The (exponential) multipartitional polynomials and polynomial sequences of multinomial type, Part II
HACE`NEBELBACHIR*, MILOUDMIHOUBI
University of Science and Technology Houari Boumediene, USTHB, Faculty of Mathematics, P.B. 32, El Alia, 16111 Algiers, Algeria
Received 15 December 2012; revised 29 May 2013; accepted 10 June 2013 Available online 29 June 2013
Abstract. We establish recursiveness properties for multipartitional polynomials and their connection with the derivatives of polynomials of multinomial type. Various com- prehensive examples are illustrated.
Mathematis Subject Classification: 11B83; 05A10; 11B65
Keywords: Multipartitional polynomials; Derivatives of polynomial sequences of multinomial type; Recursiveness relations
1. INTRODUCTION
In a precedent work[6], the authors established identities on multipartitional polyno- mials, generalizing[1]. They give a result concerning the preservation of sequences of multinomial type. These results appear as natural extension of Bell polynomials and of polynomials of binomial type (see for instance [2–4]). Finally, they give some connection between these two concepts.
Let us introduce, as in[6], some definitions and notations.
Form,m1,. . .,mr integers such thatPr
i¼1mi¼m;we define m
m1;. . .;mr
¼
m!
m1!mr! if miP0; i¼1;. . .;r;
0 otherwise:
LetN be the set of nonnegative integers and Rthe set of real numbers. We use, the following notations, fora¼ ða1;. . .;arÞ 2Rr;b¼ ðb1;. . .;brÞ 2Rrwe set
* Corresponding author. Tel.: +213 771425883; fax: +213 21276446.
E-mail addresses:[email protected](H. Belbachir),[email protected](M. Mihoubi).
Peer review under responsibility of King Saud University.
Production and hosting by Elsevier
1319-5166ª2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
http://dx.doi.org/10.1016/j.ajmsc.2013.06.003
Arab J Math Sci21(1) (2015), 2–14
ARABJOURNAL OF
MATHEMATICALSCIENCES
a.b=a1b1+ +arbr,a+b = (a1+b1,. . .,ar+br),ka= (ka1,. . .,kar), (aPb) () (a1Pb1,. . .,arP br), (a>b) () (a1>b1,. . .,ar>br), 1ðaPbÞ¼ 1 if aPb;
0 otherwise;
forn¼ ðn1;. . .;nrÞ 2Nr we set
tn¼tn11 tnrr;tn!n¼t
n1 1 n1! tnnrr
r!;n! =n1! nr!,ŒnŒ=n1+ +nr,1= (1,. . ., 1), n
i p ¼ n1 i1
nr
ir ; n
i;j;. . .;k
p
¼ n1 i1;j1;. . .;k1
nr ir;jr;. . .;kr
;
Bn;kðxiÞ ¼Bn1;...;nr;kðx0;...;0;1;. . .;xn1;...;nrÞ,nP 0,kP0 and =0 otherwise, AnðxiÞ ¼An1;...;nrðx0;...;0;1;. . .;xn1;...;nrÞ,nP0 and =0 otherwise,
fnðxÞ ¼fn1;...;nrðxÞifnP 0,f0(x) = 1 and =0 otherwise, for ðm;nÞ 2N2 we set Bm,n;k(xi,j) =Bm,n;k(x0,1,x1,0 ,. . .,xm,n),
Am,n(xi,j) =Am,n(x0,1,x1,0,. . .,xm,n) and we set alsoDz¼0¼dzd
z¼0.
The complete (exponential) multipartitional polynomials An in the variables (xi, i„0), are defined by the sum
AnðxiÞ:¼X n!
Yn
i¼0;i–0
ki! Yn
i¼0;i–0
xi
i!
ki
; ð1Þ
where the summation is extended over all partitions of the multipartite number n= (n1,. . .,nr), that is, over all nonnegative integers (ki,06i6n) solution of the equations
Xn
i¼0ijki¼nj; j¼1;. . .;r; with convention k0¼0: ð2Þ
The partial (exponential) multipartitional polynomialsBn,kin the variables (xi,i„0), of degreek, are defined by the sum
Bn;kðxiÞ:¼X n!
Qn
i¼0;i–0ðki!Þ Yn
i¼0;i–0
xi
i!
ki
; ð3Þ
where the summation is extended over all partitions of the multipartite number n= (n1,. . .,nr) intokparts, that is, over all nonnegative integers (ki,06i6n) solution of the equations
Xn
i¼0ki¼k; Xn
i¼0ijki¼nj; j¼1;. . .;r; with conventionk0¼0: ð4Þ
Also, we can verify that the exponential generating function forAn1;...;nr is given by X
nP0AnðxjÞtn
n!¼exp X
jijP1xi
ti i!
ð5Þ
and the exponential generating function forBn; k is given by X
jnjPkBn;kðxjÞtn n!¼ 1
k!
X
jijP1xiti i!
k
: ð6Þ
The polynomials of multinomial type (fn(x)) are defined byf0(x):¼1 and X
iP0fið1Þti i!
x
¼X
nP0fnðxÞtn
n!: ð7Þ
In the followingSdesign a vector ofNrn f0g.
We will use the two following results, given in[6]:
Theorem 1. Let rP1 be an integer anda2Rr. If (fn(x)) is a multinomial type sequence of polynomials, then the polynomials (hn(x)) and (pn(x)) given by
hnðxÞ:¼ x
a:nþxfnða:nþxÞ ð8Þ
pnðxÞ:¼fjnjðxÞ ð9Þ
are of multinomial type.
Theorem 2. Leta2R;a2Rr and (fn(x)) be a sequence of polynomials of multinomial type. We have
An afiða:iÞ a:i
¼afnða:nþaÞ
a:nþa : ð10Þ
In this paper, we start with two light extensions concerning multipartitional polyno- mials given in[6]. The main results of the paper concern the recursiveness properties for multipartitional polynomials and their connections with the derivatives of polynomials of multinomial type. Each result is followed by various applications.
2. IDENTITIES RELATED TO MULTIPARTITIONAL POLYNOMIALS
In[6], Theorems 3 and 4 are established when S2 {0,1}r,S„0. Here, we extend the results to any vectorS2Nrsuch thatŒSŒP1. These extensions give an other applica- tion illustrated by vectorial multinomial coefficient.
Theorem 3. Let (xn) be a sequence of real numbers. Then jnj þk
jnj
!
BnþkS;k j
S !
p
xjjj
!
¼ 1 k!
nþkS n;S;. . .;S
!
p
Bjnjþk;kðjxjþjSj1Þ: ð11Þ
Proof. Identity(11)follows from the following expansion:
1 k!
P
jijP1
i S pxiti!i k
¼k!1 P
jP1xjP
jij¼j
i S p
ti i!
k
¼ tkS
k!ðS!Þk
P
jP1xjP
jij¼j tiS ðiSÞ!
k
¼ tkS
k!ðS!Þk
P
jP1xjþjSj1P
jij¼j1ti i!
k
¼ tkS
k!ðS!Þk
P
jP1jxjþjSj1ðjtjÞj!j1 k
¼ tkS
ðS!Þk
P
mPkBm;kðjxjþjSj1ÞðjtjÞm!mk
¼ðS!ÞtkSk
P
mPk ðmkÞ!
m! Bm;kðjxjþjSj1ÞP
jmj¼mktm m!
¼ tkS
ðS!Þk
P
mP0 ðjmjÞ!
ðjmjþkÞ!Bjmjþk;kðjxjþjSj1Þtm!m
¼k!ðS!Þ1 k
P
mP0 n!
ðnkSÞ!
BjnjkjSjþk;kðjxjþjSj1Þ
jnj ðjSj 1Þk k
tn!n
¼k!1P
nPkS
n nkS;S;. . .;S
p
BjnjðjSj1Þk;kðjxjþjSj1Þ
jnj ðjSj 1Þk k
tn!n:
Corollary 4. Let (xn) be a sequence of real numbers. Then, for r = 1 andS= u, we get nþk
n
Bnþku;k j u xj
¼ 1 k!
nþku n;u;. . .;u
Bnþk;kðjxjþu1Þ:
Corollary 5. Let (xn) be a sequence of real numbers. Then, for r = 2 andS= (u,0), we get
mþnþk mþn
Bmþku;n;k
i u xiþj
¼ 1 k!
mþku m;u;. . .;u
Bmþnþk;kðjxjþu1Þ;
for r = 2 and S= (0,v), we get mþnþk
mþn
Bm;nþkv;k j v xiþj
¼ 1 k!
nþkv n;v;. . .;v
Bmþnþk;kðjxjþv1Þ;
for r = 2 and S= (u,v), we get mþnþk
mþn
Bmþku;nþkv;k
i u
j v xiþj
¼ 1 k!
mþku m;u;. . .;u
nþkv n;v;. . .;v
Bmþnþk;kðjxjþuþv1Þ:
Theorem 6. Leta2R;a2Rrand (fn(x)) be a multinomial type sequence of polynomi- als. We have
Bn;k a i S p
fiSða:ðiSÞ þaÞ a:ðiSÞ þa
¼ a ðk1Þ!
n nkS;S;. . .;S
p
fnkSða:ðnkSÞ þakÞ
a:ðnkSÞ þak : ð12Þ
Proof. We have P
jnjPkBn;k
i
S pfiSðaÞ
tn
n!¼k!1 P
jijP1
i
S pfiSðaÞti!i k
¼ tkS
k!ðS!Þk
P
iP0fiðaÞti!i k
¼ tkS
k!ðS!Þk
P
nP0fnðakÞtn!n
¼ 1
k!ðS!Þk
P
nPkS n!
ðnkSÞ!fnkSðakÞtn!n; i.e.
Bn;k
i
S pfiSðaÞ
¼ 1 k!
n nkS;S;. . .;S
p
fnkSðakÞ: ð13Þ It suffices to replace (fn(x)) by (hn(x)) as in(8). h
Corollary 7. Leta;a2Rand (fn(x)) be a binomial type sequence of polynomials. Then, for r = 1 andS= u, we have
Bn;k a i u
fiuðaðiuÞ þaÞ aðiuÞ þa
¼ a ðk1Þ!
n nku;u;. . .;u
fnkuðaðnkuÞ þakÞ aðnkuÞ þak : Corollary 8. Let a2R;a¼ ða;bÞ 2R2 and (fm,n(x)) be a trinomial type sequence of polynomials. Then, for r = 2 andS= (u,0), we have
Bm;n;k a i u
fiu;jðaðiuÞ þbjþaÞ aðiuÞ þbjþa
¼ a ðk1Þ!
m mku;u;. . .;u
fmku;nðaðmkuÞ þbnþakÞ aðmkuÞ þbnþak ; for r = 2 andS= (0,v), we have
Bm;n;k a j v
fi;jvðaiþbðjvÞ þaÞ aiþbðjvÞ þa
¼ a ðk1Þ!
n nkv;v;. . .;v
fm;nkvðamþbðnkvÞ þakÞ amþbðnkvÞ þak ; for r = 2 andS= (u,v), we have
Bm;n;k a i u
j v
fiu;jvðaðiuÞ þbðjvÞ þaÞ aðiuÞ þbðjvÞ þa
¼ a ðk1Þ!
m!n!
ðmkuÞ!ðnkvÞ!ðu!v!Þk
fmku;nkvðaðmkuÞ þbðnkvÞ þakÞ aðmkuÞ þbðnkvÞ þak :
3. RECURSIVENESS IN MULTIPARTITIONAL POLYNOMIALS
This section is devoted to the twice composition of multipartitional polynomials.
Theorem 9. Let (xn) be a sequence of real numbers with xS¼1;d2Nr and d2NI. We have
Bn;k 1ðiPSÞðt1Þ!d iþ ðt1ÞS i;S;. . .;S 1
p
Biþðt1ÞS;t
j S pxj
!
¼1ðnPkSÞðT1Þ!d ðk1Þ!
nþ ðTkÞS n;S;. . .;S 1
p
BnþðTkÞS;T j S pxj
; ð14Þ
where t =dÆ(iS) + d T =dÆ(nkS) + kd.
Proof. Let (fn(x)) be a multinomial type sequence of polynomials with fn(1):¼xn+S. Fora=0 anda= 1 in(12), we get
fnðkÞ
k ¼ ðk1Þ! nþkS n;S;. . .;S 1
p
BnþkS;k i S pxi
: ð15Þ
Fora=d anda=d, Formula(12)becomes Bn;k d i
S p fiSðtÞ
t
¼ d ðk1Þ!
n nkS;S;. . .;S
p
fnkSðTÞ
T : ð16Þ
Therefore, form(15), we obtain fiSðtÞ
t ¼ ðt1Þ! iþ ðt1ÞS iS;S;. . .;S 1
p
Biþðt1ÞS;t
i S pxi
and fnkSðTÞ
T ¼ ðT1Þ! nþ ðTkÞS nkS;S;. . .;S 1
p
BnþðT1ÞS;T i S pxi
:
Now, replacing in(16)fiS(t) andfnkS(T) by their above expressions, we get Bn;k ðt1Þ!d i
S p
iþ ðt1ÞS iS;S;. . .;S 1
p
Biþðt1ÞS;t
i S pxi
!
¼ðT1Þ!d ðk1Þ!
n nkS;S;. . .;S
p
nþ ðTkÞS nkS;S;. . .;S 1
p
BnþðTkÞS;T
i S pxi
:
Then, to obtain(14), it suffices to observe that i
S p
iþ ðt1ÞS iS;S;. . .;S 1
p
¼1ðiPSÞ iþ ðt1ÞS i;S;. . .;S 1
p
;
n nkS;S;. . .;S
p
nþ ðTkÞS nkS;S;. . .;S 1
p
¼1ðnPkSÞ nþ ðTkÞS n;S;. . .;S 1
p
:
Corollary 10. Let (fn(x)) be a binomial type sequence of polynomials and d2NI. Then, for r = 1,S= u andd¼p2N;and Bn,k(xi) be the partial Bell polynomials, we get
Bn;k 1ðiPuÞðt11Þ!d iþ ðt11Þu i;u;. . .;u 1
Biþðt11Þu;t1 j u xj
!
¼1ðnPkuÞðT11Þ!d ðk1Þ!
nþ ðT1kÞu n;u;. . .;u 1
BnþðT1kÞu;T1 j u xj
;
where t1= p(iu) + d, T1= p(nku) + kd.
Corollary 11. Let p, q, dP1 be nonnegative integers and (fm,n(x)) be a trinomial type sequence of polynomials. Then, for r = 2,d= (p, q) andS= (u, 0), we get
Bm;n;k 1ðiPuÞðt101Þ!d iþ ðt101Þu i;u;. . .;u 1
Biþðt101Þu;j;t10 i0 u xi0;j0 !
¼1ðmPkuÞðT101Þ!d ðk1Þ!
mþ ðT10kÞu m;u;. . .;u 1
BmþðT10kÞu;n;T10 i0 u xi0;j0
;
where t10= p(iu) + qj + d and T10= p(mku) + qn + kd; for r = 2,d= (p,q) andS= (0,v), we get
Bm;n;k 1ðjPvÞðt011Þ!d jþ ðt011Þv j;v;. . .;v 1
Bi;jþðt011Þv;t01 j0 v xi0;j0
!
¼1ðnPkvÞðT011Þ!d ðk1Þ!
nþ ðT01kÞv n;v;. . .;v 1
Bm;nþðT01kÞv;T01 j0 v xi0;j0
;
where t01= pi + q(jv) + d and T01= pm + q(nkv) + kd; for r = 2,d= (p,q) andS= (u,v), we get
Bm;n;k 1ðiPuÞ1ðjPvÞðt111Þ!d
Biþðt111Þu;jþðt111Þv;t11 i0 u
j0 v xi0;j0
iþ ðt111Þu i;u;. . .;u
jþ ðt111Þv j;v;. . .;v
0 BB B@
1 CC CA
¼1ðmPkuÞ1ðnPkvÞðT111Þ!d ðk1Þ!
BmþðT11kÞu;nþðT11kÞv;T11
i0 u
j0 v xi0;j0
mþ ðT11kÞu m;u;. . .;u
nþ ðT11kÞv n;v;. . .;v ;
where t11= p(iu) + q(jv) + d and T11= p(mku) + q(nkv) + dk.
Foru= 1 in Corollary 10 we obtain Proposition 4 of[3]and foru=v= 1 in Cor- ollary 11 we obtain Theorems 7 and 10 of[5].
Using some particular cases related to Bell polynomials. Indeed, for the choice xn:¼xŒnŒ in Theorem 9 and using relation(11), we obtain:
Corollary 12. Let (xn) be a sequence of real numbers with xS¼1;d2Nrand d2NI: We have
Bn;k
d t
i S p
BjijjSjþt;tðxjÞ jij jSj þt
t
0 BB B@
1 CC CA¼ d
ðk1Þ!T
n nkS;S;. . .;S
p
BjnjkjSjþT;TðxjÞ jnj kjSj þT
T
; ð17Þ
where t =dÆ(iS) + d, T =dÆ(nkS) + kd.
Example 13. Leta,xbe real numbers and (fn(x)) be a binomial type sequence of poly- nomials. Then, forxn¼anþxnx fn1ðanþxÞ;we obtain from the identity (see Proposition given in [3])
Bn;k
nx
anþxfn1ðanþxÞ
¼ n k
kx
aðnkÞ þkxfnkðaðnkÞ þkxÞ the following identity
Bn;k dx i S p
fnkðaðjij jSjÞ þtxÞ aðjij jSjÞ þtx
¼ dx ðk1Þ!
n nkS;S;. . .;S
p
fnkðaðjnj kjSjÞ þTxÞ aðjnj kjSjÞ þTx ; wheret=dÆ(iS) +d,T=dÆ(nkS) +kd.
Theorem 14. Let (xn) be a sequence of real numbers with xS= 1, d be an integer and d2 ðNIÞr. Then, ford.n+ dP1, we have
An ðd:i1Þ!d iþ ðd:iÞS i;S;. . .;S 1
p
Biþðd:iÞS;d:i
j S pxj !
¼ ðd:nþd1Þ!d nþ ðd:nþdÞS n;S;. . .;S 1
p
Bnþðd:nþdÞS;d:nþd
j S pxj
: ð18Þ
Proof. Seta=d andx=d, Identity(10)becomes An dfiðd:iÞ
d:i
¼dfnðd:nþdÞ
d:nþd : ð19Þ
From (15)we obtain fiðd:iÞ
d:i ¼ðd:i1Þ! iþ ðd:iÞS i;S;. . .;S 1
p
Biþðd:iÞS;d:i
j S pxj
fnðd:nþdÞ
d:nþd ¼ ðd:nþd1Þ! nþ ðd:nþdÞS n;S;. . .;S 1
p
Bnþðd:nþdÞS;d:nþd
j S pxj
: Now, to obtain (18), replace in (19) fi(d.i) andfn(d.n+d) by their above expressions. h
Corollary 15. Let (xn) be a sequence of real numbers with xS= 1. Then, for r = 1, S= u andd= pP1, with p, d are integers and pn + dP1, and An(xi) be the complete Bell polynomials and we get
An ðpi1Þ!d ðpuþ1Þi i;u;. . .;u 1
Bðpuþ1Þi;pi j u xj
!
¼ ðpnþd1Þ!d ðpuþdþ1Þn n;u;. . .;u 1
Bðpuþdþ1Þn;pnþd
j u xj
:
Corollary 16. Let (xm,n) be a sequence of real numbers with xS= 1 and pP1, qP1, d be integers such that pm + qn + dP 1. Then, for r = 2,d= (p,q) andS= (u,0), we get
Am;n ðpiþqj1Þ!d iþ ðpiþqjÞu i;u;. . .;u 1
BiþðpiþqjÞu;j;piþqj
i0 u xi0;j0 !
¼ ðpmþqnþd1Þ!d mþ ðpmþqnÞu m;u;. . .;u 1
BmþðpmþqnþdÞu;n;pmþqnþd
i0 u xi0;j0
;
for r = 2,d= (p,q) andS= (0,v), we get Am;n ðpiþqj1Þ!d jþ ðpiþqjÞv
j;v;. . .;v 1
Bi;jþðpiþqjÞv;piþqj
j0 v xi0;j0
!
¼ ðpmþqnþd1Þ!d nþ ðpmþqnÞv n;v;. . .;v 1
Bm;nþðpmþqnþdÞv;pmþqnþd
j0 v xi0;j0
; for r = 2,d= (p,q) andS= (u,v), we get
Am;n ðpiþqj1Þ!d
BiþðpiþqjÞu;jþðpiþqjÞv;piþqj
i0 u
j0 v xi0;j0
iþ ðpiþqjÞu i;u;. . .;u
jþ ðpiþqjÞv j;v;. . .;v
0 BB B@
1 CC CA
¼ ðpmþqnþd1Þ!d
BmþðpmþqnþdÞu;nþðpmþqnþdÞv;pmþqnþd
i0 u
j0 v xi0;j0
mþ ðpmþqnÞu m;u;. . .;u
nþ ðpmþqnÞv
n;v;. . .;v
:
Foru= 1 in Corollary 15 we obtain Proposition 4 of[3]and foru=v= 1 in Cor- ollary 16 we obtain Theorem 13 and 16 of[7].
For the choicexn:¼xŒnŒin Theorem 14 and using relation(11), we obtain:
Corollary 17. Let (xn) be a sequence of real numbers with xS= 1,d be an integer and d2Nr:Then, ford.n + dP1, we have
An
d d:i
Bðdþ1Þ:i;d:iðxjÞ ðdþ1Þ:i
d:i 0
BB B@
1 CC CA¼ d
d:nþd
Bðdþ1Þ:nþd;d:nþdðxjÞ ðdþ1Þ:nþd
d:nþd :
Example 18. Leta,xbe real numbers and (fn(x)) be a binomial type sequence of poly- nomials. For the (xn) given in Example 13, we obtain
An dxfjijðajij þ ðd:iÞxÞ ajij þ ðd:iÞx
¼dxfjnjðajnj þ ðd:nþdÞxÞ ajnj þ ðd:nþdÞx :
4. MULTIPARTITIONAL POLYNOMIALS AND DERIVATIVES OF POLYNOMIALS OF MULTINOMIAL TYPE
Some identities related to the derivatives of polynomial sequences of multinomial type are given. We use the convention D1z¼0gðzÞ ¼0:
Theorem 19. Leta2Rbe a real number and (fn(x)) is of multinomial type sequence of polynomials. We have
Bn;k
i
S pDz¼0ðeazfiSðxþzÞÞ
¼ 1 k!
n nkS;S;. . .;S
p
Dkz¼0ðeazfnkSðkxþzÞÞ: ð20Þ
Proof. Letxn¼ n
S pDz¼0ðeazfnSðxþzÞÞ. Then
1 k!
P
jijP1xiti i!
k
¼k!1 P
iPS
i
S pDz¼0ðeazfiSðxþzÞÞti!i
k
¼ tkS
k!ðS!Þk
P
iP0Dz¼0ðeazfiðxþzÞÞti!i k
¼ tkS
k!ðS!Þk Dz¼0eazP
iP0fiðxþzÞti!i k
¼ tkS
k!ðS!ÞkðDz¼0ðeazFðtÞxþzÞÞk
¼ tkS
k!ðS!ÞkðFðtÞxDz¼0eðaþlnFðtÞÞzÞk
¼ tkS
k!ðS!ÞkFðtÞkxðaþlnFðtÞÞk
¼ tkS
k!ðS!ÞkFðtÞkxDkz¼0eðaþlnFðtÞÞz
¼ tkS
k!ðS!ÞkDkz¼0ðeazFðtÞkxþzÞ
¼ tkS
k!ðS!Þk
P
iP0Dkz¼0ðeazfiðkxþzÞÞti!i
¼k!1P
nPkS
n nkS;S;. . .;S
p
Dkz¼0ðeazfnkSðkxþzÞÞtn!n;
so, we obtain the desired identity by identification. h
Theorem 20. Let d2Nr, d2NI,a2Rr,a, x be real numbers and (fn(x)) be a multi- nomial type sequence of polynomials. Then we have
Bn;k d i
S pDd:ðiSÞþd1ðxDþ1Þ fiSðtþzÞ
tþz eaz
z¼0
¼ d ðk1Þ!
n nkS;S;. . .;S
p
Dd:ðnkSÞþkd1ðxDþ1Þ fnkSðTþzÞ ðTþzÞ eaz
z¼0
;
ð21Þ wheret¼a:ðiSÞ þdx and T¼a:ðnkSÞ þkdx.
Proof. Set in(14)xn:¼Dz=0(eazfnS(x+z)) and use Theorem 19, we obtain Bn;k
d t
i
S pDtz¼0ðeazfiSðtxþzÞÞ
¼ d
ðk1Þ!T
n nkS;S;. . .;S
p
DTz¼0ðeazfnkSðTxþzÞÞ; witht=dÆ(iS) +d,T=dÆ(nkS) +kd.
To obtain (21), use in this identity the multinomial type sequence (hn(x)) instead (fn(x)), wherehn(x) is defined, as in(8), byhnðxÞ:¼ðaxdÞ:nþxx fnððaxdÞ:nþxÞ. h Corollary 21. Let a, x, a be real numbers, pP0, dP1 be integers and (fn(x)) be a binomial type sequence of polynomials. For r = 1,d= p,a= a andS= u, we have
Bn;k d i
u DpðiuÞþd1ðxDþ1Þ fiuðt1þzÞ t1þz eaz
z¼0
¼ d ðk1Þ!
n ku
DpðnkuÞþkd1ðxDþ1Þ fnkuðT1þzÞ T1þz eaz
z¼0
;
wheret1¼aðiuÞ þdx and T1¼aðnkuÞ þkdx.
Corollary 22. Let a,x,a, b be real numbers, pP0, qP0, dP1 be integers and (fm,n(x)) be a trinomial type sequence of polynomials. Then, for r = 2, d= (p, q), a= (a, b) andS= (u, 0), we get
Bm;n;k d i
u DpðiuÞþqjþd1ðxDþ1Þ fiu;jðt10þzÞ t10þz eaz
z¼0
¼ d ðk1Þ!
m ku
DpðmkuÞþqnþkd1ðxDþ1Þ fmku;nðT10þzÞ T10þz eaz
z¼0
;
where t10¼aðiuÞ þbjþdx and T10¼aðmkuÞ þbnþkdx; for r = 2,d= (p,q), a= (a,b) andS= (0,v), we get
Bm;n;k d j
v DpiþqðjvÞþd1ðxDþ1Þ fi;jvðt01þzÞ t01þz eaz
z¼0
¼ d ðk1Þ!
n kv
DpmþqðnkvÞþkd1ðxDþ1Þ fm;nkvðT01þzÞ T01þz eaz
z¼0
;
where t01¼aiþbðjvÞ þdx and T01¼amþbðnkvÞ þkdx; for r = 2, d= (p,q), a= (a,b) andS= (u,v), we get
Bm;n;k d i u
j
v DpðiuÞþqðjvÞþd1ðxDþ1Þ fiu;jvðt11þzÞ
t11þz eaz
z¼0
¼ d ðk1Þ!
m ku n
kv
DpðmkuÞþqðnkvÞþkd1ðxDþ1Þ fmku;nkvðT11þzÞ ðT11þzÞ eaz
z¼0
; where t11¼aðiuÞ þbðjvtÞ þdx and T11¼aðmkuÞ þbðnkvÞ þkdx.
Foru= 1 in Corollary 21 we obtain Corollary 19 of[5]and foru=v= 1 in Cor- ollary 22 we obtain Theorems 16 and 17 of [5].
Now, when we use a multinomial type sequence as in (9), Theorem 20 becomes:
Corollary 23. Let d2Nr, d2NI, 2Rr, a, x be real numbers and (fn(x)) be a multinomial type sequence of polynomials. Then we have
Bn;k d i
S pDd:ðiSÞþd1ðxDþ1Þ fjiSjðtþzÞ
tþz eaz
jz¼0
¼ d ðk1Þ!
n nkS;S;. . .;S
p
Dd:ðnkSÞþkd1ðxDþ1Þ fjnkSjðTþzÞ ðTþzÞ eaz
z¼0
;
ð22Þ where t¼a:ðiSÞ þdx and T¼a:ðnkSÞ þkdx.
Theorem 24. Letd2 ðNIÞr;d be an integer,a2Rr;a;x be real numbers and (fn(x)) be a multinomial type sequence of polynomials. Then, ford.n + dP1, we have
An dDd:i1ðxDþ1Þ fiða:iþzÞ a:iþz eaz
z¼0
¼dDd:nþd1ðxDþ1Þ fnða:nþdxþzÞ a:nþdxþz eaz
z¼0
: ð23Þ
Proof. Set in(18)xn:¼Dz=0(eazfnS(x+z)) and use Lemma 19, we obtain An
d
d:iDd:iz¼0ðeazfiððd:iÞxþzÞÞ
¼ d
d:nþdDd:nþdz¼0 ðeazfnððd:nþdÞxþzÞÞ:
To obtain (23), use in this identity the multinomial type sequence (hn(x)) instead of (fn(x)), wherehn(x) is defined, as in(8), byhnðxÞ:¼ðaxdÞ:nþxx fnððaxdÞ:nþxÞ. h
Corollary 25. Leta, x, a be real numbers, pP1, d be integers such that pn + dP1 and (fn(x)) be a binomial type sequence of polynomials. For r = 1,d= p anda= a, we get
An dDpi1ðxDþ1Þ fiðaiþzÞ aiþz eaz
z¼0
¼dDpnþd1ðxDþ1Þ fnðanþdxþzÞ
anþdxþz eaz
z¼0
:
Corollary 26. Let a, x, a, b be real numbers, pP1, qP1, d be integers such that pm + qn + dP1 and (fm,n(x)) be a trinomial type sequence of polynomials. For r = 2,d= (p,q) and a= (a,b), we get
Am;n dDpiþqj1ðxDþ1Þ fi;jðaiþbjþzÞ aiþbjþz eaz
z¼0
¼dDpmþqnþd1ðxDþ1Þ fm;nðamþbnþdxþzÞ amþbnþdxþz eaz
z¼0
:
Corollary 25 is Corollary 20 of[5]and Corollary 26 is Theorem 18 of[5].
Now, when we use a multinomial type sequence as in(9), Theorem 24 becomes:
Corollary 27. Letd2 ðNIÞr;d be an integer,a2Rr;a, x be real numbers and (fn(x)) be a multinomial type sequence of polynomials. Then, ford.n + dP1, we have
An dDd:i1ðxDþ1Þ fjijða:iþzÞ a:iþz eaz
z¼0
¼dDd:nþd1ðxDþ1Þ fjnjða:nþdxþzÞ a:nþdxþz eaz
z¼0
:
ACKNOWLEDGMENTS
The authors thank the referee for valuable advice and comments which helped to im- prove the quality of this paper.
REFERENCES
[1]H. Belbachir, M. Mihoubi, The (exponential) bipartitional polynomials and polynomial sequences of trinomial type, Part II, Integers 11 (A29) (2011) 12.
[2]E.T. Bell, Exponential polynomials, Ann. Math. 35 (1934) 258–277.
[3]M. Mihoubi, Bell polynomials and binomial type sequences, Discrete Math. 308 (2008) 2450–2459.
[4] M. Mihoubi, The role of binomial type sequences in determination identities for Bell polynomials 111 (2013) 323–337.
[5]M. Mihoubi, H. Belbachir, The (exponential) bipartitional polynomials and polynomial sequences of trinomial type, Part I, Integers 11 (A18) (2011) 17.
[6] M. Mihoubi, H. Belbachir, The (exponential) multipartitional polynomials and polynomial sequences of multinomial type, Part I, Arab J. Math. Sci. 20 (2) (2014) 233–245.
[7]S. Roman, The Umbral Calculus, Academic Press, New York, 1984.