• Non ci sono risultati.

Experimental Studies of the Pyrolysis and Oxidation of Diesel Type Fuels

N/A
N/A
Protected

Academic year: 2021

Condividi "Experimental Studies of the Pyrolysis and Oxidation of Diesel Type Fuels"

Copied!
72
0
0

Testo completo

(1)

Experimental Studies of the

Pyrolysis and Oxidation of Diesel Type Fuels

N. Chaumeix

1 Naples, 23-02_2012

(2)

ICARE – CNRS

Institut de Combustion, Aérothermique Réactivité et Environnement

1c, avenue de la Recherche Scientifique 45071 Orléans – Cedex 2 – France

Orléans Paris

ICARE is in Orléans, 125 km from Paris

Total staff : 110 35 Researchers

30 Engineers and technicians 30 PhD students and post-docs 15 Various trainees

Where is ICARE ?

(3)

Research domains of ICARE

Energy & Environment Propulsion & Space

• Combustion

• Chemical kinetics • Plasmas physics

• Fluid mechanics, turbulence • Two phase flows

• Supersonic, hypersonic flows • Ionized, rarefied flows

(4)

Application domains

• Aerospace propulsion

• Electric propulsion

• Liquid and solid propulsion

Atmospheric reentry

• Atmospheric chemistry

• Energy production

• Alternative fuels, biofuels, hydrogen

• Pollutant emissions reductions

• Industrial risk prevention

(5)

Main cooperations

International co-operations: All EU countries, Russia, USA, Canada, China, Japon, Ukraine, Turkey, Argentine, etc

(6)

Research Activities of the S. W. Group

 Combustion Chemistry

 Elementary Reaction Rates involving O and H atoms

 Pollutant Formation from Gasoline Components

 Reduced Mechanism of soot precursors from kerosene fuel

 Soot Formation from fuels

• Diesel, Gasoline, kerosenes

 Soot Oxidation

• In engine conditions behind shock waves

• Particles Filter

(7)

Research Activities of the S. W. Group

 Flame and Explosions Dynamics

 Laminar Flame properties and their instabilities

 DDT using hot jet ignition

 Flame acceleration in obstructed areas

 Detonation criteria and industrial safety

 Hypergolic limits of propellant agents

 Propellants for PDE

 Solid Explosives and their thermal aging

(8)

Main Objectives

SLOW

DEFLAGRATIONS

HIGHLY ACCELERATED DEFLAGRATIONS

DETONATIONS stable & unstable COMBUSTION CHEMISTRY

Chemical Explosion

Premixed Flames Laminar or turbulent

(9)

Methodology and Techniques

Several High Pressure Shock-Tubes

(10)

Laminar Flames

 Spherical Bomb 8 l

 Pmax = 75 bar

 Tmax = 353 K

 Spherical Bomb 56 l

 Pmax = 75 bar

 Tmax = 520 K

(11)

ENACCEF

Accelerated Flame Facility

Simi l-GV

 Volume = 850 l

 Pmax = 45 bar

 Tmax = ambiant

Different obstacles

(12)

12

Experimental Studies of the

Pyrolysis and Oxidation of Diesel Type Fuels

N. Chaumeix

Naples, 23-02_2012

(13)

Motivations

 To improve the knowledge of the chemistry

 Need for fundamental data

 Acquired in well-defined conditions

 At conditions relevant to diesel engines

 For pure fuels and surrogates

 Identification of the main families

 Identification of surrogates

(14)

Methodology applied

 Soot tendency

 Using a shock tube

 Auto-ignition delay times

 Using a shock tube

 Laminer Flame Speeds

 Using a spherical bomb

(15)

EXPERIMENTAL FACILITIES

(16)

Experimental setup

16

52 mm I.D.

LOW PRESSURE 5.15 m

HIGH PRESSURE 2 m

Stainless Steel Reservoir (30 liters)

He

Vacuum Pump Pressure Gauge

0 - 50 bars

Vacuum Pump Pressure Transducers

CP4 CP3 CP2 CP1

Pressure Gauge 0-10 torrs

Magnetic Stirring Ar

0-102 torrs

Pressure Gauges

Vacuum Pump

114 mm

Toluene

0-103 torrs0-104

torrs Gas syringe

Setup (shock tube, pipes, tank) @ 405±2K

(17)

► Laser Extinction

Diagnostics Coupled to the Shock Tube

CH1 CH2

Transmitted Light

Narrow-band PM Filter He - Ne

Laser

Pressure Transducer

Oscillocope Numérique

Quartz Window

0 0.4 0.8 1.2 1.6 2

Temps (ms)

Lumière transmise

Pression

(18)

Diagnostics Coupled to the Shock Tube

Shock Tube End

Removable plate

5 nm 5 nm

Outer shell

0,35 nm

0,14 nm

Inner core

Sonic Waves

► TEM at low and High Resolution

(19)

Diagnostics Coupled to the Shock Tube

Shock Tube End

Removable plate

0 100 200 300 400 500 600

0 100000 200000 300000 400000 500000

23 39 47 69 178 202 228 252 276 300 326 350 374 398 424 472 498

a.i.

m/z

0 100 200 300 400 500 600

0 100000 200000 300000 400000 500000

23 39 47 69 178 202 228 252 276 300 326 350 374 398 424 472 498

a.i.

m/z

0 100 200 300 400 500 600

0 100000 200000 300000 400000 500000

23 39 47 69 178 202 228 252 276 300 326 350 374 398 424 472 498

a.i.

m/z178 - 572 amu

LDIToFMS Sampling Holder

Soot on the plate

(20)

Mechanical chopper at 40KHz

m = mirror

d.m.= dichroic mirror f = interferential filter pol=polarizator

M=monochromator PMT = photomultiplier L = lens

PHD = photodiode

488 nm Ar ion laser

IR laser

chopper

periscope

m d.m

PHD+f

488+632.8 nm 90°

L pol PMT

PMT pol

PHD L

L

fv  I/I0 Extinction diode laser l = 800 nm

Scattering Ar+ laser l = 488 nm  Iscat & I/I0 dp

Diagnostics Coupled to the Shock Tube

► Laser Scattering / Extinction

(21)

Gas inlet

Gas Sampling Behind the RSW

Sampling Bulb

Electromagnet

(22)

PM

Filter at 307 nm Photomultiplier C4

F1 F2

OH* spontaneous emission

PM

Photomultiplier

CH* spontaneous emission

Filter at 432 nm

15

Auto_ignition Delay times

(23)

SW speed and Auto-ignition

0 4E-005 8E-005 0.00012

Time (s)

-0.05 0 0.05 0.1 0.15 0.2 0.25

PressureSignal

-2 -1.6 -1.2 -0.8 -0.4 0

EmissionSignal (V)

ind

(a.u.)

0 4E-005 8E-005 0.00012

Time (s)

-0.05 0 0.05 0.1 0.15 0.2 0.25

PressureSignal

-2 -1.6 -1.2 -0.8 -0.4 0

EmissionSignal (V)

ind

(a.u.)

-0.0004 -0.0003 -0.0002 -0.0001 0

Time (s)

-0.1 0 0.1 0.2 0.3 0.4 0.5

PressureSignal

n-propylcyclohexane

  

C2 : -3.869E-004 C3: -1.968E-004 C4 : -2.500E-007

-0.0004 -0.0003 -0.0002 -0.0001 0

Time (s)

-0.1 0 0.1 0.2 0.3 0.4 0.5

PressureSignal

n-propylcyclohexane

  

C2 : -3.869E-004 C3: -1.968E-004 C4 : -2.500E-007

(a.u.)

(24)

Volume : 56 L

Pmax = 50 Bars

Tmax = 470 K

Central Ignition

4 Silica Windows

diameter=550 mm

Schlieren System

High Speed Numerical Camera

VHT

Spark Electrodes

Oscilloscope HT

High Voltage Source

Spherical Bomb

Current Probe

To the Camera

I High voltage probe /1000

Experimental Setup: Laminar study

24

(25)

Spatial flame speed determination

Electrodes

Burned gases

Fresh gases

Flame front

25

(26)

Outward Spherical Flame Front Propagation

26

 

 

 

 

 

 

 

 

 

 

 

 

 u

b b

u u

b b

b S b

L P

P T

T M

M dt

dP P

3 V r

S

Eschenbach & Agnew (1958) expression

• M : relative molar mass

• P, T : pressure and temperature

• r : flame radius

•  : gas expansion ratio

  s

L V

In the early stages of the flame propagation

S

• t : time

• u : relative to unburned gas

• b : relative to burned gas

o Spherical flame

o Curvature and thickness negligible

o Adiabatic process and isentropic compression

o Chemical equilibrium behind the flame front

o No dissociation or reactions in the fresh gas

o Local deposit of the energy

(27)

Spatial flame speed determination

0 0.004 0.008 0.012 0.016

Time (s) 0

10 20 30 40 50

Radius (mm)

E.R. =1.05 E.R.=1.2 E.R.=0.85

s

L

S V

Pressure remains constant

0 0.2 0.4 0.6

Time (s) -2

0 2 4 6

Overpressure(bar)

G222 + Air - MANIP 187 Equivalence ratio = 1.05 and

Pini = 1 bar T= 363 K

-0.02 0 0.02 0.04

Time (s)

0 2 4

Overpressure (bar)

G222 + Air - MANIP 187 Equivalence ratio = 1.05 and

Pini = 1 bar T= 363 K Pressure

Observation Window

t= 0.00033s t= 0.0025 s t= 0.0035 s

t= 0.00616s t= 0.009 s t= 0.01183s

Vburned

= 0.8 %Vtotal

27

(28)

Unstretched velocity

f S

r 2V

 

  V L

V s s S L  S L  L  

Finite flame thickness

A uniform & well-defined stretch

Visualisation of the flame propagation

o Laminar flame velocity versus stretch

o Derive the laminar flame velocity at zero-stretch

28

(29)

EXEMPLE OF STUDIES

(30)

Real Fuels

Conventional Diesel Fuel

C7

C15 C8

C10 C9

C14

C11

C12

C15

C13 C13

C12 C11

C7 C8

C9 C10

C14 C15 C7 C8

C10 C9

C14

C11

C12

C15

C13 C13

C12 C11

C7 C8

C9 C10

C14 C8

C10 C9

C14

C11

C12

C15

C13 C13

C12 C11

C7 C8

C9 C10

C14 n-paraffins:

57.22 %mass iso-paraffins:

42.78 %mass

Fisher-Tropsch Cut at 403 K Fuel

Conventional Gazoline Fuel

Data source: TOTAL

(31)

Studied Fuels

 Hydrocarbons representing major component of the real fuel

 Diesel : n-hexadecane, butyl-benzene, n-heptyl benzene, decaline, a-methylnaphtalene, propyl-cyclohexane, butyl- benzene, 2,2,4,4,6,8,8 heptamethylnonane

 Gazoline : iso-octane, toluene, 1-hexene, 2M2B

 Kerosenes : n-decane, trimethyl-benzene, cyclohexane, n- propylbenzene

 Fischer-Tropsch : propyl-cyclohexane, 2,2,4,4,6,8,8 heptamethylnonane

 Additives

 ETBE , Thiophene, 3-methyl-thiophene

(32)

8

Diesel Fuel

 Pure Fuels

 n-decane, n-propylcyclohexane, n-butylbenzène

 Mixtures 60/40 (v/v)

 n-decane/n-propylcyclohexane

 n-decane/n-butylbenzene

 Mixtures 40/30/30 (v/v/v)

 n-decane/n-propylcyclohexane/n-butylbenzene

 EGR mixture (according to PSA) :

 77,6 % N2 + 11,5 % O2 + 6,8 % CO2 + 0,2 % CO + 3,9 % H2O

(33)

Studied Fuels

 Diesel Surrogate

 47 % Propyl-cyclohexane + 22 % Heptamethylnonane + 31

% Butyl-benzene

 Gazoline Surrogate

 50 % Iso-Octane + 35%Toluene + 15%1-Hexene

 Kerosene Surrogate

 80% n-decane + 20% n-propylbenzene

 Real Fuel : Fischer-Tropsch

 Cut at 403 K

(34)

What is soot ?

 Soot is:

 Solid phase with condensed molecules

 Mainly carbon and H with a ratio 8/1

 The density is roughly 1.85 g/cm3

 The primary particle is spherical

 Soot is constituted of

 Soluble fraction that depends strongly on the combustion conditions (fuel, engine load, injection system

 Dry fraction which is characterised by a turbostratic structure

34

(35)

SOOT TENDENCY OF FUELS

(36)

Soot Organization

 From the texture point of view

o soot is a particle of about a micrometer size

o If one looks closer, they are in fact agglomerate of primary spheres with an average size about 10 &

40 nm

o Their number can be as high as 100s

 The size is the main factor in the toxicity of soot particles

36 100 nm

Toluene pyrolysis @ 2000 K &14 bars

(37)

50 nm

Microtexture and structure

37

5 nm

TEM @ low resolution x 50 000

TEM @ high resolution x 310 000

(38)

Objectives of the Study

 How long does it take to form soot?

 How much soot can be formed?

 What is exactly formed?

 How do soot look like ?

 What kind of species are adsorbed on the surface ?

 How can these data be useful to the soot modeling?

(39)

Soot Properties

 Soot Optical Properties will depend on

 Type of agregates

 Mean diameter of the primary spheres

 Micro-Structure

 Soot Reactivity will depend on

 Micro-Structure

 Adsorbed phase

Refractive Index

Soot Oxidation Rate

(40)

Reaction Time

First Ring Formation

Inception and Growth of PAHs Soot Nucleation

Soot Growth due to surface growth and coagulation

Bockhorn, 1994

Main Soot Formation Mechanism

(41)

Soot Volume Fraction Measurement

BEER-LAMBERT Law & Graham’s model (1975)

I

0

I

I I m

E

fv L ln o

) ( 6

l

0 0.0004 0.0008 0.0012

Time (s)

0 4E-007 8E-007 1.2E-006

Soot volume fraction (cm3/cm3)

0 0.4 0.8 1.2

Pressure (a.u.)

ind

fvmax

t f k

f

ln f f

v v

v

     I

ln I C

l ) m ( E 72

N C

C 0

total av

total suies

l

Growth Constant

Soot Yield

Induction Delay

   

R T

exp E Diluant

HC

A a b ind

ind

(42)

Studied Parameters

 Morphology and structure of the soot (T.E.M.)

CRMD

 Low Resolution: Aggregates, diameter distribution

 High Resolution: Arrangement of the carbon layers

 Adsorbed Phase on soot

 LSMCL, Metz

(43)

Experimental Conditions

FT

(C11.23H24.46) T5(K) P5(MPa) [Carbon]5

(atoms.cm-3)

Eq. ratio ()

O2% (mol.) in Ar 0.4% mol.

1675-2540 1.24-1.71 (1,83-2,76).10+18 0%

1630-2325 1.51-1.65 (2.11-2,50).10+18 18 0.42%

1525-1920 1.05-1.48 (2,17-2,49).10+18 5 1.33%

0.2% mol. 1500-2225 1.15-1.65 (1,15-1.38).10+18 0%

Argon Dilution usually > 99 %

(44)

Induction Delay Times

4.0E-004 5.0E-004 6.0E-004 7.0E-004

1/T5 (K-1)

1 10 100 1000

Induction delay time (µs)

Mathieu et al. (31st Symp):

: [C5] = 1.0±0.1x1018 at.cm-3 1100 < P5 (kPa) < 1650

Douce et al. (28th Symp):

1245 < P5 (kPa) < 1805

: [C5] = 2.0±0.4x1018 at.cm-3

: [C5] = 4.9±0.8x1018 at.cm-3

 



 

 

) ( 21690 exp

] [

046 .

0 0.50 0.93

K P T

x

µs toluene

ind

4 4.5 5 5.5 6 6.5 10000/T5 (K-1)

1 10 100 1000 10000

inds)

0.75 < [C]10-18 (at.cm-3) < 1.42 1.56 < [C]10-18 (at.cm-3) < 2.39 3.63 < [C]10-18 (at.cm-3) < 5.71

LP

HP

HP

TOLUENE PYROLYSIS

LP : 200 < P5 (kPa) < 460 HP : 1250 < P5 (kPa) < 1800

Douce et al. (28th Symp):

(45)

Induction Delay Times

4.0E-004 4.5E-004 5.0E-004 5.5E-004 6.0E-004

1/T5 (K-1)

10 100 1000

Induction delay (µs)

Fischer-Tropsch n-decane [1]

Iso-octane [2]

cetane [3]

Iso-cetane [4]

Diesel surrogate [4]

Pyrolysis

1.400.4 MPa 2.00.5 C at. cm-3

Pyrolysis (2.00.5)x1018at.cm-3 1.4 MPa 0.4

 



 



K T n

µs n

H C

ind 8,314

165000 exp

10 4 , 1

04 , 3

3 R2 = 0,9355

4x10-4 5x10-4 6x10-4 7x10-4

1/T5 (K-1)

100 101 102 103 104

Induction Delay (µs)

n-hexadecane

decahydronaphtalene

n-heptylbenzene Toluene

1-methylnaphtalene

(46)

Summary

46

C4 Route : C2H3+C2H2C4H5

C2H+C2H2C4H3 puis,

C4H5+C2H2 +H C4H3+C2H2C6H5 Slow

Route Aromatic

Aliphatic

Fast Route

C3 Route:

C3H3+C3H3C6H5+H C3H3+C3H4 +H

2 nm

20 nm

+H

HACA Mechanism

HAP

+ H  + H2

+C2H2 -H

+C2H2 -H

+H -H2

+C2H2

(47)

Soot Yield - Toluene

1600 2000 2400 2800

T5 (K)

0 4 8 12 16 20

Soot Yield (%)

Douce et al. (PCI, 2000):

: [C5] = 2.0±0.4x1018 at.cm-3 Mathieu et al. (PCI, 2007) :

: [C5] = 1.0±0.1x1018 at.cm-3







 

 

2

max exp

T T A T

Y

Y opt

 

v

initial av

initial

soot f

C N C

Y C

 12

] [

] [

• Soot Yield’s definition:

• Soot Yield’s representation:

(48)

Soot Yield

1200 1600 2000 2400 2800

T5 (K)

0 20 40 60

Soot Yield (%)

1-methylnaphtalene Toluene

decahydronaphtalene n-heptylbenzene n-hexadecane

Douce et al. (PCI, 2000)

Mathieu et al. (Combst. Flame, 2009)

1600 2000 2400

T5 (K)

0 2 4 6 8

Soot yield (%)

Pyrolysis

 ISO [10]

 7MN (this work)

 HDC [9]

1600 2000 2400

T5 (K)

0 2 4 6 8

Soot yield (%)

Pyrolysis

 ISO [10]

 7MN (this work)

 HDC [9]

(49)

Effect of Oxygen

4.0x10-4 5.0x10-4 6.0x10-4 7.0x10-4

1/T5 (K-1)

101 102 103 104

Induction delay (µs)

Decahydronaphtalene Pyrolysis

Equiv. Ratio = 18 Equiv. Ratio = 5

r = 0,994 r = 0,987 r = 0,994

1200 1600 2000 2400

T5 (K)

0 4 8 12

Soot Yield (%)

Decahydronaphtalene Pyrolysis

Equiv. Ratio = 18 Equiv. Ratio = 5

Douce et al. (PCI, 2000)

(50)

TEM - Toluene / Ar

50 T5 = 1700 K ; P5 = 1714kPa

T5 = 2000 K P5 = 1433kPa

446 measurements Average dm = 26.2 nm Standard deviation = 3.78

8 12 16 20 24 28 32 36 40 44 0

20 40 60

Number of particles

Particle diameter (nm)

297 measurements Average dm = 17.9 nm Standard deviation = 1.71

8 12 16 20 24 28 32 36 40 44 0

20 40 60 80

Number of particles

Particle diameter (nm)

(51)

TEM – Size distribution

Toluene Pyrolysis (T5=1700 K ; P5= 1714 kPa)

Nb of data points used : 446 Average dm = 26.19 nm Standard deviation = 3.78

Toluene Oxidation (=5) (T5= 1685 K ; P5= 1266 kPa)

Nb of data points used : 81 Average dm = 17.95 nm Standard deviation = 2.33 Toluene Oxidation (=18)

(T5=1685 K ; P5= 1802 kPa)

Nb of data points used : 150 Average dm = 26.44 nm Standard deviation = 2.43

Number of particles

8 12 16 20 24 28 32 36 40 44 0

20 40 60

Particle diameter (nm)

8 12 16 20 24 28 32 36 40 44 0

4 8 12 16 20

Number of particles

Particle diameter (nm)

8 12 16 20 24 28 32 36 40 44 0

10 20 30

Number of particles

Particle diameter (nm)

(52)

MET

52

1400 1600 1800 2000 2200

T5 (K)

10 20 30 40

Primary particles diameter (nm)

(53)

Microtexture and structure

53

Raw Image Coherent

Domain

% single layer L : layer diameter

d002 : interlayer spacing La : BSU diameter

Lc : BSU height

a : desorientation degree

(54)

Layer Extension

54

1% toluene + 99% Argon T5 = 1718 K, P5 = 1720 kPa

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 La (nm)

0 0.2 0.4 0.6 0.8

Fquence relative Toluene/Argon

1700 K, 1714 kPa Thickness: 0.247 nm

La moy = 0.58 nm

Toluene/Argon

T5 = 1700 K ; P5 = 1714kPa

Toluene/Argon

T5 = 2000 K ; P5 = 1433kPa

Mean diameter : 26 nm Interlayer spacing : - inner core : 0.43 nm - outer shell : 0.39 nm Carbon layer : 0.58 nm

Texture : spherical, homogeneous

Mean diameter : 18 nm Interlayer spacing : - inner core : 0.39 nm - outer shell : 0.39 nm Carbon layer : 0.58 nm

Texture : spherical, homogeneous

(55)

5. Soot micro-structure

(a) 1475 K

10 nm (a) 1475 K

10 nm (a) 1475 K

10 nm

(b) 1765 K

10 nm (b) 1765 K

10 nm (b) 1765 K

10 nm (c) 2135 K

10 nm (c) 2135 K

10 nm (c) 2135 K

10 nm 10 nm

(d) 2135 K

10 nm (d) 2135 K

10 nm (d) 2135 K (a) 1475 K

10 nm (a) 1475 K

10 nm (a) 1475 K

10 nm

(b) 1765 K

10 nm (b) 1765 K

10 nm (b) 1765 K

10 nm (c) 2135 K

10 nm (c) 2135 K

10 nm (c) 2135 K

10 nm 10 nm

(d) 2135 K

10 nm (d) 2135 K

10 nm (d) 2135 K

x 310 000

La = Lateral extension of the poly-aromatics layer.

Interlayer spacing  as the temperature of

formation  (Douce et al., Proc. 4th Int. Conf. on Internal Comb. Engine)

At 1475 K:

- Short La and low

degree of organization - Short La = important density of edge site

carbon atoms  reactive surface (Vander Wal and

Tomasek, Comb. and Flame 134, 2003)

(56)

Effect of Temperature on micr- structure

56

(57)

Optical Properties of Soot

57

Authors Spectral Domain Real Parti Imaginary Part

Erickson et coll. visible 1,4 1

Chippet et Gray Visible 1,9-2,0 0,35-0,50

Bockhorn et coll. Visible 1,1 0,37

Lee et Tien Visible 1,8-2,0 0,45-0,65

Dalzel et Sarofim Visible 1,57 0,56

Stagg et 633 nm 1,531±0,004 0,372±0,007 Charalampopoulos

Mullins et Williams 633 nm 1,91±0,02 0,425±0,035 Chang et Visible 1,94 0,6

Charalampopoulos

Habib et Vervisch 600-650 nm 1,47 0,24±0,01 Vaglieco et coll. 637 nm 2,515 0,836 Felske et coll. 2-10 µ m 2,46±0, 15 0,8±0,14

(58)

Effect of soot refractive index on Fv

58

P5 = 1299 kPa T5 = 1865 K

0,4% de n-décane 99,6% d ’argon

[C]total = 2,01.1018 at.C/cm3

0 0.001 0.002 0.003 0.004

Temps (s) -5E-007

0 5E-007 1E-006 1.5E-006 2E-006

Fraction Volumique (cm3 de suies.cm-3)

Felske et coll.

Chippet et coll.

Lee et coll.

Bockhorn et coll.

Dalzell et coll.

Erickson et coll.

Fractions Volumiques

P5 = 1299 kPa ; T5 = 1865 K



 

 

m 2

1 Im m

) m (

E 2

2

(59)

Species adsorbed on Soot

O. Mathieu et al, PCI, 2009

(60)

Mass increment sequences

of 24 amu between major peaks interrupted by increment

of 26 amu

Major Peaks are Benzenoïd

LDIToFMS Study

0 100 200 300 400 500 600

0 100000 200000 300000 400000 500000

23 39 47 69 178 202 228 252 276 300 326 350 374 398 424 472 498

a.i.

m/z

0 100 200 300 400 500 600

0 100000 200000 300000 400000 500000

23 39 47 69 178 202 228 252 276 300 326 350 374 398 424 472 498

a.i.

m/z

1670 K

Rendement = 7 %

Major Peaks:

• Benzenoïd HAP : 202, 228, 252, 276…

• Non Benzenoïd HAP: 165, 190, 216, 240, 266, 290 & 314

1475 K Ysuies = 1 %

O. Mathieu et al, PCI, 2009

(61)

AUTO_IGNITION DELAY TIMES

(62)

Fuel T (K) P (bar) Xfuel (ppmv) XO2 % Ar

(PCH) C9H18 1 250 – 1 800 10 - 20 75 – 1 000 4 500 – 68 000 93,1 – 99,75 0,2 – 1,5 (BBZ) C10H14 1 225 – 1 800 10 - 20 75 – 1 000 4 500 – 67 500 93,2 – 99,5 0,2 – 1,5 (DEC) C10H22 1 225 – 1 825 10 130 - 875 9 000 – 10 000 99 0,2 – 1,5

Mélange T (K) P (bar) Xmélange (ppmv) XO2 % Ar

C10H22 - C9H18 1 250 – 1 750 10 135 – 930 9 000 – 10 000 99 0,2 – 1,5 C10H22 -

C10H14

1 225 – 1 750 10 135 – 930 9 000 – 10 000 99 0,2 – 1,5

T (K) P (bar) Xmélange (ppmv) XO2 % Ar % EGR

1 275 – 1 850 10 90 - 600 5 800 – 10 000 99 0 et 40 0,2 – 1,5

17

Experimental Conditions

Pure Fuels

Binary Mixtures

Ternary Mixtures + EGR

Riferimenti

Documenti correlati

In the present work we show that the activation of PKA by exogenous cAMP in the GG104 strain exponentially growing in glucose medium caused a marked increase of cell size

His labora- tory determines molecular mechanisms for disease using molecular biological, genomic, and human genetic approaches to investigate clinical phenotypes.. Through stud- ies

Here, to make up for the relative sparseness of weather and hydrological data, or malfunctioning at the highest altitudes, we complemented ground data using series of remote sensing

discussion of the patch-size disorder, the thermodynamic driving force is the factor that controls crystallization, and the amount of driving force necessary to observe

Specification of the retinal fate of mouse embryonic stem cells by ectopic expression of Rx/rax, a homeobox gene.. Otx2 is required to respond to signals from anterior neural

Further recent works in progress by Kamienny, Stein and Stoll [KSS] and Derickx, Kamienny, Stein and Stoll [DKSS] exclude k-rational point of exact prime order larger than

The resulting binary images are input into the spline-based algorithm for diameter estimates and the measurements performance against REVIEW is reported in Table 8.. The removal

complexes and formation of various different species upon water addition makes their therapeutic application problematic, and raises a strong interest in the development of