• Non ci sono risultati.

Tre dei dieci pazienti arruolati nello studio hanno mostrato una PET positiva per la deposizione di placche di β-amiloide. La prevalenza di amiloidopatia nel nostro campione di pazienti è del 33% ed è, pertanto, in linea con quella riportata in letteratura. L’accumulo di β-amiloide non sembra quindi elemento necessario per lo sviluppo di demenza nei pazienti con MP, sebbene una sua presenza, in quantità non rilevabili con metodica PET, potrebbe contribuire al deterioramento cognitivo. E’ ormai noto infatti che, nella complessa neuropatologia sottostante la demenza nella MP, l’amiloidopatia rappresenta un substrato di frequente riscontro.

Dal nostro studio emerge una correlazione fra la deposizione di β-amiloide corticale, in particolare nella corteccia parietale, temporale ed occipitale e l’entità del declino cognitivo. L’accumulo della β-amiloide sembra confermarsi associato, quindi, ad una maggiore severità del deterioramento cognitivo. Una sua localizzazione preferenziale in determinate aree corticali potrebbe inoltre sostenere la tesi di una genesi anche amiloidopatica di specifici deficit cognitivi (quali ad es. la memoria) nei pazienti con PDD.

Due dei tre pazienti con PET positiva hanno mostrato un rapido declino delle funzioni cognitive, con decremento di oltre 10 punti del MMSE negli ultimi due anni prima dell’esecuzione della PET. Pur con i limiti di una valutazione quasi esclusivamente osservazionale, possiamo ipotizzare che la deposizione di β-amiloide contribuisca ad accelerare il declino cognitivo nei pazienti con una concomitante sinucleinopatia.

In conclusione, l’amiloidopatia non è un substrato neuropatologico necessario allo sviluppo di demenza nei pazienti con malattia di Parkinson; è stato dimostrato, infatti, che il solo accumulo corticale di corpi di Lewy è in grado di determinare un quadro dementigeno. Nella maggior parte dei pazienti con PDD la demenza è da interpretare

96

verosimilmente quale il risultato della convergenza di più substrati neuropatologici; tra questi un ruolo centrale, sebbene ancora da definire, è svolto dalle placche di β-amiloide. Arrestare la formazione di tali placche nei pazienti con MP mediante specifiche terapie target potrebbe quindi rallentare la progressione del declino cognitivo.

Sarebbe tuttavia necessaria una migliore comprensione delle modalità cronologiche con cui la β-amiloide si accumula nei pazienti con MP: questo, infatti, consentirebbe di identificare il momento, nella storia naturale della malattia, in cui queste terapie potrebbero apportare il maggior beneficio. A questo proposito sono necessari studi prospettici, che, mediante l’utilizzo di traccianti selettivi per la β-amiloide, possano far nuova luce sul complesso rapporto fra amiloidopatia e la malattia di Parkinson.

L’ipotesi di lavoro da sviluppare in futuri studi è che entrambi i substrati neuropatologici, β-amiloide e α-sinucleina, contribuiscano alla patogenesi della demenza associata alla malattia di Parkinson, probabilmente ciascuno di essi modulando differenti profili cognitivi e differente tempo di comparsa della demenza rispetto all’esordio motorio della malattia. La comprensione del peso reciproco di questi substrati nel singolo paziente risulta cruciale nella prospettiva sempre più concreta e prossima di terapie che non solo siano in grado di agire da “scavenger” o “inibitore della formazione” delle placche di β-amiloide, ma anche di farmaci in grado di svolgere con medesimo meccanismo (anticorpi monoclonali- immunizzazione passiva) una risposta immunitaria diretta contro gli accumuli di α- sinucleina.

Pertanto risulterà cruciale nei prossimi anni avere strumenti in grado di indicare con buona approssimazione quale terapia, tra queste, considerare come prioritaria nel singolo caso individuale di MP con demenza.

97

Poichè non può essere esclusa a priori un’azione sinergica di β-amiloide e α-sinucleina e quindi una teorica opzione di doppia terapia, indagare in vivo il ruolo di questa interazione rappresenta la prossima frontiera.

Data, tuttavia, la non disponibilità attuale di traccianti PET per l’α-sinucleina, il prossimo step del nostro studio sarà esplorare il ruolo delle proteine eteromeriche e la relazione tra i livelli liquorali di β-amiloide e α-sinucleina e la PET con 18F-Florbetapir nella MP con differenti gradi di disturbo cognitivo (PDD, MCI-PD, MP senza disturbi cognitivi e DLB).

98

RINGRAZIAMENTI

Osservare un sentiero dalla fine può essere ingannevole. Le sue forme possono apparire distorte, i paesaggi che ha attraversato confondersi; la concezione della distanza percorsa può farsi evanescente.

Giunti alla fine di un sentiero è forse meglio chiudere gli occhi ed ascoltarsi. E, prima di decidere se voltarsi, valutare due elementi: la fatica e la soddisfazione. Se non si è stanchi e soddisfatti, significa che il sentiero è stato troppo semplice, o poco fruttuoso. Voltarsi, a questo punto, ci restituirebbe una visione deformata del nostro percorso. Tuttavia, se si è stanchi e soddisfatti, significa che è stato un bel cammino: e adesso, sì, è possibile girarsi ed osservare il sentiero dalla fine. Al suo posto, tuttavia, non si vedrà più un districarsi di curve ed ostacoli, come ci era apparso in durante, ma soltanto un fiume di persone: perché adesso quel sentiero esiste solo nella memoria, e la memoria è fatta di persone. E a questo punto verrà voglia di abbracciarle tutte.

Quelle più forti, da cui ti sei fatto trascinare nei momenti di stanchezza. Quelle più fresche e brillanti, che hanno reso questo percorso, prima di tutto, una festa. Quelle che hanno disegnato le curve e disposto gli ostacoli, perché senza di loro, forse, la stanchezza non sarebbe stata abbastanza da consentirci di guardare indietro. Quelle più piccole, di cui forse non ricorderemo nemmeno il nome, perché anche grazie a loro il cammino non è stato mai banale. E, infine, riserveremo l’abbraccio più forte a quelle più importanti, che ci hanno seguito durante tutto il cammino, dal momento del primo passo, fino a quest’ultima parola. Grazie.

99

BIBLIOGRAFIA

1. Parkinson, J. An essay on the shaking palsy. 1817. J. Neuropsychiatry Clin. Neurosci. 14, 223–236; discussion 222 (2002).

2. Hirtz, D. et al. How common are the ‘common’ neurologic disorders? Neurology 68, 326–337 (2007).

3. de Lau, L. M. L. et al. Incidence of parkinsonism and Parkinson disease in a general population: the Rotterdam Study. Neurology 63, 1240–4 (2004).

4. Wooten, G. F. Are men at greater risk for Parkinson’s disease than women? J. Neurol. Neurosurg.

Psychiatry 75, 637–639 (2004).

5. Taylor, K. S. M., Cook, J. A. & Counsell, C. E. Heterogeneity in male to female risk for Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 78, 905–6 (2007).

6. Guttman, M., Slaughter, P. M., Theriault, M. E., DeBoer, D. P. & Naylor, C. D. Parkinsonism in Ontario: increased mortality compared with controls in a large cohort study. Neurology 57, 2278–82 (2001).

7. Williams-Gray, C. H. et al. The CamPaIGN study of Parkinson’s disease: 10-year outlook in an incident population-based cohort. J. Neurol. Neurosurg. Psychiatry 84, 1258–64 (2013).

8. Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015).

9. Semchuk, K. M., Love, E. J. & Lee, R. G. Parkinson’s disease and exposure to agricultural work and pesticide chemicals. Neurology 42, 1328–35 (1992).

10. Goedert, M., Spillantini, M. G., Del Tredici, K. & Braak, H. 100 years of Lewy pathology. Nat Rev

Neurol 9, 13–24 (2013).

11. Lewy, F. in Handbuch der Neurologie 920–933 (1912). doi:10.1038/42166

12. Lees, A. J., Selikhova, M., Andrade, L. A. & Duyckaerts, C. The black stuff and Konstantin Nikolaevich Tretiakoff. Mov. Disord. 23, 777–83 (2008).

13. Goldman, J. E., Yen, S. H., Chiu, F. C. & Peress, N. S. Lewy bodies of Parkinson’s disease contain neurofilament antigens. Science 221, 1082–4 (1983).

14. Spillantini, M. G. et al. Alpha-synuclein in Lewy bodies. Nature 388, 839–840 (1997).

15. Xia, Y. et al. Characterization of the human alpha-synuclein gene: Genomic structure, transcription start site, promoter region and polymorphisms. J. Alzheimers. Dis. 3, 485–494 (2001).

16. Chandra, S., Chen, X., Rizo, J., Jahn, R. & Sudhof, T. C. A broken alpha -helix in folded alpha - Synuclein. J. Biol. Chem. 278, 15313–15318 (2003).

17. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

18. Saha, A. R. et al. Parkinson’s disease alpha-synuclein mutations exhibit defective axonal transport in cultured neurons. J. Cell Sci. 117, 1017–24 (2004).

19. Lee HG, Zhu X, Takeda A, Perry G, S. M. Emerging evidence for the neuroprotective role of alpha- synuclein. Exp Neurol. 200, 1–7 (2006).

20. Parkkinen, L., Kauppinen, T., Pirttilä, T., Autere, J. M. & Alafuzoff, I. Alpha-synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann. Neurol. 57, 82–91 (2005).

100 (1998).

22. Hawkes, C. H., Del Tredici, K. & Braak, H. Parkinson’s disease: a dual-hit hypothesis. Neuropathol.

Appl. Neurobiol. 33, 599–614 (2007).

23. Del Tredici, K. & Braak, H. Lewy pathology and neurodegeneration in premotor Parkinson’s disease.

Mov. Disord. 27, 597–607 (2012).

24. Hurtig, H. I. et al. Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease. Neurology 54, 1916–21 (2000).

25. Luk, K. C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–53 (2012).

26. Irwin, D. J. et al. Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol. 70, 462–8 (2013).

27. Goetz, C. G. The history of Parkinson’s disease: Early clinical descriptions and neurological therapies. Cold Spring Harb. Perspect. Med. 1, (2011).

28. Berardelli, a, Rothwell, J. C., Thompson, P. D. & Hallett, M. Pathophysiology of bradykinesia in Parkinson’s disease. Brain 124, 2131–2146 (2001).

29. Hughes, A. J., Daniel, S. E., Blankson, S. & Lees, A. J. A clinicopathologic study of 100 cases of Parkinson’s disease. Arch. Neurol. 50, 140–8 (1993).

30. Louis, E. D. et al. Progression of parkinsonian signs in Parkinson disease. Arch. Neurol. 56, 334–7 (1999).

31. Marras, C. & Lang, A. Parkinson’s disease subtypes: lost in translation? J. Neurol. Neurosurg.

Psychiatry 84, 409–15 (2013).

32. Jankovic, J. et al. Variable expression of Parkinson’s disease: a base-line analysis of the DATATOP cohort. The Parkinson Study Group. Neurology 40, 1529–34 (1990).

33. Duncan, G. W. et al. Health-related quality of life in early Parkinson’s disease: the impact of nonmotor symptoms. Mov. Disord. 29, 195–202 (2014).

34. Postuma, R. B. et al. Identifying prodromal Parkinson’s disease: pre-motor disorders in Parkinson's disease. Mov. Disord. 27, 617–26 (2012).

35. Noyce, A. J. et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease.

Ann. Neurol. 72, 893–901 (2012).

36. Siderowf, A. & Lang, A. E. Premotor Parkinson’s disease: concepts and definitions. Mov. Disord. 27, 608–16 (2012).

37. Hoehn, M. M. & Yahr, M. D. Parkinsonism: onset, progression, and mortality.

38. Gibb, W. R. & Lees, A. J. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 51, 745–52 (1988).

39. Gelb, D. J., Oliver, E. & Gilman, S. Diagnostic criteria for Parkinson disease. Arch. Neurol. 56, 33–9 (1999).

40. Hughes, A. J., Daniel, S. E., Kilford, L. & Lees, A. J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55, 181–4 (1992).

41. Asenbaum, S. et al. [ 123 I]β-CIT and SPECT in essential tremor and Parkinson’s disease. J. Neural

Transm. 105, 1213–1228 (1998).

101

normal beta-CIT-SPECT in patients exposed to sodium valproate. Neurology 62, 1435–7 (2004). 43. Gerschlager, W. et al. [123I]beta-CIT SPECT distinguishes vascular parkinsonism from Parkinson’s

disease. Mov. Disord. 17, 518–23 (2002).

44. Lyons, K. E. & Pahwa, R. Diagnosis and Initiation of Treatment in Parkinson’s Disease.

http://dx.doi.org/10.3109/00207454.2011.620197 (2011).

45. Connolly, B. S. & Lang, A. E. Pharmacological Treatment of Parkinson Disease. Jama 311, 1670 (2014).

46. Rascol, O. et al. A Five-Year Study of the Incidence of Dyskinesia in Patients with Early Parkinson’s Disease Who Were Treated with Ropinirole or Levodopa.

http://dx.doi.org/10.1056/NEJM200005183422004 (2009).

47. Lew, M. F. et al. Long-term efficacy of rasagiline in early Parkinson’s disease. Int. J. Neurosci. 120, 404–8 (2010).

48. Hauser, R. A. et al. Long-term outcome of early versus delayed rasagiline treatment in early Parkinson’s disease. Mov. Disord. 24, 564–73 (2009).

49. Parkinson Study Group. A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch. Neurol. 59, 1937–43 (2002).

50. Thanvi, B. R. & Lo, T. C. N. Long term motor complications of levodopa: clinical features, mechanisms, and management strategies. Postgrad. Med. J. 80, 452–8 (2004).

51. Metman, L. V et al. Amantadine for levodopa-induced dyskinesias: a 1-year follow-up study. Arch.

Neurol. 56, 1383–6 (1999).

52. Winter Y, von Campenhausen S, Arend M, Longo K, Boetzel K, Eggert K, Oertel WH, Dodel R, B. P. Health-related quality of life and its determinants in Parkinson’s disease: results of an Italian cohort study. Park. Relat Disord. 17, 265–269 (2011).

53. Vossius, C., Larsen, J. P., Janvin, C. & Aarsland, D. The economic impact of cognitive impairment in Parkinson’s disease. Mov. Disord. 26, 1541–4 (2011).

54. Fletcher, P., Leake, A. & Marion, M.-H. Patients with Parkinson’s disease dementia stay in the hospital twice as long as those without dementia. Mov. Disord. 26, 919 (2011).

55. Lo, R. Y. et al. Clinical features in early Parkinson disease and survival. Arch. Neurol. 66, 1353–8 (2009).

56. Petersen, R. C. & Morris, J. C. Mild cognitive impairment as a clinical entity and treatment target.

Arch. Neurol. 62, 1160–3; discussion 1167 (2005).

57. Nasreddine, Z. S. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–9 (2005).

58. Janvin, C. C., Larsen, J. P., Aarsland, D. & Hugdahl, K. Subtypes of mild cognitive impairment in Parkinson’s disease: progression to dementia. Mov. Disord. 21, 1343–9 (2006).

59. Litvan, I. et al. MDS Task Force on mild cognitive impairment in Parkinson’s disease: critical review of PD-MCI. Mov. Disord. 26, 1814–24 (2011).

60. Litvan I1, Goldman JG, Tröster AI, Schmand BA, Weintraub D, Petersen RC, Mollenhauer B, Adler CH, Marder K, Williams-Gray CH, Aarsland D, Kulisevsky J, Rodriguez-Oroz MC, Burn DJ, Barker RA, E. M. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov Disord. 27, 349–56 (2012).

102

Disord. 22, 1689–1707 (2007).

62. Aarsland, D., Zaccai, J. & Brayne, C. A systematic review of prevalence studies of dementia in Parkinson’s disease. Mov. Disord. 20, 1255–63 (2005).

63. Aarsland, D. et al. Risk of dementia in Parkinson’s disease: a community-based, prospective study.

Neurology 56, 730–6 (2001).

64. Aarsland, D. et al. Prevalence and Characteristics of Dementia in Parkinson Disease. Arch. Neurol. 60, 387 (2003).

65. Moore, S. F. & Barker, R. A. Predictors of Parkinson’s disease dementia: Towards targeted therapies for a heterogeneous disease. Park. Relat. Disord. 20, S104–S107 (2014).

66. Aarsland, D. et al. The effect of age of onset of PD on risk of dementia. J. Neurol. 254, 38–45 (2007).

67. Irwin, D. J. et al. NIH Public Access. 72, 587–598 (2013).

68. Alves, G., Larsen, J. P., Emre, M., Wentzel-Larsen, T. & Aarsland, D. Changes in motor subtype and risk for incident dementia in Parkinson’s disease. Mov. Disord. 21, 1123–30 (2006).

69. Müller, M. L. T. M. et al. β-Amyloid and postural instability and gait difficulty in Parkinson’s disease at risk for dementia. Mov. Disord. 28, 296–301 (2013).

70. Maetzler W, Liepelt I, Reimold M, Reischl G, Solbach C, Becker C, Schulte C, Leyhe T, Keller S, Melms A, Gasser T, B. D. Cortical PIB binding in Lewy body disease is associated with Alzheimer- like characteristics. Neurobiol Dise. 34, 107–112 (2009).

71. Compta Y, Pereira JB, Ríos J, Ibarretxe-Bilbao N, Junqué C, Bargalló N, Ward L, Spisni R, Cámara A, Buongiorno M, Fernández M, Pont-Sunyer C, Cecchetti A, M. M. Combined dementia-risk biomarkers in Parkinson’s disease: a prospective longitudinal study. Park. Relat Disord. 8, (2013). 72. Postuma, R. B. et al. Rapid eye movement sleep behavior disorder and risk of dementia in

Parkinson’s disease: a prospective study. Mov. Disord. 27, 720–6 (2012).

73. Fullard ME1, Tran B2, Xie SX3, Toledo JB4, Scordia C5, Linder C6, Purri R7, Weintraub D8, Duda JE9, Chahine LM10, M. J. Olfactory impairment predicts cognitive decline in early Parkinson’s disease. Park. Relat Disord. 25, (2016).

74. Siderowf, A. et al. CSF amyloid β 1-42 predicts cognitive decline in Parkinson disease. Neurology 75, 1055–1061 (2010).

75. Motter, R. et al. Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann. Neurol. 38, 643–8 (1995).

76. Clark, C. M. et al. Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch. Neurol. 60, 1696–702 (2003).

77. Shaw, L. M., Korecka, M., Clark, C. M., Lee, V. M.-Y. & Trojanowski, J. Q. Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat. Rev. Drug Discov. 6, 295–303 (2007).

78. Bibl, M. et al. CSF amyloid-beta-peptides in Alzheimer’s disease, dementia with Lewy bodies and Parkinson's disease dementia. Brain 129, 1177–87 (2006).

79. Andreasen, N. et al. Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice. Arch. Neurol. 58, 373–9 (2001).

80. Chen-Plotkin, A. S. et al. Plasma epidermal growth factor levels predict cognitive decline in Parkinson disease. Ann. Neurol. 69, 655–63 (2011).

103

81. Duncan, G. W., Firbank, M. J., O’Brien, J. T. & Burn, D. J. Magnetic resonance imaging: a biomarker for cognitive impairment in Parkinson’s disease? Mov. Disord. 28, 425–38 (2013). 82. Irwin, D. J. et al. Neuropathologic substrates of Parkinson disease dementia. Ann. Neurol. 72, 587–98

(2012).

83. Williams-Gray, C. H. et al. Apolipoprotein E genotype as a risk factor for susceptibility to and dementia in Parkinson’s disease. J. Neurol. 256, 493–8 (2009).

84. Guo JL, Covell DJ, Daniels JP, Criptorchidetti A, Iba M, Stieber A, Ward L, Zhang B, Riddle DM, Kwong LK, Xu Y, Trojanowski JQ, L. V. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154, 103–17 (2013).

85. Winder-Rhodes, S. E. et al. Glucocerebrosidase mutations influence the natural history of Parkinson’s disease in a community-based incident cohort. Brain 136, 392–9 (2013).

86. Hely, M. A., Reid, W. G. J., Adena, M. A., Halliday, G. M. & Morris, J. G. L. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov. Disord. 23, 837–44 (2008).

87. Ballard, C. et al. Differences in neuropathologic characteristics across the Lewy body dementia spectrum. Neurology 67, 1931–4 (2006).

88. Halliday, G., Hely, M., Reid, W. & Morris, J. The progression of pathology in longitudinally followed patients with Parkinson’s disease. Acta Neuropathol. 115, 409–15 (2008).

89. Sabbagh, M. N. et al. Parkinson disease with dementia: comparing patients with and without Alzheimer pathology. Alzheimer Dis. Assoc. Disord. 23, 295–7

90. Compta, Y. et al. Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: Which is more important? Brain 134, 1493–1505 (2011).

91. Svenningsson P, Westman E, Ballard C, A. D. Cognitive impairment in patients with Parkinson’s disease: diagnosis, biomarkers, and treatment. Lancet Neurol. 2012, 8

92. Aarsland, D. et al. The rate of cognitive decline in Parkinson disease. Arch. Neurol. 61, 1906–1911 (2004).

93. Emre M. Dementia associated with Parkinson’s disease. Lancet Neurol 2, 229–37 (2003).

94. Uekermann, J. et al. Depressed mood and executive dysfunction in early Parkinson’s disease. Acta

Neurol. Scand. 107, 341–8 (2003).

95. Dubois, B. & Levy, R. Cognition, behavior and the frontal lobes. Int. Psychogeriatr. 16, 379–87 (2004).

96. Baddeley A. Working Memory. Oxford, Claretdon Press (1986).

97. Petrides, M. Frontal lobes and behaviour. Curr. Opin. Neurobiol. 4, 207–11 (1994).

98. Barbarulo AM, G. D. Le demenze degenerative con preminente coinvolgimento frontale. 2005 99. Kehagia, A. A., Barker, R. A. & Robbins, T. W. Neuropsychological and clinical heterogeneity of

cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol. 9, 1200– 1213 (2010).

100. Owen, A. M. Cognitive dysfunction in Parkinson’s disease: the role of frontostriatal circuitry.

Neuroscientist 10, 525–37 (2004).

101. Lewis, S. J. G. et al. Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J. Neurol. Neurosurg. Psychiatry 76, 343–8 (2005).

104 pathways. Neurology 65, 1716–22 (2005).

103. Ruffmann, C. et al. Cortical Lewy bodies and A β burden are associated with prevalence and timing of dementia in Lewy body diseases. Neuropathol. Appl. Neurobiol. n/a–n/a (2015). doi:10.1111/nan.12294

104. Reyes, S., Cottam, V., Kirik, D., Double, K. L. & Halliday, G. M. Variability in neuronal expression of dopamine receptors and transporters in the substantia nigra. Mov. Disord. 28, 1351–9 (2013). 105. Roeper J. Dissecting the diversity of midbrain dopamine neurons.R. Trends Neurosci. 36, 336–42

(2013).

106. Ito, K. et al. Striatal and extrastriatal dysfunction in Parkinson’s disease with dementia: a 6- [18F]fluoro-L-dopa PET study. Brain 125, 1358–65 (2002).

107. Gm, H., Jb, L., Js, S. & Ch, A. The neurobiological basis of cognitive impairment in Parkinson ’ s disease . PubMed Commons. 29, 634–650 (2014).

108. Bosboom, J. L. W. & Wolters, E. C. Psychotic symptoms in Parkinson’s disease: pathophysiology and management. Expert Opin. Drug Saf. 3, 209–20 (2004).

109. Padovani, A., Costanzi, C., Gilberti, N. & Borroni, B. Parkinson’s disease and dementia. Neurol. Sci. 27 Suppl 1, S40–3 (2006).

110. Hovestadt, A., de Jong, G. J. & Meerwaldt, J. D. Spatial disorientation as an early symptom of Parkinson’s disease. Neurology 37, 485–7 (1987).

111. Ogden, Jenni A.; Growdon, John H.; Corkin, S. Deficits on Visuospatial Tests Involving Forward Planning in High-Functioning Parkinsonians. Neuropsychiatry, Neuropsychol. Behav. Neurol. 3, (1990).

112. Harding, A. J., Broe, G. A. & Halliday, G. M. Visual hallucinations in Lewy body disease relate to Lewy bodies in the temporal lobe. Brain 125, 391–403 (2002).

113. Firbank MJ, Colloby SJ, Burn DJ, McKeith IG, O. J. Regional cerebral blood flow in Parkinson’s disease with and without dementia. Neuroimage 20, 1309–19 (2003).

114. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. (American Psychiatric Association, 2013). doi:10.1176/appi.books.9780890425596

115. Poewe, W. et al. Diagnosis and management of Parkinson’s disease dementia. Int. J. Clin. Pract. 62, 1581–1587 (2008).

116. Dubois, B. et al. Diagnostic procedures for Parkinson’s disease dementia: Recommendations from the Movement Disorder Society Task Force. Mov. Disord. 22, 2314–2324 (2007).

117. Folstein MF, Folstein SE, M. P. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 12, 189–98 (1975).

118. Shum, D. H. K., McFarland, K. A. & Bain, J. D. Construct validity of eight tests of attention: Comparison of normal and closed head injured samples.

http://dx.doi.org/10.1080/13854049008401508 (2007).

119. Zaccai, J., McCracken, C. & Brayne, C. A systematic review of prevalence and incidence studies of dementia with Lewy bodies. Age ageing 34, 561–566 (2005).

120. Nervi, A. et al. Familial aggregation of dementia with Lewy bodies. Arch. Neurol. 68, 90–3 (2011). 121. McKeith, I. G. et al. Diagnosis and management of dementia with Lewy bodies: third report of the

DLB Consortium. Neurology 65, 1863–72 (2005).

105

Heiss WD, H. R. Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology 74, 885–92 (2010).

123. Gaspar, P. & Gray, F. Dementia in idiopathic Parkinson’s disease. A neuropathological study of 32 cases. Acta Neuropathol. 64, 43–52 (1984).

124. Bohnen NI, A. R. The cholinergic system and Parkinson disease. Behav Brain Res. 221, 564–73 (2010).

125. Ehrt, U., Broich, K., Larsen, J. P., Ballard, C. & Aarsland, D. Use of drugs with anticholinergic effect and impact on cognition in Parkinson’s disease: a cohort study. J. Neurol. Neurosurg. Psychiatry 81, 160–5 (2010).

126. Leroi, I. et al. Randomized placebo-controlled trial of donepezil in cognitive impairment in Parkinson’s disease. Int. J. Geriatr. Psychiatry 19, 1–8 (2004).

127. Emre, M. et al. Rivastigmine for dementia associated with Parkinson’s disease. N. Engl. J. Med. 351, 2509–18 (2004).

128. Ravina, B. et al. Donepezil for dementia in Parkinson’s disease: a randomised, double blind, placebo controlled, crossover study. J. Neurol. Neurosurg. Psychiatry 76, 934–9 (2005).

129. Aarsland, D., Laake, K., Larsen, J. P. & Janvin, C. Donepezil for cognitive impairment in Parkinson’s disease: a randomised controlled study. J. Neurol. Neurosurg. Psychiatry 72, 708–12 (2002).

130. Ceravolo, R. et al. Brain perfusion effects of cholinesterase inhibitors in Parkinson’s disease with dementia. J. Neural Transm. 113, 1787–90 (2006).

131. Fogelson, N. et al. Effects of rivastigmine on the quantitative EEG in demented Parkinsonian patients. Acta Neurol. Scand. 107, 252–5 (2003).

132. Oertel, W. et al. Effects of rivastigmine on tremor and other motor symptoms in patients with

Documenti correlati