.1.13.3.1. Attachment and removal of Navicula 103 3.1.13.3.2. Growth and strength of attachment of Ulva sporelings 105 3.1.13.3.3. Settlement of Balanus amphitrite cyprid larvae 109 3.1.13.3.4. Antifouling properties against Cobetia marina, Marinobacter

hydrocarbonoclasticus and Vibrio alginolyticus bacterial biofilm 113 3.1.13.3.5. Attachment and detachment of Pseudomonas fluorescens 114

3.2. BICYCLOACRYLATE RANDOM COPOLYMERS 116

3.2.1. MONOMER SYNTHESIS 116

3.2.2. HOMOPOLYMER SYNTHESIS 117

3.2.3. P(BCL F10-CO-SIMA) COPOLYMERS 120

3.2.4. THERMAL BEHAVIOR 121

3.2.4.1. Thermal behavior of P(BCL F10) 122 3.2.4.2. Thermal behavior of P(BCL F10-co-SiMA) 123

3.2.5. MESOPHASE STRUCTURE 124

3.2.6. CONTACT ANGLE MEASUREMENTS AND SURFACE TENSION 126

3.2.7. XPS ANALYSIS AND SURFACE COMPOSITION 131

3.3. POLYDIMETHYLSILOXANE BASED BLOCK COPOLYMERS 137

3.3.1. PREPARATION OF PDMS MACROINITIATOR 137

3.3.2. SYNTHESIS OF P(AF8) HOMOPOLYMERS 139

3.3.3. SYNTHESIS OF PDMS BLOCK COPOLYMERS 140

3.3.4. THERMAL BEHAVIOR 145

3.3.5. BULK AGGREGATION STATE 148

3.3.6. SURFACE CHARACTERIZATION 152

3.3.6.1. Static contact angle and surface tension 152

3.3.6.2. Dynamic contact angle 155

3.3.6.3. XPS analysis and surface composition 160

3.3.6.4. NEXAFS spectroscopy 164

3.3.6.5. Analysis of morphology: GISAXS and AFM 167

4. CONCLUDING REMARKS 171

(4)

IV

5.1. MATERIALS 177

5.2. SYNTHESIS OF THE ETHOXYLATED FLUOROALKYL STYRENE-BASED POLYMERS 179 5.2.1. SYNTHESIS OF THE POLY(OXYETHYLENE PERFLUOROALKYL) 4-VINYLBENZOATE (SZ) 179

5.2.2. HOMOPOLYMERS AND RANDOM COPOLYMERS 180

5.2.2.1. Homopolymers P(Sz) 180

5.2.2.2. Random copolymers P(S-co-Sz) 181

5.2.3. SYNTHESIS OF POLYSTYRENE MACROINITIATORS P(S) 182

5.2.4. SYNTHESIS OF BLOCK COPOLYMERS P(S-B-SZ) 183

5.3. SYNTHESIS OF BICYCLOACRYLATE POLYMERS 185

5.3.1. MONOMER SYNTHESIS 185

5.3.1.1. 2-(Bicyclo[3.1.0]hex-1-yl)acrylic acid (BCL COOH) 185 5.3.1.2. 1H,1H,2H,2H-perfluorododecyl 2-(bicyclo[3.1.0]hex-1-yl)acrylate (BCL F10) 185

5.3.2. POLYMER SYNTHESIS 186

5.3.2.1. Synthesis of P(BCL F10) homopolymer 186 5.3.2.1.1. Synthesis by conventional free radical polymerization 186

5.3.2.1.2. Synthesis via ATRP 187

5.3.2.2. Synthesis of P(SiMA) hompolymer via ATRP 187 5.3.2.3. Synthesis of random copolymers P(BCL F10-co-SiMA) 188 5.4. SYNTHESIS OF POLYDIMETHYLSILOXANE-BASED BLOCK COPOLYMERS 190 5.4.1. SYNTHESIS OF BROMINE TERMINATED POLYDIMETHYLSILOXANE MACROINITIATORS 190

5.4.2. SYNTHESIS OF P(AF8) HOMOPOLYMER VIA ATRP 191

5.4.3. SYNTHESIS OF BLOCK COPOLYMERS P(SI-B-AF8) 192 5.4.4. SYNTHESIS OF BLOCK COPOLYMERS P(SI-B-SZ) 193

5.5. PREPARATION OF SEBS-BASED COATINGS FOR BIOLOGICAL ASSAYS 195

5.6. BIOLOGICAL ASSAYS AT LABORATORY SCALE 197

5.6.1. CONSORTIUM OF MARINE BACTERIA 197

5.6.2. PSEUDOMONAS FLUORESCENS BACTERIA 198

5.6.3. ULVA SPORELING GROWTH 199

5.6.4. DIATOMS 199

5.6.4.1. Flow Channel 200

5.6.5. BARNACLE CYPRIS LARVAE 201

5.7. CHARACTERIZATIONS 202

(5)

V

5.7.2. NMR SPECTROSCOPY 202

5.7.3. SIZE EXCLUSION CHROMATOGRAPHY (SEC) 202

5.7.4. DIFFERENTIAL SCANNING CALORIMETRY (DSC) 202

5.7.5. THERMAL GRAVIMETRIC ANALYSIS (TGA) 203

5.7.6. WIDE ANGLE X-RAY DIFFRACTION (WAXD) 203

5.7.7. X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) 203

5.7.8. NEAR-EDGE X-RAY ABSORPTION FINE-STRUCTURE (NEXAFS) 204

5.7.9. GRAZING INCIDENCE SMALL ANGLE X-RAY SCATTERING (GISAXS) 205

5.7.10. TIME OF FLIGHT SECONDARY ION MASS SPECTROMETRY (TOF-SIMS) 205

5.7.11. STATIC CONTACT ANGLE ANALYSIS 206

5.7.12. “DYNAMIC” CONTACT ANGLE 207

5.7.13. ATOMIC FORCE MICROSCOPY (AFM) 207

5.7.14 CONFOCAL MICROSCOPY 207

5.7.15. SCANNING ELECTRON MICROSCOPE (SEM) 208

5.7.16. DYNAMIC MECHANICAL ANALYSIS (DMTA) 208

5.7.17. INSTRON THERMO-MECHANICAL ANALYSIS 209

6. APPENDIX 211

6.1. SURFACE ANALYSIS METHODS 211

6.1.1. X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) 211

6.1.2. NEAR EDGE X-RAY ABSORPTION FINE STRUCTURE (NEXAFS) 214

6.1.3. TIME OF FLIGHT SECONDARY ION MASS SPECTROMETRY (TOF-SIMS) 216

6.1.4. GRAZING-INCIDENT SMALL-ANGLE X-RAY SCATTERING (GISAXS) 217

6.1.5. ATOMIC FORCE MICROSCOPE (AFM) 221

(6)

Riferimenti

Documenti correlati

702 Asterisk indicates that measurements were made immediately after placing the drop of 703 water on the surface. Photographs of fragments of samples from background walls of

Tolkien, edited by Humphrey Carpenter and Christopher Tolkien, (London: HarperCollins, 1999).. Christopher Tolkien (London:

Like Buono, Lautsi involves assertions about Italian history and culture that underwrite the defense of the classroom crucifix displays: The ordinary Catholic meaning of the

E’ quanto dire che, proprio nella globalizzazione, ed alla luce degli sviluppi del dopo 11 settembre 2001, il tanto chiacchierato indebolimento dello Stato territoriale attiene,

In their turn, as a result of the latest elections in the local councils of deputies in 2010 out of 21288 places 322 were occupied by the representatives of the parties supporting

The wandering smoothing effects on mean velocity profiles were estimated comparing rapid scanning data with static hot wire measurements.. In extreme circumstances wandering

5  Analysis of Large Finite Arrays With The Characteristic Basis Functions Method

ii) when two cracks are located before a pair of measurements, the proposed procedure identifies a single crack to be considered “equivalent” to the actual ones;. iii) both the