• Non ci sono risultati.

RISULTATI E DISCUSSION

AMPLIFICAZIONE DEI CAMPIONI DI RIFERIMENTO CON I PROTOCOLLI STANDARD DI PCR.

6.4 APPLICAZIONE DEL PROTOCOLLO DEFINITIVO AI CAMPIONI DI RIFERIMENTO FRESCHI E CONSERVATI IN ETANOLO

6.4.2. CAMPIONI DI RIFERIMENTO CONSERVATI IN ETANOLO.

Il tasso di amplificabilità dei 48 campioni di tessuto conservati in etanolo (Tabella 3) è risultato del 63,3%. I tassi di amplificabilità per specie sono riportati in Tabella 7. L’amplificabilità è stata superiore al 50% dei campioni per 12 specie su 16 (75%). In particolare, è stato possibile amplificare il 100% dei campioni di Sgombro, Trota, Ricciola, Sardina, Razza e Rana pescatrice. Bassi valori di amplificabilità sono invece stati osservati per Orata (44,4%), Acciuga, Salmone (33,3%) e Molo (25%).

Per quanto riguarda la concentrazione, il valore medio totale è risultato10,4 ng/µl. Assumendo 10 ng/µl come valore soglia per l’invio degli ampliconi al sequenziamento, 8 specie su 16 presentavano un valore medio di concentrazione superiore a questa soglia minima. Tuttavia, anche tra le specie con un valore medio di concentrazione inferiore a 10 ng/µl la maggior parte (87,5%) presentava almeno un amplicone sequenziabile. Infatti il 50% degli ampliconi di Scorfano, Triglia, Merluzzo e Pesce spada era sequenziabile, così come il 43% di quelli di Acciuga e Salmone. Solo per i campioni di Orata e Molo non è stato possibile ottenere delle concentrazioni idonee al sequenziamento.

75

CAPITOLO 7

CONCLUSIONI

In questa tesi è stato valutato per la prima volta l’utilizzo delle FTA®cards per l’estrazione e

l’amplificazione di DNA da tessuto muscolare, sia fresco che conservato in etanolo, di specie di uccelli, pesci e mammiferi. Il protocollo messo a punto, che prevede un pretrattamento in etanolo e una riequilibratura con buffer del tessuto fresco, prima delle fasi previste dal protocollo FTA®cards, ha permesso di amplificare ottenendo una concentrazione di amplificato sufficienti per il sequenziamento più dell’80% dei campioni freschi e più del 60% dei campioni conservati in etanolo.

Le FTA®cards presentano diversi vantaggi rispetto alle metodiche di estrazione classica, soprattutto in relazione alla facilità dello stoccaggio del DNA. Infatti possono essere tenute a temperatura ambiente e possono pertanto essere trasportate e stoccate con estrema facilità e costi ridotti. Considerando che negli studi d’identificazione molecolare di specie si rende spesso necessaria l’acquisizione di campioni di DNA da luoghi geograficamente distanti per la creazione di proprie banche dati di DNA di riferimento, tali caratteristiche possono rappresentare un’importante vantaggio sia pratico che economico. Inoltre, la possibilità di amplificare direttamente le FTA®cards consente di ottimizzare le tempistiche di esecuzione dell’analisi.

In conclusione, questo lavoro ha dimostrato la validità dell’impiego delle FTA®

cards nei protocolli d’identificazione di specie e la loro potenzialità come strumento utile per l’ispezione molecolare. Questo approccio si rivela sempre più importante ai fini della necessità di garantire la tracciabilità dei prodotti di origine animale, per combattere le frodi e tutelare la salute e gli interessi economici dei consumatori.

76

BIBLIOGRAFIA

Ackman, R. G. (1988). Nutritional composition of fats in seafoods. Progress in food &

nutrition science, 13(3-4), 161-289.

Ahmed, H. A., MacLeod, E. T., Hide, G., Welburn, S. C., & Picozzi, K. (2011). The best practice for preparation of samples from FTA®cards for diagnosis of blood borne infections using African trypanosomes as a model system. Parasit Vectors, 4(68), 1-7.

Aida, A. A., Man, C., Yaakob, B., Raha, A. R., & Son, R. (2007). Detection of pig derivatives in food products for halal authentication by polymerase chain reaction–restriction fragment length polymorphism. Journal of the Science of Food and Agriculture, 87(4), 569-572.

Akkurt, M. (2012). Comparison between modified DNA extraction protocols and commercial isolation kits in grapevine (Vitis vinifera L.). Genetics and Molecular Research, 11(3), 2343- 2351.

Anderson, S., Bankier, A. T., Barrell, B. G., De Bruijn, M. H. L., Coulson, A. R., Drouin, J., . Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H.,Smith, A. J. H., Standen, R., & Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature 290, 457 – 465.

Arcangeli, G., Corrain, C., Boscolo, S., Fasolato, L., Manfrin, A., Monne, I., Paparella, A., & Giorgini, S. (2007). Prodotti ittici trasformati. Così si identificano le specie. Alimenti e

Bevande, 11, 50-58.

Armani, A., Castigliego, L., Gianfaldoni, D., & Guidi, A. (2011a). L’insicurezza alimentare della nuova ristorazione Cinese. Industrie Alimentarari, 50, 7-11.

Armani, A., Castigliego, L., Tinacci, L., Gianfaldoni, D., & Guidi, A. (2011b). Molecular characterization of icefish, (Salangidae family), using direct sequencing of mitochondrial cytochrome b gene. Food Control, 22(6), 888-895.

Armani, A., Castigliego, L., & Guidi, A. (2012a). Fish frauds: the DNA challenge. Animal

Science Reviews, 227.

Armani, A., Castigliego, L., Tinacci, L., Gandini, G., Gianfaldoni, D., & Guidi, A. (2012b). A rapid PCR–RFLP method for the identification of Lophius species. European Food Research

77

Armani, A., D’Amico, P., Castigliego, L., Sheng, G., Gianfaldoni, D., & Guidi, A. (2012c). Mislabeling of an “unlabelable” seafood sold on the European market: The jellyfish. Food

Control, 26(2), 247-251.

Armani, A., Tinacci, L., Xiong, X., Titarenko, E., Guidi, A., & Castigliego, L. (2014). Development of a simple and cost-effective bead-milling method for DNA extraction from fish muscles. Food analytical methods, 7(4), 946-955.

Armani, A., Giusti, A., Guardone, L., Castigliego, L., Gianfaldoni, D., & Guidi, A. (2015a). Universal Primers Used for Species Identification of Foodstuff of Animal Origin: Effects of Oligonucleotide Tails on PCR Amplification and Sequencing Performance. Food Analytical

Methods, 1-11.

Armani, A., Guardone, L., Castigliego, L., D'Amico, P., Messina, A., Malandra, R., Gianfaldoni, D., & Guidi, A. (2015b). DNA and Mini-DNA barcoding for the identification of Porgies species (family Sparidae) of commercial interest on the international market. Food

Control, 50, 589-596.

Asensio, L., González, I., Fernández, A., Céspedes, A., Rodríguez, M. A., Hernández, P. E., & García, T. (2001). Identification of Nile perch (Lates niloticus), grouper (Epinephelus

guaza), and wreck fish (Polyprion americanus) fillets by PCR amplification of the 5S rDNA

gene. Journal of AOAC International, 84(3), 777-781.

Babich, H., & Davis, D. L. (1981). Phenol: A review of environmental and health risks. Regulatory Toxicology and Pharmacology, 1(1), 90-109.

Barbuto, M., Galimberti, A., Ferri, E., Labra, M., Malandra, R., Galli, P., & Casiraghi, M. (2010). DNA barcoding reveals fraudulent substitutions in shark seafood products: the Italian case of “palombo” (Mustelus spp.). Food Research International, 43(1), 376-381.

Bartlett, S. E., & Davidson, W. S. (1992). FINS (forensically informative nucleotide sequencing): a procedure for identifying the animal origin of biological specimens. Biotechniques, 12(3), 408-411.

Becker, S., Hanner, R., & Steinke, D. (2011). Five years of FISH-BOL: Brief status report. Mitochondrial DNA, 22(sup1), 3-9.

Bendezu, I. F., Slater, J. W., & Carney, B. F. (2005). Identification of Mytilus spp. and Pecten maximus in Irish waters by standard PCR of the 18S rDNA gene and multiplex PCR of the 16S rDNA gene. Marine biotechnology, 7(6), 687-696.

78

Bensasson, D., Petrov, D. A., Zhang, D. X., Hartl, D. L., & Hewitt, G. M. (2001). Genomic gigantism: DNA loss is slow in mountain grasshoppers. Molecular Biology and

Evolution, 18(2), 246-253.

Bernardi, C., Colombo, F., Balzaretti, C., Gagliardi, C., & Cattaneo, P. (2011). DNA barcoding: a useful tool for food inspection. Italian Journal of Food Safety, 1(1), 7-10.

Bernardo, G. D., Gaudio, S. D., Galderisi, U., Cascino, A., & Cipollaro, M. (2007). Comparative evaluation of different DNA extraction procedures from food samples. Biotechnology progress, 23(2), 297-301.

Berrini, A., De Grandi, F., Secchi, C., Tepedino, V., & Tepedino, G. (2011). Cernia o non cernia. Eurofishmarket, 16, 31-46.

Besbes, N., Fattouch, S., & Sadok, S. (2011). Comparison of methods in the recovery and amplificability of DNA from fresh and processed sardine and anchovy muscle tissues. Food

Chemistry, 129(2), 665-671.

Bessetti, J. (2007). An introduction to PCR inhibitors. Journal of Microbiological

Methods, 28, 159-67.

Bimboim, H. C., & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic acids research, 7(6), 1513-1523.

Binda, S., Caroppo, S., Didò, P., Primache, V., Veronesi, L., Calvario, A.,Piana A., & Barbi, M. (2004). Modification of CMV DNA detection from dried blood spots for diagnosing congenital CMV infection. Journal of clinical virology, 30(3), 276-279.

Boom, R. C. J. A., Sol, C. J., Salimans, M. M., Jansen, C. L., Wertheim-van Dillen, P. M., & Van der Noordaa, J. P. M. E. (1990). Rapid and simple method for purification of nucleic acids. Journal of clinical microbiology, 28(3), 495-503.

Borgo, R., Souty‐Grosset, C., Bouchon, D., & Gomot, L. (1996). PCR‐RFLP Analysis of Mitochondrial DNA for Identification of Snail Meat Species. Journal of Food Science, 61(1), 1-4.

Borisenko, A. V., Lim, B. K., Ivanova, N. V., Hanner, R. H., & Hebert, P. D. (2008). DNA barcoding in surveys of small mammal communities: a field study in Suriname. Molecular

Ecology Resources, 8(3), 471-479.

Bossier, P. (1999). Authentication of seafood products by DNA patterns. Journal of food

79

Buhay, J. E. (2009). “COI-like” sequences are becoming problematic in molecular systematic and DNA barcoding studies. Journal of Crustacean Biology, 29(1), 96-110.

Cai, Y., Zhang, L., Shen, F., Zhang, W., Hou, R., Yue, B., Li, J., & Zhang, Z. (2011). DNA barcoding of 18 species of Bovidae. Chinese Science Bulletin,56(2), 164-168.

Campagna M.C., Tepedino V., Di Domenico E., Saccares S., Cavallina R. (2008), “Identificazione di specie nel settore ittico”, in La Rivista di Scienza dell’Alimentazione,

Journal of Food Science and Nutrition, 37 (1).

Carr, N. A., & Appleyard, S. A. (2008). Using FTA®Elute MicroCards to address biosecurity and DNA quality issues in abalone aquaculture. Aquaculture Research, 39(16), 1799-1802. Castigliego, L., Armani, A., Tinacci, L., Gianfaldoni, D., & Guidi, A. (2015). Two alternative multiplex PCRs for the identification of the seven species of anglerfish (Lophius spp.) using an end-point or a melting curve analysis real-time protocol. Food chemistry, 166, 1-9.

Cawthorn, D. M., Steinman, H. A., & Witthuhn, R. C. (2012). DNA barcoding reveals a high incidence of fish species misrepresentation and substitution on the South African market. Food Research International, 46(1), 30-40.

Chapela, M. J., Sotelo, C. G., Calo‐Mata, P., Pérez‐Martín, R. I., Rehbein, H., Hold, G. L., Quinteiro, J., Rey-Mendez, M., Rosa, C., & Santos, A. T. (2002). Identification of cephalopod species (Ommastrephidae and Loliginidae) in seafood products by forensically informative nucleotide sequencing (FINS). Journal of food science, 67(5), 1672-1676.

Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical biochemistry, 162(1), 156- 159.

Crabbe, M. J. C. (2003). A novel method for the transport and analysis of genetic material from polyps and zooxanthellae of scleractinian corals. Journal of biochemical and biophysical

methods, 57(2), 171-176.

Cunha, S., Woldringh, C. L., & Odijk, T. (2001). Polymer-mediated compaction and internal dynamics of isolated Escherichia coli nucleoids. Journal of structural biology, 136(1), 53-66. Dalmasso, A., Fontanella, E., Piatti, P., Civera, T., Rosati, S., & Bottero, M. T. (2004). A multiplex PCR assay for the identification of animal species in feedstuffs. Molecular and

80

De Vargas Wolfgramm, E., de Carvalho, F. M., da Costa Aguiar, V. R., Sartori, M. P. D. N., Hirschfeld-Campolongo, G. C., Tsutsumida, W. M., & Louro, I. D. (2009). Simplified buccal DNA extraction with FTA® Elute Cards. Forensic science international: Genetics, 3(2), 125- 127.

Dentinger, B., Margaritescu, S., & MONCALVO, J. (2010). Rapid and reliable high‐ throughput methods of DNA extraction for use in barcoding and molecular systematics of mushrooms. Molecular ecology resources, 10(4), 628-633.

Desbois, D., Roque-Afonso, A. M., Lebraud, P., & Dussaix, E. (2009). Use of dried serum spots for serological and molecular detection of hepatitis A virus. Journal of clinical

microbiology, 47(5), 1536-1542.

Di Pinto, A., Di Pinto, P., Terio, V., Bozzo, G., Bonerba, E., Ceci, E., & Tantillo, G. (2013). DNA barcoding for detecting market substitution in salted cod fillets and battered cod chunks. Food chemistry, 141(3), 1757-1762.

Diviacco, S., Norio, P., Zentilin, L., Menzo, S., Clementi, M., Biamonti, G., Riva, S., Falaschi, A., & Giacca, M. (1992). A novel procedure for quantitative polymerase chain reaction by coamplification of competitive templates. Gene, 122(2), 313-320.

Dove, C. J., Dahlan, N. F., Heacker, M. A., & Whatton, J. F. (2010). Using Whatman FTA® cards to collect DNA for bird-strike identifications. Human-Wildlife Interactions, 5(2), 218- 223.

Dove, C. J., Rotzel, N. C., Heacker, M., & Weigt, L. A. (2008). Using DNA barcodes to identify bird species involved in birdstrikes. The Journal of Wildlife Management, 72(5), 1231-1236.

Drescher, A., & Graner, A. (2002). PCR‐genotyping of barley seedlings using DNA samples from tissue prints. Plant breeding, 121(3), 228-231.

Espineira, M., González-Lavín, N., Vieites, J. M., & Santaclara, F. J. (2008). Authentication of Anglerfish Species (Lophius spp.) by means of Polymerase Chain Reaction− Restriction Fragment Length Polymorphism (PCR− RFLP) and Forensically Informative Nucleotide Sequencing (FINS) Methodologies. Journal of agricultural and food chemistry,56(22), 10594-10599.

Ewing, B., & Green, P. (1998). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome research, 8(3), 186-194.

81

Focà A., Lamberti A. G. (2003). Metodiche estrattive per la preparazione dei campioni.

Roche_Diagnostics pubblicazioni, EsaDia No. 13, 50 – 53.

Forster, P. (2003). To err is human. Annals of human genetics, 67(1), 2-4. Fortin, N. D. (2009). Frontmatter (pp. i-xxix). John Wiley & Sons, Inc..

Francis, C. M., Borisenko, A. V., Ivanova, N. V., Eger, J. L., Lim, B. K., Guillén-Servent, A., Kruskop S. V., Mackie, I., & Hebert, P. D. (2010). The role of DNA barcodes in understanding and conservation of mammal diversity in Southeast Asia. PLoS One, 5(9), e 12575.

Galimberti, A., De Mattia, F., Losa, A., Bruni, I., Federici, S., Casiraghi, M., Martellos, S., & Labra, M. (2013). DNA barcoding as a new tool for food traceability. Food Research

International, 50(1), 55-63.

Galimberti, A., Romano, D. F., Genchi, M., Paoloni, D., Vercillo, F., Bizzarri, L., Sassera, D., Bandi, C., Genchi, C., Ragni, B., & Casiraghi, M. (2012). Integrative taxonomy at work: DNA barcoding of taeniids harboured by wild and domestic cats. Molecular ecology

resources,12(3), 403-413.

Gil, L. A. (2007). PCR-based methods for fish and fishery products authentication. Trends in

Food Science & Technology, 18(11), 558-566.

Giles, R. E., Blanc, H., Cann, H. M., & Wallace, D. C. (1980). Maternal inheritance of human mitochondrial DNA. Proceedings of the National academy of Sciences, 77(11), 6715-6719. Guidi A., Castigliego L., Armani A.(2008) Diagnostica analitica degli alimenti. In: Colavita G. Igiene e tecnologie degli alimenti di origine animale. Milano:Point Veterinarie Italie, 338- 345.

Hajibabaei, M., Janzen, D. H., Burns, J. M., Hallwachs, W., & Hebert, P. D. (2006). DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of

Sciences of the United States of America, 103(4), 968-971.

Hajibabaei, M., Smith, M., Janzen, D. H., Rodriguez, J. J., Whitfield, J. B., & Hebert, P. D. (2006). A minimalist barcode can identify a specimen whose DNA is degraded. Molecular

Ecology Notes, 6(4), 959-964.

Handy, S. M., Deeds, J. R., Ivanova, N. V., Hebert, P. D., Hanner, R. H., Ormos, A., ... & Yancy, H. F. (2011). A single-laboratory validated method for the generation of DNA

82

barcodes for the identification of fish for regulatory compliance. Journal of AOAC

International, 94(1), 201-210.

Harvey, M. L. (2005). An alternative for the extraction and storage of DNA from insects in forensic entomology. Journal of Forensic Science, 50(3), 627-9.

Haye, P. A., Segovia, N. I., Vera, R., de los Ángeles Gallardo, M., & Gallardo-Escárate, C. (2012). Authentication of commercialized crab-meat in Chile using DNA barcoding. Food

Control, 25(1), 239-244.

Hebert, P. D., Cywinska, A., & Ball, S. L. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences, 270(1512), 313-321.

Hebert, P. D., Ratnasingham, S., & de Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of

the Royal Society of London B: Biological Sciences,270(Suppl 1), S96-S99.

Hebert, P. D., Stoeckle, M. Y., Zemlak, T. S., & Francis, C. M. (2004). Identification of birds through DNA barcodes. PLoS biology, 2, 1657-1663.

Hellberg, R. S. R., & Morrissey, M. T. (2011). Advances in DNA-based techniques for the detection of seafood species substitution on the commercial market. Journal of the

Association for Laboratory Automation, 16(4), 308-321.

Hemmer, W. (1997). Foods derived from genetically modified organisms and detection

methods (p. 61). Agency BATS.

Hsieh, F. C., Li, M. C., Lin, T. C., & Kao, S. S. (2004). Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Current

microbiology, 49(3), 186-191.

Ivanova, N. V., Zemlak, T. S., Hanner, R. H., & Hebert, P. D. (2007). Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes, 7(4), 544-548.

Jacobsen, C. S., & Rasmussen, O. F. (1992). Development and application of a new method to extract bacterial DNA from soil based on separation of bacteria from soil with cation- exchange resin. Applied and Environmental Microbiology, 58(8), 2458-2462.

Jardi R., Rodriguez-Frias F., Buti M., Schaper M., Valdes A., Martinez M., Esteban R., Guardia J.(2004). Usefulness of dried blood samples for quantification and molecular characterization of HBV-DNA. Hepatology. 40(1):133-9.

83

Kakihara, Y., Matsufuji, H., Chino, M., & Takeda, M. (2006). Extraction and detection of endogenous soybean DNA from fermented foods. Food Control,17(10), 808-813.

Kesmen, Z., Gulluce, A., Sahin, F., & Yetim, H. (2009). Identification of meat species by TaqMan-based real-time PCR assay. Meat Science, 82(4), 444-449.

Kuboki, N., Inoue, N., Sakurai, T., Di Cello, F., Grab, D. J., Suzuki, H., Sugimoto, C., & Igarashi, I. (2003). Loop-mediated isothermal amplification for detection of African trypanosomes. Journal of clinical microbiology, 41(12), 5517-5524.

Kuske, C. R., Banton, K. L., Adorada, D. L., Stark, P. C., Hill, K. K., & Jackson, P. J. (1998). Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Applied and Environmental Microbiology, 64(7), 2463-2472.

Lago, F. C., Vieites, J. M., & Espiñeira, M. (2012). Development of a FINS-based method for the identification of skates species of commercial interest.Food Control, 24(1), 38-43.

Lampel, K. A., Orlandi, P. A., & Kornegay, L. (2000). Improved template preparation for PCR-based assays for detection of food-borne bacterial pathogens. Applied and environmental

microbiology, 66(10), 4539-4542.

Lasagna, E., Sarti, F., Sorbolini, S., De Martino, F., & Panella, F. (2005). Estrazione di DNA genomico da differenti fonti tissutali animali per la costituzione di una banca del genoma della razza chinina. In 4th World Italian Beef Cattle Congress, Italy.

Lenstra, J. A., & Lees, M. (2003). DNA methods for identifying plant and animal species in food. Food authenticity and traceability, 34-53.

Leruez-Ville, M., Vauloup-Fellous, C., Couderc, S., Parat, S., Castel, C., Avettand-Fenoel, V., Guilleminot T., Grangeot-Keros L., Ville Y., Grabar S.,& Magny, J. F. (2011). Prospective identification of congenital cytomegalovirus infection in newborns using real- time polymerase chain reaction assays in dried blood spots. Clinical Infectious

Diseases, 52(5), 575-581.

Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature, 362(6422), 709-715.

Lockley, A. K., & Bardsley, R. G. (2000). DNA-based methods for food authentication. Trends in Food Science & Technology, 11(2), 67-77.

84

López-Calleja, I., González, I., Fajardo, V., Martín, I., Hernández, P. E., García, T., & Martín, R. (2007). Quantitative detection of goats’ milk in sheep’s milk by real-time PCR. Food

Control, 18(11), 1466-1473.

Lucentini, L., Palomba, A., Lancioni, H., Natali, M. & Panara, F. (2006). A nondestructive, rapid, reliable and inexpensive method to sample, store and extract high-quality DNA from fish body mucus and buccal cells. Molecular Ecology Notes 6, 257–260.

Luo, A., Zhang, A., Ho, S. Y., Xu, W., Zhang, Y., Shi, W., Cameron, S. L., & Zhu, C. (2011). Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals. BioMed Central genomics, 12(1), 84.

Mackie, I. M., Pryde, S. E., Gonzales-Sotelo, C., Medina, I., Pérez-Martın, R., Quinteiro, J., Rey-Mendez, M., & Rehbein, H. (1999). Challenges in the identification of species of canned fish. Trends in Food Science & Technology, 10(1), 9-14.

MacLean, L., Chisi, J. E., Odiit, M., Gibson, W. C., Ferris, V., Picozzi, K., & Sternberg, J. M. (2004). Severity of human African trypanosomiasis in East Africa is associated with geographic location, parasite genotype, and host inflammatory cytokine response profile. Infection and immunity, 72(12), 7040-7044.

Man, Y. C., Aida, A. A., Raha, A. R., & Son, R. (2007). Identification of pork derivatives in food products by species-specific polymerase chain reaction (PCR) for halal verification. Food Control, 18(7), 885-889.

Markoulatos, P., Siafakas, N., & Moncany, M. (2002). Multiplex polymerase chain reaction: a practical approach. Journal of clinical laboratory analysis, (16), 47-51.

Martinez, R., & Chacon-Garcia, L. (2005). The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Current medicinal chemistry, 12(2), 127-151. Mehta, N., Trzmielina, S., Nonyane, B. A., Eliot, M. N., Lin, R., Foulkes, A. S., McNeal, K., Ammann, A., Eulalievyolo, V., Sullivan, J. L., Luzuriaga, K.,& Somasundaran, M. (2009). Low-cost HIV-1 diagnosis and quantification in dried blood spots by real time PCR. PLoS

One, 4(6), e5819.

Meusnier, I., Singer, G. A., Landry, J. F., Hickey, D. A., Hebert, P. D., & Hajibabaei, M. (2008). A universal DNA mini-barcode for biodiversity analysis. BioMed Central

85

Meyer, R., Höfelein, C., Lüthy, J., & Candrian, U. (1994). Polymerase chain reaction- restriction fragment length polymorphism analysis: a simple method for species identification in food. Journal of AOAC International, 78(6), 1542-1551.

Miller, S. A., Dykes, D. D., & Polesky, H. F. R. N. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic acids research, 16(3), 1215.

Mininni, A. N., Pellizzari, C., Cardazzo, B., Carraro, L., Balzan, S., & Novelli, E. (2009). Evaluation of real-time PCR assays for detection and quantification of fraudulent addition of bovine milk to caprine and ovine milk for cheese manufacture. International dairy

journal, 19(10), 617-623.

Moscoso, H., Thayer, S. G., Hofacre, C. L., & Kleven, S. H. (2004). Inactivation, storage, and PCR detection of mycoplasma on FTA® filter paper.Avian diseases, 48(4), 841-850.

Muldoon MT, Onisk DV, Brown MC, Stave JV.(2004). Targets and methods for the detection of processed animal proteins in animal feeds. International Journal of Food Science &

Technology;39:851–861.

Mullen, M. P., Howard, D. J., Powell, R., & Hanrahan, J. P. (2009). A note on the use of FTA® technology for storage of blood samples for DNA analysis and removal of PCR inhibitors. Irish Journal of Agricultural and Food Research, 109-113.

Naro-Maciel, E., Reid, B., Holmes, K. E., Brumbaugh, D. R., Martin, M., & DeSalle, R. (2011). Mitochondrial DNA sequence variation in spiny lobsters: population expansion, panmixia, and divergence. Marine Biology, 158(9), 2027-2041.

Natarajan, P., Trinh, T., Mertz, L., Goldsborough, M., & Fox, D. K. (2000). Paper-based archiving of mammalian and plant samples for RNA analysis.Biotechniques, 29(6), 1328- 1333.

Ndunguru, J., Taylor, N. J., Yadav, J., Aly, H., Legg, J. P., Aveling, T., Thompson, G.,& Fauquet, C. M. (2005). Application of FTA®technology for sampling, recovery and molecular characterization of viral pathogens and virus-derived transgenes from plant tissues. Virology

journal, 2(1), 1-12.

Ogasawara, T., Arakawa, F., Akiyama, H., Goda, Y., & Ozeki, Y. (2003). Fragmentation of DNAs of processed foods made from genetically modified soybeans. Japanese. Journal of

86

O'Mahony, P. J. (2013). Finding horse meat in beef products—a global problem. QJM: An

International Journal of Medicine, 106(6), 595-597.

Owor, B. E., Shepherd, D. N., Taylor, N. J., Edema, R., Monjane, A. L., Thomson, J. A., Martin, D. P., & Varsani, A. (2007). Successful application of FTA® Classic Card technology and use of bacteriophage ϕ29 DNA polymerase for large-scale field sampling and cloning of complete maize streak virus genomes. Journal of virological methods, 140(1), 100-105. Pafundo, S., Agrimonti, C., Maestri, E., & Marmiroli, N. (2007). Applicability of SCAR markers to food genomics: olive oil traceability. Journal of agricultural and food

chemistry, 55(15), 6052-6059.

Pan, T. M., & Shih, T. W. (2003). Detection of genetically modified soybeans in miso by polymerase chain reaction and nested polymerase chain reaction. Journal of Food and Drug

Analysis, 11(2), 154-158.

Park, K. W., Lee, B., Kim, C. G., Park, J. Y., Ko, E. M., Jeong, S. C., ... & Kim, H. M. (2010). Monitoring the occurrence of genetically modified maize at a grain receiving port and along transportation routes in the Republic of Korea.Food Control, 21(4), 456-461.

Pepe, T., Trotta, M., Di Marco, I., Anastasio, A., Bautista, J. M., & Cortesi, M. L. (2007). Fish species identification in surimi-based products. Journal of agricultural and food

chemistry, 55(9), 3681-3685.

Picard, C., Ponsonnet, C., Paget, E., Nesme, X., & Simonet, P. (1992). Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Applied and Environmental Microbiology, 58(9), 2717-2722.

Picard-Meyer, E., Barrat, J., & Cliquet, F. (2007). Use of filter paper (FTA®) technology for sampling, recovery and molecular characterisation of rabies viruses. Journal of virological

methods, 140(1), 174-182.

Powell, H.A. (1994): Proteinase inhibition of the detection of Listeria monocytgenes in milk using the polymerase chain reaction. Lett Appl Microbiol18, 59-61; 140.

Rådström, P., Knutsson, R., Wolffs, P., Lövenklev, M., & Löfström, C. (2004). Pre-PCR processing. Molecular biotechnology, 26(2), 133-146.

Rajendram, D., Ayenza, R., Holder, F. M., Moran, B., Long, T., & Shah, H. N. (2006). Long- term storage and safe retrieval of DNA from microorganisms for molecular analysis using FTA® matrix cards. Journal of microbiological methods, 67(3), 582-592.

87

Ratnasingham, S., & Hebert, P. D. (2007). BOLD: The Barcode of Life Data System (http://www. barcodinglife. org). Molecular ecology notes, 7(3), 355-364.

Rehbein, H. (1990). Electrophoretic techniques for species identification of fishery products. Zeitschrift für Lebensmittel-Untersuchung und Forschung,191(1), 1-10.

Rensen, G. J., Smith, W. L., Jaravata, C. V., Osburn, B., & Cullor, J. S. (2006). Development and evaluation of a real-time FRET probe based multiplex PCR assay for the detection of prohibited meat and bone meal in cattle feed and feed ingredients. Foodbourne Pathogens &