Liceo “E. Fermi” Cecina - Prof. Francesco Daddi
Scheda sui limiti
4
aC Scientifico 20/05/2022
Calcolare i seguenti limiti.
Esercizio 1. lim
x→ −∞ log2/5(3−x) lim
x→3−
log2/5(3−x)
Esercizio 2. lim
x→ −∞ exp(
−x2)
x→lim+∞ exp(
−x2)
Esercizio 3. lim
x→ (π
2
)− exp(tanx) lim
x→ (π
2
)+ exp(tanx)
Esercizio 4. lim
x→ −∞ exp(
arctanx)
x→lim+∞exp(
arctanx)
Esercizio 5. lim
x→ −∞ arctan(
exp(x))
x→lim+∞ arctan(
exp(x))
Esercizio 6. lim
x→0+ ln(
arctanx)
x→lim+∞ ln(
arctanx)
Esercizio 7. lim
x→0+ arctan( ln(x))
x→lim+∞ arctan( ln(x))
Esercizio 8. lim
x→0− arctan ( 1
sinx )
lim
x→π− arctan ( 1
sinx )
Esercizio 9. lim
x→0+ ln ( 1
sinx )
lim
x→π− ln ( 1
sinx )
Esercizio 10. lim
x→0+ log1/4 ( 1
sinx )
lim
x→π− log1/4 ( 1
sinx )
Esercizio 11. lim
x→0−
exp ( 1
sinx )
lim
x→π−
exp ( 1
sinx )
Esercizio 12. lim
x→0−
(3 4
)1/sinx
lim
x→π−
(3 4
)1/sinx
Esercizio 13. lim
x→ −∞ ln(π
2 −arctanx
) lim
x→+∞ ln(π
2 −arctanx )
Esercizio 14. lim
x→0+ exp(
1 +|lnx|)
x→lim+∞ exp(
1 +|lnx|)
Esercizio 15. lim
x→0+ ln(
1 +|lnx|)
x→lim+∞ln(
1 +|lnx|)
Esercizio 16. lim
x→0−
ln(
1−exp(x))
x→ −∞lim ln(
1−exp(x))
Esercizio 17. lim
x→(−6π)−
log1/3(1−cosx) lim
x→0+ log1/3(1−cosx)
Esercizio 18. lim
x→6− −2exp(
log3/4(6−x))
lim
x→5− −2exp (
1 log3/4(6−x)
)