• Non ci sono risultati.

1. Tempestilli M, Milano E, D'Offizi G, Montalbano M, D'Avolio A, Gasperi T, Narciso P, Ascenzi P, Pucillo LP

(2013) Determination of telaprevir in plasma of HCV-

infected patients by HPLC-UV. IUBMB life,65(9),800-5.

2. Pruszko M, Milano E, Forcato M, Donzelli S, Ganci F, Di Agostino S, Bates DO, Bicciato S, Zylicz M, Żylicz A, Blandino G and Fontemaggi G. (2017). The mutant p53-ID4 complex controls VEGFA isoforms production by recruiting lncRNA MALAT1. EMBO Rep. 18(8):1331-1351

3. Pruszko M, Milano E, Żylicz A, Zylicz M, Blandino G and Fontemaggi G. (2018). Zebrafish as experimental model to estabilish the contribution of mutant p53 and ID4 to breast cancer angiogenesis. J Thorac Dis,

10(3),231-233.

4. Donzelli S*, Milano E*, Pruszko M, Sacconi A, Masciarelli S, Iosue I, Melucci E, Gallo E, Terrenato I, Mottolese M, Zylicz M, Zylicz A, Fazi F, Blandino G,

and Fontemaggi G. Expression of ID4 protein in breast cancer cells induces reprogramming of tumour-

associated macrophages (2018). Breast Cancer Research, 20(59).

Posters:

1. SPECIAL CONFERENCE EACR AACR SIC 2015. "ID4- driven cross-talk between breast cancer cells and tumor associated macrophages". Firenze , 2015.

2. XIV FISV CONGRESS, 2016.

“ID4-driven cross-talk between breast cancer cells and tumor associated macrophages”. Elisa Milano, Sara Donzelli, Ilaria Iosue, Elisa Melucci, Enzo Gallo, Irene Terrenato, Marcella Mottolese, Giovanni Blandino, Francesco Fazi and Giulia Fontemaggi. Roma, 20- 23 settembre 2016, Università La Sapienza. (FISV Programme and Abstracts book pag 66 P5.13 in the Oncogenes and Tumor suppressors section)

3. 17TH INTERNATIONAL P53 WORKSHOP, 2017. “The mutant p53-ID4 complex controls VEGFA isoforms production by recruiting lncRNA MALAT1” Pruszko M.,

Milano E., Forcato M, Donzelli S, Ganci F, Di Agostino S.,

Bates D.O., Bicciato S., Zylicz M, Żylicz A., Blandino G and Fontemaggi G. 8-12 luglio 2017, Biopolis, Singapore. P034 pag 99 Programme and abstract book

Bibliography

1. WHO.(2016) WHO:Geneva, Switzerland. Breast Cancer. http://www.who.int/cancer/prevention/diagnosis-

screening/breast-cancer/en/.

2. Kalager M, Haldorse T, Bretthauer M, Hoff G, Thoresen S O, Adami H-O (2009). Improved breast cancer survival following introduction of an organized mammography screening program among both screened and unscreened women: a population- based cohort study. Breast Cancer Res 11.

3. Siegel RL, Miller KD, Jemal A (2017) Cancer Statistics, 2017. CA: A cancer journal for clinicians 67.

4. Rosner B, Colditz GA, Willet WC. (1994) Reproductive risk factors in a prospective study of breast cancer: the Nurses‟ Health Study. Ann J Epidemiol 139, 819-835.

5. Colditz GA, Kaphingst KA, Hankinson SE, Rosner B. (2012) Family history and risk of breast cancer: nurses‟ health studyBreast Cancer Res Treat 133, 1097-1104.

6. Lalloo F, Evans DG. (2012) Familial breast cancer. Clin Genet 82, 105-114.

7. Shah R, Rosso K, and Nathanson SD. (2014) Pathogenesis, prevention, diagnosis and treatment of breast cancer. World Journal of Clinical Oncology 5, 283-298.

8. Danaei G, Vander Hoorn S, Lopez AD, Murray CJ, Ezzati M. (2005).Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. Lancet 366, 1784-1793.

9. Prat A., Perou C.M. (2010) Deconstructing the molecular portraits of breast cancer. Molecular Oncology 5, 5-23.

10. Sørlie T, Wang Y, Xiao C, Johnsen H, Naume B, Samaha RR and Børresen-Dale AL. (2006) Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three relevant platforms. BMC Genomics, 7.

11. Blows FM, Driver KE, Schmidt MK, Broeks A, van Leeuwen FE, Wesseling J. (2010) Subtyping of Breast Cancer by Immunohistochemistry to Investigate a Relationship between Subtype and Short and Long Term Survival: A Collaborative Analysis of Datafor 10.159 Cases from 12 Studies. Plos Medicine, 7.

12. Millikan RC, Newman B, Tse C-K, Moorman PG, Conway K, Smith LV, Labbok MH, Geradts J, Bensen JT, Jackson S, Nyante S, Livasy C, Carey L, Earp HS, and Perou CM. (2008) Epidemiology of basal-like breast cancer, Breast cancer research and treatment, 109, 123-139.

13. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA. (2000) Molecular portraits of human breast tumours. Nature, 406, 747- 752.

14. Gruvberger S, Ringnér M, Chen Y, Panavally S, Saal LH, Borg A, Fernö M, Peterson C, Meltzer PS (2001) Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer research 61, 5979-84.

15. Pusztai L. (2008) Current Status of Prognostic Profiling in Breast Cancer. The Oncologist, 13.

16. Toss A, Cristofanilli M. (2015) Molecular characterization and targeted therapeutic approaches in breast cancer. Breast cancer research, 17(60).

17. Weigelt B, Baehner FL and Reis-Filho JS. (2010) The contribution of gene expression profiling to breast cancer

classification, prognostication and prediction: a retrospective of the last decade. Journal of Pathology 220, 263-280.

18. TCGA. (2012) Comprehensive molecular portraits of human breast tumors. Nature 490 (7418),61-70.

19 Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO,Botstein D, Borresen-Dale. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. PNAS

98 (19), 10869–10874.

20. Mitri Z, Constantine T, and O'Regan R. (2012) The HER2 Receptor in Breast Cancer: Pathophysiology, Clinical Use, and New Advances in Therapy. Chemoterapy research and practice,

Vol. 2012.

21. Spector NL, Blackwell KL.(2009) Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. Journal of Clinical Onocology 27(34)

22. Hubalek M, Czech T, Müllerb H. (2017). Biological Subtypes of Triple-Negative Breast Cancer. Breast Care 12(1), 8-14.

23 Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR, Palacios J, Rakha EA, Richardson AL, Schmitt FC, Tan P, Tse GM, Weigelt B, Ellis IO and Reis-Filho JS. (2011) Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists.. Modern Pathology 24, 157-167.

24. Perou CM (2011) Molecular stratification of triple-negative breast cancers. Oncologist 16, 61-70.

25 Cheang MC1, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, Perou CM, Nielsen TO. (2008) Basal-Like Breast Cancer Defined by Five Biomarkers Has Superior Prognostic Value than Triple-Negative Phenotype. Clinical cancer research, 14(5).

26. Turner NC and Reis-Filho JS (2006). Basal-like breast cancer and the BRCA1 phenotype. Oncogene 25, 5846–5853.

27. Quail DF and Joyce JA (2013). Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 19(11), 1423–1437.

28. Bingle L, Brown N, Lewis CE ( 2002). The role of tumour- associated macrophages in tumourprogression: implications for new anticancer therapies. Journal of Pathology. 196, 254-265.

29. Pollard, J Condeelis and J W. (2006.) Macrophages: Obligate Partners for Tumor Cell Migration, Invasion, and Metastasis ElsevierCell. 124(1).

30. Campbell MJ, Wolf D, Mukhtar RA, Tandon V, Yau C, Au A, Baehner F, van‟t Veer L, D Berry, Esserman LJ. (2013). The Prognostic Implications of Macrophages Expressing Proliferating Cell Nuclear Antigen in Breast Cancer Depend on Immune Context. PLOS ONE. 8(10).

31 Mukhtar RA, Moore AP, Tandon VJ, Nseyo O, Twomey P, Adisa CA, Eleweke N, Au A, Baehner FL, Moore DH, McGrath MS, Olopade OI, Gray JW, Campbell MJ, Esserman LJ.(2012) Elevated levels of proliferating and recently migrated tumor- associated macrophages confer increased aggressiveness and worse outcomes in breast cancer. Annals of surgery oncology.

19(12).

32. Chanmee T, Ontong P, Konno K and Itano N. (2014) Tumor-Associated Macrophages as Major Players in the tumor microenviroment. Cancers. 6, 1670-1690.

33. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, and Pollard JW (2012) CCL2 recruits inflammatory monocytes to facilitate breast tumor metastasis. Nature, 475, 222-225.

34. Lin EY, Nguyen AV, Russell RG, Pollard JW. (2001) Colony-stimulating Factor 1 Promotes Progression of Mammary Tumors to Malignancy. Journal of Experimental medicine, 193.

35. Aharinejad S, Paulus P, Sioud M, Hofmann M, Zins K, Schafer R,Stanley ER, Abraham D. (2004). Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs supprsses growth of human mammary tumor xenografts in mice. Cancer research, 64.

36. Wanga H, Shaoa Q, Suna J, Maa C, Gaoa W, Wanga Q, Zhaoa L, and Qua X. (2016). Interactions between colon cancer cells and tumor-infiltrated macrophages depending on cancer cell-derived colony stimulating factor 1. Oncoimmunology, 5(4).

37. Murdoch C, Giannoudis A, and Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood,

38. Allavena P, Sica A, Solinas G, Porta C, Mantovani A. (2008). The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Critical Reviews in Oncology/Hematology, 66, 1-9.

39. Sica A, Mantovani A. (2012). Macrophage plasticity and polarization: in vivo veritas. The Journal of Clinical Investigation, 122(3).

40. Yang L and Zhang Y. Tumor-associated macrophages: from basic research to clinical application (2017), Journal of Hematolgy & Oncology,10(58).

41. Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue X and Pollard JW (2006). Macrophages Regulate the Angiogenic Switch in a Mouse Model of Breast Cancer. Cancer research, 2(66).

42. Qian BZ and Pollard J W (2010. Macrophage diversity enhances tumor progression and metastasis. Cell, 141.

43. Jiang WG, Sanders AJ, Katoh M, Ungefroren H ,Gieseler F, Prince M, Thompson SK, Zollof M, Spano D, Dhawan P, Sliva D, Subbarayan PR, Sarkar M, Honoki K, Fujii H, Georgakilas AG, Amedei A, Niccolai E, Amin A,Ashraf SS, Ye L, Helferich WG,... Santini D. (2015) Tissue invasion and metastasis:

Molecular, biological and clinical perspectives. Seminars in cancer biology, 35.

44. Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T and Joyce JA.(2010). IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes & Development, 24, 241–255.

45. Wyckoff JB (2007), Direct visualization of macrophage- assisted tumor cell intravasation in mammary tumors. Cancer Research, 67, 2649-2656.

46. Shigeoka M, Urakawa N, Nakamura T, Nishio M, Watajima T, Kuroda D, Komori T, Kakeii Y, Semba S, Yokozaki H. (2013). Tumor associated macrophages expressing CD204 is associated with tumor aggressiveness of esophageal squamous cell carcinoma. Cancer Science. 104, 1112-1119.

47. Yang L, Wang F, Wang L, Huang L, Wang J, Zhang B, Zhang Y (2015). CD163+ tumor-associated macrophage is a prognostic biomarker and is associated with therapeutic effect on malignant pleural effusion of lung cancer patients Oncotarget, 6, 10592–10603.

48. Brana I, Calles A, LoRusso PM, Yee LK, Puchalski TA, Seetharam S, Zhong B, de Boer C J, Tabernero J, Calvo E. (2015). Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody , in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study. Targeted Oncology, 10, 111-123.

49. Pyonteck SM, Gadea BB, Wang HW, Gocheva V, Hunter KE, Tang LH, Joyce JA. (2012). Deficiency of the macrophage growth factor CSF-1 disrupts pancreatic neuroendocrine tumor development. Oncogene, 31,1459-67.

50. Norton. ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. (2000). Journal of cell science, 113, 3897-3905.

51. Patel D, Morton DJ, Carey J, Havrda MC, Chaudhary J. (2015) Inhibitor of differentiation 4 (ID4): From development to cancer. Biochimica et Biophysica Acta, 1855, 92-103.

52. Lasorella A, Benezra R and Iavarone A. (2014). The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nature, 14.

53. Perk J, Iavarone A, Benezra R. (2005) Id family of helix- loop-helix proteins in cancer. Nature Rev. Cancer, 5, 603-614.

54. Mern D, Hoppe-Seyler K, Hoppe-Seyler F, Hasskarl J, Burwinkel B (2010) Targeting Id1 and Id3 by a specific peptide aptamer induces E-box promoter activity, cell cycle arrest and apoptosis in breast cancer cells. Breast Cancer Res Treat, 124, 623-633.

55. Mern DS, Hasskarl J, Burwinkel B. (2010) Inhibition of Id proteins by a peptide aptamer induces cell-cycle arrest and apoptosis in ovarian cancer cells. Br.J. Cancer,103, 1237-1244.

56. De Candia P, Benera R & Solit D B. (2004). A role for Id proteins in mammary gland physiology and tumorigenesis, Adv. Cancer Res. 92, 81–94.

57. Bedford L, Walker R, Kondo T, Van Crüchten I, King ER, Sablitzky F. (2005), Id4 is required for the correct timing of neural differentiation. Developmental biology, 280, 386-395.

58. Murad JM, Place CS, Ran C, SKN H, Watson NP, Kauppinen RA. (2010) Inhibitor of DNA binding 4 (ID4) regulation of adipocyte differentiation and adipose tissue formation in mice. Journal of biological chemistry, 285, 24164- 73.

59. Tokuzawa Y, Yagi K, Yamashita Y, Nakachi Y, Nikaido I, Bono H. (2010) Id4, a new candidate gene for senile osteoporosis, acts as a molecular switch promoting osteoblast differentiation., PLoS genetics, 1-15.

60 Jeon H, Lee X, Oh SY, Sohn YW, Park HJ, Joo KM, Park WY, Nam D, DePinho R, Chin, Kim H. (2008). Inhibitor of differentiation 4 drives brain tumor-initiating cell genesis through cyclin E and notch signaling.Genes and development,

22.

61. Vinarskaja A, Goering W, Ingenwerth M, Schulz WA. (2012). ID4 is frequently downregulated and partially hypermethylated in prostate cancer. World journal of urology,

30, 319-325.

62. Kuzontkoski PM, Mulligan-Kehoe MJ, Harris BT, Israel MA.(2010). Inhibitor of DNA binding- 4 promotes angiogenesis and growth of glioblastoma multiforme by elevating matrix GLA levels. Oncogene, Vol. 29(26), 3793-3802.

63. Baker LA, Holliday H and Swarbrick A (2016) ID4 controls luminal lineage commitment in normal mammary epithelium and inhibits BRCA1 function in basal-like breast cancer. Endocrine related cancer, 23.

64. Lim E, Wu D, Pal B, Bouras T, Asselin-Labat M-L,

Vaillant F, Yagita H. (2010) Transcriptome analyses of mouse

and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast cancer research, 121,1- 14.

65. Junankar S, Baker LA, Roden DL, Nair R, Elsworth B, Gallego-Ortega D,Lacaze P, Cazet A, Nikolic I & Teo WS. (2015). ID4 controls mammary stem cells and marks breast cancers with a stem cell-like phenotype. Nature communications, 6(6).

66. Prat A, Cruz C, Hoadley A, Díez O, Perou CM and Balmaña J.(2014). Molecular features of the basal-like breast cancer subtype based on BRCA1 mutation status. Breas cancer research and treatment, 147(1), 185–191.

67. Roldán G, Delgado L, Musé IM. (2006) Tumoral expression of BRCA1, estrogen receptor alpha and ID4 protein in patients with sporadic breast cancer. Cancer biology and therapy, 5, 505-10.

68. Thike AA, Tan PH, Ikeda M, Iqbal J. (2015). Increased ID4 expression, accompanied by mutant p53 accumulation and loss of BRCA1/2 proteins in triple‐negative breast cancer, adversely affects survival. Histopathology, 68(5).

69. Fontemaggi G, Dell‟Orso S, Trisciuoglio D, Shay T, Melucci E,Fazi F, Terrenato I, Mottolese M, Muti P, Domany E, Del Bufalo D, Strano S and Blandino G.(2009). The execution of the transcriptional axis mutant p53,E2F1 and ID4 promotes tumor neo-angiogenesis. Nature structure & molecular biology,

70. Pruszko M, Milano E, Forcato M, Donzelli S, Ganci F, Di Agostino S, Bates DO, Bicciato S, Zylicz M, Żylicz A, Blandino G and Fontemaggi G.(2017). The mutant p53-ID4 complex controls VEGFA isoforms production by recruiting lncRNA MALAT1. EMBO reports, 18(8).

71. Wen YH, Ho A, Patil S, Akram M, Catalano J, Eaton A, Norton L, Benezra R, Brogi E. (2012) Id4 protein is highly expressed in triple-negative breast carcinomas: possible implications for BRCA1 downregulation. Breast cancer research and treatment .135, 93–102.

72. Anghelina M, Krishnan P, Moldovan L, Moldovan NI. (2006) Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. The American Journal of Pathology, 68(2), p. 529- 41.

73. Zhao X, Qu J, Sun Y, Wang J, Liu X, Wang F , Zhang H, Wang W, Ma X, Gao X and Zhang S. (2017) Prognostic significance of tumor-associated macrophages in breast cancer: a meta-analysis of the literature. Oncotarget, 8(18), 30576– 30586.

74. Murao S, Gemmell MA, Callaham MF, Anderson NL, Huberman E. (1983). Control of macrophage cell differentiation in human promyelocytic HL-60 leukemia cells by 1,25-

dihydroxyvitamin D3 and phorbol-12-myristate-13-acetate. Cancer research, 43, 4989–96.

75. Mangelsdorf DJ, Koeffler HP, Donaldson CA, Pike JW, Haussler MR. (1984) 1,25-Dihydroxyvitamin D3-induced differentiation in a human promyelocytic leukemia cell line (HL-60): receptor-mediated maturation to macrophage-like cells. The journal of cell biology, 98(2), 391-8.

76. Krock BL, Skuli N, Simon C. (2011). Hypoxia-Induced Angiogenesis: Good and Evil. Genes & Cancers,2(12) 1117- 1133.

77. Gilkes DM, and Semenza GL. (2013). Role of hypoxia- inducible factors in breast cancer metastasis. Future Oncol.,

9(11), 1623–1636.

78. Wang WX, Kyprianou N, Wang X, Nelson PT (2010), Dysregulation of the mitogen granulin in human cancer through the miR-15/107 microRNA gene group. Cancer research,

70(22)

79. Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT, Huso D, Lowenstein CJ. (2010). P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proceedings of the National Academy of Sciences USA, 107(4), 6334-9.

80. Chen L, Li ZY, Xu SY, Zhang XJ, Zhang Y, Luo K, Li W-p. (2016) Upregulation of miR-107 Inhibits Glioma Angiogenesis and VEGF Expression. Cell Mol Neurobiol, 36 (1), 113–20.

81. Shi Y, Zhao Y, Shao N, Ye R, Lin Y, Zhang N, Li W,Zhang Y and Wang S (2017). Overexpression of microRNA-96-5p inhibits autophagy and apoptosis and enhances theproliferation, migration and invasiveness of human breast cancer cells. Oncol Lett, 13(6), 4402–12.

82. Wang WX, Wilfred BR, Madathil SK, Tang G, Hu Y, Dimayuga J, Stromberg AJ, Huang Q, Saatman KE, Nelson PT. (2010) miR-107 regulates granulin/progranulin with implications for traumatic brain injury and neurodegenerative disease. Am J Pathol, 177(1), 334-45.

83. Fontemaggi G, Bellissimo T, Donzelli S, Iosue I, Benassi B, Bellotti G,Blandino G and Fazi F. (2015). Identification of post- transcriptional regulatory networks during myeloblast-to- monocyte differentiation transition. RNA biology, 12(7), 690– 700.

84. Serrero G. (2003) Autocrine growth factor revisited: PC- cell-derived growth factor (progranulin), a critical player in breast cancer tumorigenesis. Biochemical and Biophysical Research Communications, 308(3).

85. Elkabets M, Gifford AM, Scheel C, Nilsson B, Reinhardt F, Bray MA, Carpenter AE, Jirström K, Magnusson K, Ebert BL, Pontén F, Weinberg RA, McAllister SS. (2011) Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice. J Clin Inves, 121(2), 784–799.

86. Bateman A and Bennett HPJ. (2009). The granulin gene family: from cancer to dementia. BioEssay, 31, 1245–1254.

87. Eguchi R, Nakano T, Wakabayashi I (2017). Progranulin and granulin-like protein as novel VEGF-independent angiogenic factors derived from human mesothelioma cells. Oncogene, 36(5), p. 714-722.

88. Wei F, Zhang Y, Zhao W,Yu X, Liu C. (2014). Progranulin Facilitates Conversion and Function of Regulatory T Cells under Inflammatory Conditions. Plos One, 9.

89. Jian J, Li G, Hettinghousen A, Liu C. (2016) Progranulin: A key player in autoimmune diseases. Cytokines.

90. Mundra JJ, Jian J, Bhagat P, Liu CJ. (2016) Progranulin inhibits expression and release of chemokines CXCL9 and CXCL10 in a TNFR1 dependent manner. Scientfic reports , 6.

91. Elbarghati L, Murdoch C, Lewis CE. (2008) Effects of hypoxia on transcription factor expression in human monocytes and macrophages. Immunology. 213,899–908.

92. Sotoodehnejadnematalahi F and Burke B. (2014). Human activated macrophages and hypoxia: a comprehensive review of the literature, Iran J Basic Med Sci. 17(11), 820–830.

93. Dery MC, Michaud MD , Richard DE. (2005). Hypoxia- inducible factor 1: regulation by hypoxic and non-hypoxic activators. The International Journal of Biochemistry & Cell Biology, 535–540.

94. Blouin CC, Page E L, Soucy, GM and Richard DE. (2004) Hypoxic gene activation by lipopolysaccharide in macrophages:Implication of hypoxia-inducible factor 1alpha. Blood. 103, 1124–1130.

95. Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, Acker T, Acker-Palmer A (2010). Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature, 465, 487–91.

96. . Sulpice E, Plouët J, Bergé M, Allanic D, Tobelem G, Merkulova-Rainon T. (2008) Neuropilin-1 and neuropilin-2 act

as coreceptors, potentiating proangiogenic activity, Blood, 111, 2036–45.

97. Finnerty JR1, Wang WX, Hébert SS, Wilfred BR, Mao G, Nelson PT. (2010). The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol, 402(3), 491-509.

Documenti correlati