• Non ci sono risultati.

DATI DEMOGRAFICI

Group A Group B p-value

Demographic data

median age (years)

[range] 76.9 [65-88] 76.3 [64-86] 0,298

M:F 19:10 11:15 0,106

Figura 51 – Tabella con dati demografici del nostro studio

Nei dati demografici abbiamo riportato il numero di pazienti del Gruppi A e B omogenei per età e sesso.

Gruppo A - pazienti della nostra casistica con sospetto idrocefalo

cronico dell’adulto

Gruppo B - pazienti controllo a cui è stato efettuato un esame TC

cranio basale per

traumi minori, in assenza di reperti degni di nota (focolai contusivi,

raccolte ematiche intra/extraparenchimali, etc).

I pazienti del gruppo B, oltre ad avere TC negative, clinicamente non presentavano nessuna delle sintomatologie delle triade di Hakim & Adams.

Calcolando sia in A che B il silver index, siamo andati cosi a valutare se efetivamente vi fosse una correlazione statisticamente significativa tra

i valori del silver index e la malattia.

3.4. RISUTLTATI E DISCUSSIONE

 I pazienti del gruppo A al momento della diagnosi presentavano almeno una delle 3 sintomatologie della triade di Hakim & Adams, ventricolomegalia e indice di Evans > 0.3 alla TC, mentre i pazienti del gruppo B di controllo presentavano nessuna sintomatologia della

 Il risultato del valore cut of ottenuto su costruzione dell curva ROC, si è dimostrato essere di 3. 7550, valore a cui corrisponde ad una sensibilità di 0.828 ed una specificità di 0.962

Figura 52 – Tabella con valore cut-of per migliore sensibilità e specificità

 box-plot (diagramma degli estremi e dei quartili) per silver

Figura 53 – box-plot (diagramma degli estremi e dei quartili)

Dati radiologici ottenuti:

Group A Group B p-value

Demographic data

n° of patients 29 26

median age (years)

[range] 76.9 [65-88] 76.3 [64-86] 0,298

M:F 19:10 11:15 0,106

Radiologic data

Evans ratio median

[range] 0,36 [0,31-0,43] 0,25 [0,15-0,29] SILVER INDEX median

Figura 55 – parametri statistici utilizzati per lo studio

Sulla base dei risultati ottenuti possiamo concludere che esiste una correlazione statisticamente significativa ( con p-value <0,0001 ) tra un valore del silver index > 3. 7550 e la malattia di idrocefalo cronico dell’ adulto.

Sensibilità e specificità del valore oltre il cut of, sono molto alte. L’ indice silver quindi si è dimostrato essere un indicatore fortemente valido di alta probabilità di malattia.

A dare una prova indiretta che i pazienti del Gruppo A avessero davvero un idrocefalo cronico dell’ adulto idiopatico, è anche il fatto che in seguito all’ intervento di derivazione ventricolo-peritoneale a cui sono stati sottoposti, questi hanno mostrato un buon outcome postchirurgico inteso come miglioramento clinico in termini di regressione parziale della sintomatologia la quale ricordiamo avviene solo nei pazienti che hanno malattia certa.

 Nei pazienti con sospetta malattia, quindi del gruppo A, abbiamo voluto inoltre verificare se vi fosse una correlazione statisticamente significativa tra silver index e gravità di sintomatologia, in altri termini se vi fosse una diferenza statisticamente significativa tra indice silver di pazienti in cui sono presenti una/due sintomatologie e quello di pazienti in cui sono presenti tutte e tre le sintomatologie della triade di Hakim (quadro clinico più grave quindi).

Riportiamo il box-plot (diagramma degli estremi e dei quartili) efettuato:

Figura 56 – box-plot (diagramma degli estremi e dei quartili) Sintomi:

a - disturbi della deambulazione; b – demenza; c - incontinenza sfinteriale

1= sottogruppo di pazienti con sintomi

non abc 2=sottogruppo con sintomi “abc” (triadedi Hakim)

a; b; c; ab; ac; bc; abc

Riferendoci ai risultati ottenuti possiamo concludere che non esiste una diferenza o correlazione statisticamente significativa ( p-value

<0,727 ) tra silver index di pazienti in cui sono presenti una/due sintomatologie (sottogruppo 1, quadro clinico piu lieve) e quello di pazienti in cui sono presenti tutte e tre le sintomatologie della triade di Hakim (sottogruppo 2, quadro clinico piu grave).

Il valore del silver index quindi risulta indipendente dalla coesistenza o meno di tutti e tre i sintomi insieme e quindi in altre parole dalla

gravità clinica di malattia.

3.5. CONCLUSIONI E PROSPETTIVE FUTURE

Dai risultati ottenuti con il nostro studio, possiamo definire il silver index come un nuovo parametro radiologico per la diagnosi di idrocefalo cronico dell’ adulto ed ipotizzare che in futuro possa entrare far parte degli esami diagnostici di primo livello per questa patologia. Infatti l’indice presenta sensibilità e specificità molto elevate. Rappresenta una metodologia di studio del DESH molto agevole e valida in pazienti con sospetto idrocefalo cronico dell’adulto idiopatico.

Diventerebbe di grande ausilio non solo per il neurochirurgo, ma anche per il neurologo a cui il paziente di solito si rivolge per la clinica che gli si presenta; permetterebbe cosi di porre una diagnosi più accurata, precoce e senza costi ed esami aggiuntivi. Ricordiamo che diagnosi tempestiva significa anche eventuale intervento di derivazione ventricolo - peritoneale precoce, quindi migliore outcome postchirurgico e qualità di vita del paziente.

Una buona collaborazione tra la neurologia e la neurochirurgia, quale quella stabilita nel nostro ambulatorio tra i due dipartimenti delle unità operative ospedaliera ed universitaria pisane, risulta fondamentale nel processo di coordinazione tra la diagnosi clinica, timing chirurgico ed outcome.

I limiti di questo studio consistono nella sua natura retrospettiva e nell’uso di un software privo ancora di approvazione FDA-CE per

utilizzo sanitario.

Molto interessante e gia in fase di elaborazione nel nostro gruppo, risultano anche il quesito e la ricerca di una eventuale correlazione statisticamente significativa tra valore di silver index e miglior oucome postichirurgico ed il quesito riguardo alla precocità d’insorgenza di silver index che.

1. Missori P, Paolini S, Curra A. From congenital to idiopathic adult hydrocephalus: a historical research. Brain : a journal of neurology 2010; 133(Pt 6): 1836-49.

2. Cattaneo L. Anatomia del sistema nervoso: centrale e periferico dell'uomo. Bologna: Monduzzi; 1982.

3. Anastasi G. Trattato di anatomia umana. 4.a ed. Milano: Edi. Ermes; 2006.

4. Youmans JR, Winn HR. Youmans Neurological Surgery. 6th ed: Saunders/Elsevier; 2011.

5. Brown PD, Davies SL, Speake T, Millar ID. Molecular mechanisms of cerebrospinal fluid production. Neuroscience 2004; 129(4): 957-70.

6. Edsbagge M, Tisell M, Jacobsson L, Wikkelso C. Spinal CSF absorption in healthy individuals. American journal of physiology Regulatory, integrative and comparative physiology 2004; 287(6): R1450-5.

7. Brinker T, Ludemann W, Berens von Rautenfeld D, Samii M. Dynamic properties of lymphatic pathways for the absorption of cerebrospinal fluid. Acta neuropathologica 1997; 94(5): 493- 8.

8. Koh L, Zakharov A, Johnston M. Integration of the subarachnoid space and lymphatics: is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal fluid research 2005; 2: 6.

9. Czosnyka M, Czosnyka Z, Agarwal-Harding KJ, Pickard JD. Modeling of CSF dynamics: legacy of Professor Anthony Marmarou. Acta neurochirurgica Supplement 2012; 113: 9-14. 10. Meier U, Zeilinger FS, Kintzel D. Diagnostic in normal pressure hydrocephalus: A mathematical model for determination of the ICP-dependent resistance and compliance. Acta neurochirurgica 1999; 141(9): 941-7; discussion 7-8.

11. Fernell E, Hagberg G, Hagberg B. Infantile hydrocephalus epidemiology: an indicator of enhanced survival. Archives of disease in childhood Fetal and neonatal edition 1994; 70(2): F123-8.

12. Massimi L, Paternoster G, Fasano T, Di Rocco C. On the changing epidemiology of hydrocephalus. Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery 2009; 25(7): 795-800.

13. Rekate HL. The definition and classification of hydrocephalus: a personal recommendation to stimulate debate. Cerebrospinal fluid research 2008; 5: 2.

14. Kirkpatrick M, Engleman H, Minns RA. Symptoms and signs of progressive hydrocephalus. Archives of disease in childhood 1989; 64(1): 124-8.

15. Disorders NIoN, Stroke. Hydrocephalus Fact Sheet.

http://www.ninds.nih.gov/disorders/hydrocephalus/hydrocephalu s_brochure_508comp.pdf (accessed 09.2016.

16. Association H. Symptoms and Diagnosis.

http://www.hydroassoc.org/symptoms-and-diagnosis-nph/

(accessed 09.2016.

17. Bradley WG, Jr. Diagnostic tools in hydrocephalus. Neurosurgery clinics of North America 2001; 12(4): 661-84, viii. 18. Raimondi AJ. A unifying theory for the definition and classification of hydrocephalus. Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery 1994; 10(1): 2-12.

19. The Medical Treatment of Hydrocephalus. Canadian Medical Association journal 1924; 14(11): 1108.

20. Guthkelch AN. Hydrocephalus and its treatment. Proceedings of the Royal Society of Medicine 1967; 60(12): 1263-4.

21. Aschof A, Kremer P, Hashemi B, Kunze S. The scientific history of hydrocephalus and its treatment. Neurosurgical review 1999; 22(2-3): 67-93; discussion 4-5.

22. Silverberg GD. Normal pressure hydrocephalus (NPH): ischaemia, CSF stagnation or both. Brain : a journal of neurology 2004; 127(Pt 5): 947-8.

23. Friese S, Hamhaber U, Erb M, Klose U. B-waves in cerebral and spinal cerebrospinal fluid pulsation measurement by magnetic resonance imaging. Journal of computer assisted tomography 2004; 28(2): 255-62.

24. Krauss JK, Droste DW, Bohus M, et al. The relation of intracranial pressure B-waves to diferent sleep stages in patients with suspected normal pressure hydrocephalus. Acta neurochirurgica 1995; 136(3-4): 195-203.

25. Kiefer M, Unterberg A. The diferential diagnosis and treatment of normal-pressure hydrocephalus. Deutsches Arzteblatt international 2012; 109(1-2): 15-25; quiz 6.

26. Mori E, Ishikawa M, Kato T, et al. Guidelines for management of idiopathic normal pressure hydrocephalus: second edition. Neurologia medico-chirurgica 2012; 52(11): 775-809.

27. Bradley WG, Jr., Whittemore AR, Watanabe AS, Davis SJ, Teresi LM, Homyak M. Association of deep white matter infarction with chronic communicating hydrocephalus:

implications regarding the possible origin of normal-pressure hydrocephalus. AJNR American journal of neuroradiology 1991; 12(1): 31-9.

28. Mori K, Mima T. To what extent has the pathophysiology of normal-pressure hydrocephalus been clarified? Critical reviews in neurosurgery : CR 1998; 8(4): 232-43.

29. Wilson RK, Williams MA. Evidence that congenital hydrocephalus is a precursor to idiopathic normal pressure hydrocephalus in only a subset of patients. Journal of neurology, neurosurgery, and psychiatry 2007; 78(5): 508-11.

30. Kuriyama N, Tokuda T, Miyamoto J, Takayasu N, Kondo M, Nakagawa M. Retrograde jugular flow associated with idiopathic normal pressure hydrocephalus. Annals of neurology 2008; 64(2): 217-21.

31. Bateman GA. Vascular compliance in normal pressure hydrocephalus. AJNR American journal of neuroradiology 2000; 21(9): 1574-85.

32. Bateman GA. The pathophysiology of idiopathic normal pressure hydrocephalus: cerebral ischemia or altered venous hemodynamics? AJNR American journal of neuroradiology 2008; 29(1): 198-203.

33. Chrysikopoulos H. Idiopathic normal pressure hydrocephalus: thoughts on etiology and pathophysiology. Medical hypotheses 2009; 73(5): 718-24.

34. Takahashi Y, Kawanami T, Nagasawa H, Iseki C, Hanyu H, Kato T. Familial normal pressure hydrocephalus (NPH) with an autosomal-dominant inheritance: a novel subgroup of NPH. Journal of the neurological sciences 2011; 308(1-2): 149-51. 35. Cusimano MD, Rewilak D, Stuss DT, Barrera-Martinez JC, Salehi F, Freedman M. Normal-pressure hydrocephalus: is there a genetic predisposition? The Canadian journal of neurological sciences Le journal canadien des sciences neurologiques 2011; 38(2): 274-81.

36. Kato T, Sato H, Emi M, et al. Segmental copy number loss of SFMBT1 gene in elderly individuals with ventriculomegaly: a community-based study. Internal medicine (Tokyo, Japan) 2011; 50(4): 297-303.

37. McGirr A, Cusimano MD. Familial aggregation of idiopathic normal pressure hydrocephalus: novel familial case and a family study of the NPH triad in an iNPH patient cohort. Journal of the neurological sciences 2012; 321(1-2): 82-8.

38. Dombrowski S, Crutchfield K, Ligon K, Becker J, Luciano M. Evidence for CSF-vascular compliance coupling in normal pressure hydrocephalus. Cerebrospinal fluid research 2009;

39. Kamiya K, Hori M, Miyajima M, et al. Axon diameter and intra-axonal volume fraction of the corticospinal tract in idiopathic normal pressure hydrocephalus measured by q-space imaging. PloS one 2014; 9(8): e103842.

40. Bugalho P, Guimaraes J. Gait disturbance in normal pressure hydrocephalus: a clinical study. Parkinsonism & related disorders 2007; 13(7): 434-7.

41. Sakakibara R, Kanda T, Sekido T, et al. Mechanism of bladder dysfunction in idiopathic normal pressure hydrocephalus. Neurourology and urodynamics 2008; 27(6): 507-10.

42. Meier U, Zeilinger FS, Kintzel D. Signs, symptoms and course of normal pressure hydrocephalus in comparison with cerebral atrophy. Acta neurochirurgica 1999; 141(10): 1039-48. 43. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 1975; 12(3): 189-98.

44. Wikkelso C, Andersson H, Blomstrand C, Lindqvist G. The clinical efect of lumbar puncture in normal pressure hydrocephalus. Journal of neurology, neurosurgery, and psychiatry 1982; 45(1): 64-9.

45. Ravdin LD, Katzen HL, Jackson AE, Tsakanikas D, Assuras S, Relkin NR. Features of gait most responsive to tap test in normal pressure hydrocephalus. Clinical neurology and neurosurgery 2008; 110(5): 455-61.

46. Panagiotopoulos V, Konstantinou D, Kalogeropoulos A, Maraziotis T. The predictive value of external continuous lumbar drainage, with cerebrospinal fluid outflow controlled by medium pressure valve, in normal pressure hydrocephalus. Acta neurochirurgica 2005; 147(9): 953-8; discussion 8.

47. De Bonis P, Mangiola A, Pompucci A, Formisano R, Mattogno P, Anile C. CSF dynamics analysis in patients with post-traumatic ventriculomegaly. Clinical neurology and neurosurgery 2013; 115(1): 49-53.

48. Szewczykowski J, Sliwka S, Kunicki A, Dytko P, Korsak- Sliwka J. A fast method of estimating the elastance of the intracranial system. Journal of neurosurgery 1977; 47(1): 19-26. 49. Woodworth GF, McGirt MJ, Williams MA, Rigamonti D. Cerebrospinal fluid drainage and dynamics in the diagnosis of normal pressure hydrocephalus. Neurosurgery 2009; 64(5): 919-25; discussion 25-6.

50. Eide PK, Saehle T. Is ventriculomegaly in idiopathic normal pressure hydrocephalus associated with a transmantle

gradient in pulsatile intracranial pressure? Acta neurochirurgica 2010; 152(6): 989-95.

51. Marmarou A, Black P, Bergsneider M, Klinge P, Relkin N. Guidelines for management of idiopathic normal pressure hydrocephalus: progress to date. Acta neurochirurgica Supplement 2005; 95: 237-40.

52. Ishikawa M, Hashimoto M, Mori E, Kuwana N, Kazui H. The value of the cerebrospinal fluid tap test for predicting shunt efectiveness in idiopathic normal pressure hydrocephalus. Fluids and barriers of the CNS 2012; 9(1): 1.

53. Wikkelso C, Andersson H, Blomstrand C, Matousek M, Svendsen P. Computed tomography of the brain in the diagnosis of and prognosis in normal pressure hydrocephalus. Neuroradiology 1989; 31(2): 160-5.

54. Wilson JA. Imaging in Normal Pressure Hydrocephalus.

http://emedicine.medscape.com/article/342827-overview

(accessed 09.2016.

55. Evans WAJ. An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch Neur Psych 1942; 42(6): 931-7.

56. Akiguchi I, Ishii M, Watanabe Y, et al. Shunt-responsive parkinsonism and reversible white matter lesions in patients with idiopathic NPH. Journal of neurology 2008; 255(9): 1392-9. 57. Iseki C, Kawanami T, Nagasawa H, et al. Asymptomatic ventriculomegaly with features of idiopathic normal pressure hydrocephalus on MRI (AVIM) in the elderly: a prospective study in a Japanese population. Journal of the neurological sciences 2009; 277(1-2): 54-7.

58. Kitagaki H, Mori E, Ishii K, Yamaji S, Hirono N, Imamura T. CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR American journal of neuroradiology 1998; 19(7): 1277-84.

59. Hashimoto M, Ishikawa M, Mori E, Kuwana N, Study of Ioni. Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal fluid research 2010; 7: 18.

60. Akiguchi I, Shirakashi Y, Budka H, et al. Disproportionate subarachnoid space hydrocephalus-outcome and perivascular space. Annals of clinical and translational neurology 2014; 1(8): 562-9.

61. Sasaki M, Honda S, Yuasa T, Iwamura A, Shibata E, Ohba H. Narrow CSF space at high convexity and high midline areas in idiopathic normal pressure hydrocephalus detected by axial and coronal MRI. Neuroradiology 2008; 50(2): 117-22.

62. Iseki C, Takahashi Y, Wada M, Arawaka S, Kawanami T, Kato T. Changes in the subarachnoid space precede ventriculomegaly in idiopathic normal pressure hydrocephalus (iNPH). Internal medicine (Tokyo, Japan) 2012; 51(13): 1751-3. 63. Tsunoda A, Mitsuoka H, Sato K, Kanayama S. A quantitative index of intracranial cerebrospinal fluid distribution in normal pressure hydrocephalus using an MRI-based processing technique. Neuroradiology 2000; 42(6): 424-9.

64. Tsunoda A, Mitsuoka H, Bandai H, Endo T, Arai H, Sato K. Intracranial cerebrospinal fluid measurement studies in suspected idiopathic normal pressure hydrocephalus, secondary normal pressure hydrocephalus, and brain atrophy. Journal of neurology, neurosurgery, and psychiatry 2002; 73(5): 552-5. 65. Yamashita F, Sasaki M, Takahashi S, et al. Detection of changes in cerebrospinal fluid space in idiopathic normal pressure hydrocephalus using voxel-based morphometry. Neuroradiology 2010; 52(5): 381-6.

66. Yamashita F, Sasaki M, Saito M, et al. Voxel-based morphometry of disproportionate cerebrospinal fluid space distribution for the diferential diagnosis of idiopathic normal pressure hydrocephalus. Journal of neuroimaging : official journal of the American Society of Neuroimaging 2014; 24(4): 359-65.

67. Ishii K, Soma T, Shimada K, Oda H, Terashima A, Kawasaki R. Automatic volumetry of the cerebrospinal fluid space in idiopathic normal pressure hydrocephalus. Dementia and geriatric cognitive disorders extra 2013; 3(1): 489-96.

68. Krauss JK, Regel JP, Vach W, Jungling FD, Droste DW, Wakhloo AK. Flow void of cerebrospinal fluid in idiopathic normal pressure hydrocephalus of the elderly: can it predict outcome after shunting? Neurosurgery 1997; 40(1): 67-73; discussion -4. 69. Al-Zain FT, Rademacher G, Meier U, Mutze S, Lemcke J. The role of cerebrospinal fluid flow study using phase contrast MR imaging in diagnosing idiopathic normal pressure hydrocephalus. Acta neurochirurgica Supplement 2008; 102: 119-23.

70. Koyama T, Marumoto K, Domen K, Ohmura T, Miyake H. Difusion tensor imaging of idiopathic normal pressure hydrocephalus: a voxel-based fractional anisotropy study. Neurologia medico-chirurgica 2012; 52(2): 68-74.

71. Marumoto K, Koyama T, Hosomi M, Kodama N, Miyake H, Domen K. Difusion tensor imaging in elderly patients with idiopathic normal pressure hydrocephalus or Parkinson's disease: diagnosis of gait abnormalities. Fluids and barriers of the CNS 2012; 9(1): 20.

72. Kanno S, Abe N, Saito M, et al. White matter involvement in idiopathic normal pressure hydrocephalus: a voxel-based difusion tensor imaging study. Journal of neurology 2011; 258(11): 1949-57.

73. Pyykko OT, Lumela M, Rummukainen J, et al. Cerebrospinal fluid biomarker and brain biopsy findings in idiopathic normal pressure hydrocephalus. PloS one 2014; 9(3): e91974.

74. Ray B, Reyes PF, Lahiri DK. Biochemical studies in Normal Pressure Hydrocephalus (NPH) patients: change in CSF levels of amyloid precursor protein (APP), amyloid-beta (Abeta) peptide and phospho-tau. Journal of psychiatric research 2011; 45(4): 539-47.

75. Tarnaris A, Watkins LD, Kitchen ND. Biomarkers in chronic adult hydrocephalus. Cerebrospinal fluid research 2006; 3: 11.

76. Kim MJ, Seo SW, Lee KM, et al. Diferential diagnosis of idiopathic normal pressure hydrocephalus from other dementias using difusion tensor imaging. AJNR American journal of neuroradiology 2011; 32(8): 1496-503.

77. Bejjani GK, Hammer MD. Normal-pressure hydrocephalus. Another treatable “dementia”: Part II. Contemp Neurosurg 2005; 27(17): 1-4.

78. Chang CC, Kuwana N, Ito S. Management of patients with normal-pressure hydrocephalus by using lumboperitoneal shunt system with the Codman Hakim programmable valve. Neurosurgical focus 1999; 7(4): e8.

79. Bloch O, McDermott MW. Lumboperitoneal shunts for the treatment of normal pressure hydrocephalus. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia 2012; 19(8): 1107-11.

80. Sotelo J, Arriada N, Lopez MA. Ventriculoperitoneal shunt of continuous flow vs valvular shunt for treatment of hydrocephalus in adults. Surgical neurology 2005; 63(3): 197- 203; discussion

81. Ringel F, Schramm J, Meyer B. Comparison of programmable shunt valves vs standard valves for communicating hydrocephalus of adults: a retrospective analysis of 407 patients. Surgical neurology 2005; 63(1): 36-41; discussion

82. Rangel-Castilla L, Barber S, Zhang YJ. The role of endoscopic third ventriculostomy in the treatment of communicating hydrocephalus. World neurosurgery 2012; 77(3- 4): 555-60.

83. Dusick JR, McArthur DL, Bergsneider M. Success and complication rates of endoscopic third ventriculostomy for adult hydrocephalus: a series of 108 patients. Surgical neurology 2008; 69(1): 5-15.

84. Gangemi M, Donati P, Maiuri F, Longatti P, Godano U, Mascari C. Endoscopic third ventriculostomy for hydrocephalus. Minimally invasive neurosurgery : MIN 1999; 42(3): 128-32. 85. Koivisto AM, Alafuzof I, Savolainen S, et al. Poor cognitive outcome in shunt-responsive idiopathic normal pressure hydrocephalus. Neurosurgery 2013; 72(1): 1- 8;discussion

86. Woo H, Kang DH, Park J. Preoperative determination of ventriculostomy trajectory in ventriculoperitoneal shunt surgery using a simple modification of the standard coronal MRI. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia 2013; 20(12): 1754-8.

87. Miyake H, Kajimoto Y, Murai H, et al. Assessment of a quick reference table algorithm for determining initial postoperative pressure settings of programmable pressure valves in patients with idiopathic normal pressure hydrocephalus: SINPHONI subanalysis. Neurosurgery 2012; 71(3): 722-8; discussion 8.

88. Satow T, M. S, Kikuchi T. Complications Associated with Surgical Treatment of Hydrocephalus. In: Pant S, Cherian I, eds. Hydrocephalus: InTech; 2012: 75-86.

89. Schoenbaum SC, Gardner P, Shillito J. Infections of cerebrospinal fluid shunts: epidemiology, clinical manifestations, and therapy. The Journal of infectious diseases 1975; 131(5): 543-52.

90. Spanu T, Romano L, D'Inzeo T, et al. Recurrent ventriculoperitoneal shunt infection caused by small-colony variants of Staphylococcus aureus. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2005; 41(5): e48-52.

91. Spanu G, Sangiovanni G, Locatelli D. Normal-pressure hydrocephalus: twelve years experience. Neurochirurgia 1986; 29(1): 15-9.

92. Richards HK, Seeley HM, Pickard JD. Efficacy of antibiotic-impregnated shunt catheters in reducing shunt infection: data from the United Kingdom Shunt Registry. Journal of neurosurgery Pediatrics 2009; 4(4): 389-93.

93. Parker SL, Attenello FJ, Sciubba DM, et al. Comparison of shunt infection incidence in high-risk subgroups receiving antibiotic-impregnated versus standard shunts. Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery 2009; 25(1): 77-83; discussion 5.

94. Pattavilakom A, Xenos C, Bradfield O, Danks RA. Reduction in shunt infection using antibiotic impregnated CSF shunt catheters: an Australian prospective study. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia 2007; 14(6): 526-31.

95. Ratilal B, Costa J, Sampaio C. Antibiotic prophylaxis for surgical introduction of intracranial ventricular shunts: a systematic review. Journal of neurosurgery Pediatrics 2008; 1(1): 48-56.

96. Hayashi T, Shirane R, Yokosawa M, Kimiwada T, Tominaga T. Efficacy of intraoperative irrigation with saline for preventing shunt infection. Journal of neurosurgery Pediatrics 2010; 6(3): 273-6.

97. Sorensen P, Ejlertsen T, Aaen D, Poulsen K. Bacterial contamination of surgeons gloves during shunt insertion: a pilot study. British journal of neurosurgery 2008; 22(5): 675-7.

98. Stone J, Gruber TJ, Rozzelle CJ. Healthcare savings associated with reduced infection rates using antimicrobial suture wound closure for cerebrospinal fluid shunt procedures. Pediatric neurosurgery 2010; 46(1): 19-24.

99. Cozzens JW, Chandler JP. Increased risk of distal ventriculoperitoneal shunt obstruction associated with slit valves or distal slits in the peritoneal catheter. Journal of neurosurgery 1997; 87(5): 682-6.

100. Khan QU, Wharen RE, Grewal SS, et al. Overdrainage shunt complications in idiopathic normal-pressure hydrocephalus and lumbar puncture opening pressure. Journal of neurosurgery 2013; 119(6): 1498-502.

101. Czosnyka Z, Czosnyka M, Richards HK, Pickard JD. Posture-related overdrainage: comparison of the performance of 10 hydrocephalus shunts in vitro. Neurosurgery 1998; 42(2): 327-33; discussion 33-4.

102. Cho KR, Yeon JY, Shin HJ. Upward migration of a peritoneal catheter following ventriculoperitoneal shunt. Journal of Korean Neurosurgical Society 2013; 53(6): 383-5.

103. Tamura A, Shida D, Tsutsumi K. Abdominal cerebrospinal fluid pseudocyst occurring 21 years after ventriculoperitoneal shunt placement: a case report. BMC surgery 2013; 13: 27. 104. Borcek AO, Civi S, Golen M, Emmez H, Baykaner MK. An unusual ventriculoperitoneal shunt complication: spontaneous knot formation. Turkish neurosurgery 2012; 22(2): 261-4.

105. Perrin RG, Bernstein M. Tension pneumoventricle after placement of a ventriculoperitoneal shunt: a novel treatment strategy. Case report. Journal of neurosurgery 2005; 102(2):

106. Kawajiri K, Matsuoka Y, Hayazaki K. Brain tumors complicated by pneumocephalus following cerebrospinal fluid shunting--two case reports. Neurologia medico-chirurgica 1994; 34(1): 10-4.

107. Yoo IH, Yum SK, Oh SJ, Kim KM, Jeong DC. Melanotic neuroectodermal tumor of infancy disseminated by a

Documenti correlati