• Non ci sono risultati.

Grafico 9- Retta di taratura rs682985 Eterozigot

5.1 CONCLUSIONI E PROSPETTIVE FUTURE

In conclusione, dall’analisi di ASGE è risultato che gli SNPs in esame non influenzano i livelli di espressione genica di ARSB, BHTM2 e SPATA13. In futuro, sarebbe interessante approfondire ulteriormente l’indagine sul ruolo degli SNPs rs13184587 ed rs1220597 nella predisposizione al DTC. In particolare, andando a studiare gli SNPs posti in LD con l’rs13184587 e cercando nuovi collegamenti tra i geni; per quanto riguarda invece l’rs1220597 di SPATA13, che non si trova in un blocco di LD, si potrebbero invece analizzare le varianti di splicing. Queste potrebbero essere infatti causate dalla presenza di SNPs posti in regioni regolatorie fondamentali per la formazione dell’mRNA maturo. In particolare lo SNP rs1220597 si trova all’interno di un introne della variante NM 153023.3 e potrebbe quindi avere un ruolo nella formazione di questa specifica variante di splicing.

52

BIBLIOGRAFIA

Anand A, Ajaikumar B, Chitra S, Kuzhuvelil B, Sheeja T, Oiki S, Bokyung S, and Bharat B (2008). Cancer is a Preventable Disease that Requires Major Lifestyle Changes. Pharm Res., 25(9), 2097–2116.

Andrade LJO. (2013). Contemporary Aspects of Endocrinology. Revista Argentina de

Endocrinología y Metabolismo, 84-98.

Barbacid M (1987). Ras genes. Annu Rev Biochem, 779-827.

Bastos HN, Antão MR, Silva SN, Azevedo AP, Manita I, Teixeira V, Pina JE, Gil OM, Ferreira TC, Limbert E, Rueff J, Gaspar JF.(2009). Association of polymorphism in genes of the homologous recombination DNA repair pathway and thyroid cancer risk. Thyroid, 19, 1067- 1075.

Bu R, Uddin S, Ahmed M, Hussain AR, Alsobhi S, Amin T, Al-Nuaim A, Al-Dayel F, Abubaker J, Bavi P, Al-Kuraya KS. (2012). c-Met Inhibitor Synergizes with Tumor Necrosis Factor–Related Apoptosis-Induced Ligand to Induce Papillary Thyroid Carcinoma Cell Death. Mol Med, 18(1), 167-177.

Bullock M, Duncan EL, O'Neill C, Tacon L, Sywak M, Sidhu S, Delbridge L, Learoyd D, Robinson BG, Ludgate M, Clifton-Bligh RJ. (2012). Association of FOXE1 polyalanine reapeat region with papillary thyroid cancer. Journal of Clinical Endocrinology and Metabolism, 97(9), E1814-9. Cardis E, Kesminiene A, Ivanov V, Malakhova I, Shibata Y, Khrouch V, Drozdovitch V, Maceika E, Zvonova I, Vlassov O, Bouville A, Goulko G, Hoshi M, Abrosimov A, Anoshko J, Astakhova L, Chekin S, Demidchik E, Galanti R, Ito M, Korobova E, Lushnikov E, Maksioutov M, Masyakin V, Nerovnia A, Parshin V, Parshkov E, Piliptsevich N, Pinchera A, Polyakov S, Shabeka N, Suonio E, Tenet V, Tsyb A, Yamashita S, Williams D (2005). Risk of thyroid cancer after exposure to 131I in childhood. J. Natl Cancer Inst., 724-732.

Cardis E, Howe G, Ron E, Bebeshko V, Bogdanova T, Bouville A, Carr Z, Chumak V, Davis S, Demidchik Y, Drozdovitch V, Gentner N, Gudzenko N, Hatch M, Ivanov V, Jacob P, Kapitonova E, Kenigsberg Y, Kesminiene A, Kopecky KJ, Kryuchkov V, Loos A, Pinchera A, Reiners C, Repacholi M, Shibata Y, Shore RE, Thomas G, Tirmarche M, Yamashita S, Zvonova I. (2006). Cancer consequences of the Chernobyl accident: 20 years on. J. Radiol. Prot., 127.

Carmeliet P (2000). Mechanism of angiogenesis and arteriogenesis. Nat. Med., 6(4), 389-395. Chem KT, Rosai J. (1977). Follicular variant of thyroid papillary carcinoma: a clinicopathologic study of six cases. Am J Surg Pathol, 123-130.

53 Chen AY, Jemal A, Ward EM. (2009). Increasing incidence of differentiated thyroid cancer in the United States, 1988-2005. Cancer, 115, 3801-3807.

Cheung VG, Conlin LK, Weber TM, Arcaro M, Jen KY, Morley M, Spielman RS. (2003). Natural variation in human gene expression assessed in lymphoblastoid cells. Nat Genet., 33, 422- 425.

Cipollini M, Pastor S, Gemignani F, Castell J, Garritano S, Bonotti A, Biarnés J, Figlioli G, Romei C, Marcos R, Cristaudo A, Elisei R, Landi S, Velázquez A. (2013). TPO genetic variants and risk of differentiated thyroid carcinoma in two European populations. Int J Cancer., 133(12), 2843-2851.

Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, Beller U, Westra WH, Ladenson PW, Sidransky D. (2003). BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst, 625-7. Constancia M, Pickard B, Kelsey G,Reik W. (1998). Imprinting mechanisms. Genome Res., 8, 881-900.

Dal Maso L, La Vecchia C, Franceschi S, Preston-Martin S, Ron E, Levi F, Mack W, Mark SD, McTiernan A, Kolonel L, Mabuchi K, Jin F, Wingren G, Galanti MR, Hallquist A, Glattre E, Lund E, Linos D, Negri E. (2000). A pooled analysis of thyroid cancer studies. V. Anthropometric factors. Cancer Causes Control., 11(2), 137-144.

Davies L, Welch HG. (2006). Increasing incidence of thyroid cancer in United States, 1973- 2002. Journal of tha American Medical Association, 295, 2164-2167.

DeLellis R. (2004). Pathology and genetics of tumor of endocrine organs. World Healt

Organization Classification of Tumor. Lyon: IARC Press.

Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto T, et al. (2012). Landscape of transcription in human cells. Nature, 489(7414), 101-108.

dos Santos Silva I, Swerdlow AJ. (1993). Thyroid cancer epidemiology in England and Wales: time trends and geographical distribution. Br J Cancer, 330–340.

Duffy BJ Jr, Fitzgerald PJ. (1950). Thyroid cancer in childhood and adolescence: a report on twenty-eight cases. Cancer, 1018-1032.

Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, Struewing JP, Morrison J, Field H, Luben R, Wareham N, Ahmed S, Healey CS, Bowman R; SEARCH collaborators, Meyer KB, Haiman CA, Kolonel LK, Henderson BE, Le Marchand L. (2007). Genome-wide association study identifies novel breast cancer susceptibility loci. Nature, 1087-93.

54 Engeland A, Tretli S, Akslen LA, Bjørge T. (2006). Body size and thyroid cancer in two million Norwegian men and women. Br J Cancer., 95(3), 366-370.

Farahati J, Geling M, Mäder U, Mörtl M, Luster M, Müller JG, Flentje M, Reiners C. (2004). Changing trends of incidence and prognosis of thyroid carcinoma in lower Franconia, Germany, from 1981-1995. Thyroid, 14(2), 141-147.

Fard-Esfahani P, Fard-Esfahani A, Fayaz S, Ghanbarzadeh B, Saidi P, Mohabati R, Bidoki SK, Majdi M. (2011). Association of Arg194Trp, Arg280His and Arg399Gln polymorphisms in X-ray repair cross-complementing group 1 gene and risk of differentiated thyroid carcinoma in Iran. Iran Biomed J, 15, 73-78.

Fard-Hesfahani P, Fard-Esfahani A, Saidi P, Fayaz S, Mohabati R, Majdi M. (2011). An increased risk of differentiated thyroid carcinoma in Iran with the 677C>T homozigous polymorphism in the MTHFR gene. Cancer Epidemiol, 35, 56-58.

Feferman L, Bhattacharyya S, Deaton R, Gann P, Guzman G, Kajdacsy-Balla A, Tobacman JK. (2013). Arylsulfatase B (N-acetylgalactosamine-4-sulfatase): potential role as a biomarker in prostate cancer. Prostate Cancer Prostatic Dis. 16(3):277-84.

Feldman PS, Horvath E, Kovacs K. (1972). Ultrastructure of three Hürthle cell tumors of the thyroid. Cancer., 30(5), 1279-1285.

Fenton PA, Clarke SE, Owen W, Hibbert J, Hodgson SV. (2001). Cribriform variant papillary thyroid cancer: a characteristic of familial adenomatous polyposis. Thyroid, 193-197.

Figlioli G, Köhler A, Chen B, Elisei R, Romei C, Cipollini M, Cristaudo A, Bambi F, Paolicchi E, Hoffmann P, Herms S, Kalemba M, Kula D, Pastor S, Marcos R, Velázquez A, Jarząb B, Landi S, Hemminki K, Försti A, Gemignani F. (2014). Novel genome-wide association study-based candidate loci for differentiated thyroid cancer risk. J Clin Endocrinol Metab, 99(10), E2084- 92.

Freedman ML, Monteiro AN, Gayther SA, Coetzee GA, Risch A, Plass C, Casey G, De Biasi M, Carlson C, Duggan D, James M, Liu P, Tichelaar JW, Vikis HG, You M, Mills IG. (2011). Principles for the post-GWAS functional characterization of cancer risk. Nat Genet. 43(6):513- 8.

Ghoussaini M, Edwards SL, Michailidou K, Nord S, Cowper-Sal Lari R, Desai K, Kar S, Hillman KM, Kaufmann S, Glubb DM, Beesley J, Dennis J, Bolla MK, Wang Q, Dicks E, Guo Q, Schmidt MK, Shah M, Luben R, et al. (2014). Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation. Nat Commun. 4:4999.

Gibbs RA, Belmont JB, Hardenbol P, Willis TD, Yu F, Yang H. (2003). The international HapMap project. Nature, 789–796.

Giusti F, Falchetti A, Franceschelli F, Marini F, Tanini A, Brandi ML. (2010). Thyroid cancer: current molecular perspectives. J Oncol., 351679.

55 Glionoer D.(1997). The Regulation of Thyroid Function in Pregnancy:Pathways of Endocrine Adaptation from Physiology to Pathology. Endocrine Reviews, 404-433.

Goodman MT, Kolonel LN, Wilkens LR. (1992). The association of body size, reproductive factors and thyroid cancer. Br J Cancer., 66(6), 1180-1184.

Gou S, Wang YL, Li Y, Jin L, Xiong M, Ji QH, Wang J. (2014). Significant SNPs have limited prediction ability for thyroid cancer. Cancer Med, 3(3), 731-735.

Granja F, Morari J, Morari EC, Correa LA, Assumpção LV, Ward LS (2004). GST profiling may be useful in the screening for thyroid nodule malignancy. Cancer Lett, 129-137.

Grimes DA, Schulz KF. (2002). Bias and causal associations in observational research. Lancet,

359(9302), 284-252.

Gudmusson J, Sulem P, Gudbjartsson DF, Jonasson JG, Sigurdsson A, Bergthorsson JT, He H, Blondal T, Geller F, Jakobsdottir M, Magnusdottir DN, Matthiasdottir S, Stacey SN, Skarphedinsson OB, Helgadottir H, Li W, Nagy R, Aguillo E, Faure E, Prats E, Saez B, Martinez M, et al. (2009). Common variant 9q22.33 and 14q.13.3 predispose to thyroid cancer in European populations. Nat. Genet., 41, 460-464.

Hammer M, Wortsman J, Folse R. (1982). Cancer in cystic lesions of the thyroid. Arch Surg.,

117(8), 1020-1023.

Hayashida N, Imaizumi M, Shimura H, Okubo N, Asari Y, Nigawara T, Midorikawa S, Kotani K, Nakaji S, Otsuru A, Akamizu T, Kitaoka M, Suzuki S, Taniguchi N, Yamashita S, Takamura N; Investigation Committee for the Proportion of Thyroid Ultrasound Findings. (2013). Thyroid Ultrasound Findings in Children from Three Japanese Prefectures: Aomori, Yamanashi and Nagasaki. PLoS One., 8(12), e83220.

He XF, Wei W, Liu ZZ, Shen XL, Yang XB, Wang SL, Xie DL. (2013). Association between the CYP1A1 T3801C polymorphism and risk of cancer: evidence from 268 case-control studies.

Gene, S0378-1119.

Hidalgo M, Saez ME, Martinez-Tello FJ, Moron FJ, Ferrero-Herrero E, Labalde-Martinez M, Rigopoulou D, Ballestin-Carcavilla C, Ruiz A, Royo JL, Ramirez-Lorca R. (2008). Absence of allelic imbalance involving EMSY, CAPN5, and PAK1 genes in papillary thyroid carcinoma. J Endocrinol Invest. 31(7):618-23.

Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA. (2009). Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA, 106, 9362–9367.

Hirschhorn JN, Daly MJ. (2005). Genome-wide association studies for common diseases and complex traits. NATURE REVIEWS, 95-108.

56 Ishido Y, Yamazaki K, Kammori M, Sugishita Y, Luo Y, Yamada E, Yamada T, Sellitti DF, Suzuki K. (2014). Thyroglobulin suppresses thyroid-specific gene expression in cultures of normal but not neoplastic human thyroid follicular cells. J Clin Endocrinol Metab, E694-702.

Jones AM, Howarth KM, Martin L, Gorman M, Mihai R, Moss L, Auton A, Lemon C, Mehanna H, Mohan H, Clarke SE, Wadsley J, Macias E, Coatesworth A, Beasley M, Roques T, Martin C, Ryan P, Gerrard G, Power D, Bremmer C; TCUKIN Consortium, Tomlinson I, Carvajal-Carmona LG. (2012). Thyroid cancer susceptibility polymorphisms: confirmation of loci on chromosomes 9q22 and 14q13, validation of a recessive 8q24 locus and failure to replicate a locus on 5q24. J Med Genet., 49(3), 158-163.

Kallel R, Belguith-Maalej S, Akdi A, Mnif M, Charfeddine I, Galofré P, Ghorbel A, Abid M, Marcos R, Ayadi H, Velázquez A, Hadj Kacem H. (2010). Genetic investigation of FOXE1 polyalanine tract in thyroid diseases: new insight on the role of FOXE1 in thyroid carcinoma.

Cancer Biomarkers, 8, 43-51.

Kawasaki Y, Sagara M, Shibata Y, Shirouzu M, Yokoyama S, Akiyama T. (2007). Identification and characterization of Asef2, a guanine-nucleotide exchange factor specific for Rac1 and Cdc42. Oncogene. 26(55):7620-267.

Kim JC. (2014). Molecular Pathogenesis and Targeted Therapies in Well-Differentiated Thyroid Carcinoma. Endocrinology and Metabolism, 211-216.

Köhler A, Chen B, Gemignani F, Elisei R, Romei C, Figlioli G, Cipollini M, Cristaudo A, Bambi F, Hoffmann P, Herms S, Kalemba M, Kula D, Harris S, Broderick P, Houlston R, Pastor S, Marcos R, Velázquez A, Jarzab B, Hemminki K, Landi S, Försti A. (2013). Genome-Wide Association Study on Differentiated Thyroid Cancer. J Clin Endocrinol Metab, 98(10), E1674-E1681. Landa I, Robledo M. (2011). Association studies in thyroid cancer susceptibility: are we on the right track? Journal of Molecular Endocrinology, 47, R38-R43.

Lander ES, Schork NJ. (1994). Genetic dissection of complex traits. Science, 265(5181), 2037- 48.

Lauper JM, Krause A, Vaughan TL, Monnat RJ Jr. (2013). Spectrum and Risk of Neoplasia in Werner Syndrome: A Systematic Review. PLoS One.

Leung AK, Chow SM, Law SC. (2008). Clinical features and outcome of the tall cell variant of papillary thyroid carcinoma. Laryngoscope, 32-38.

Li F, Feng Q, Lee C, Wang S, Pelleymounter LL, Moon I, Eckloff BW, Wieben ED, Schaid DJ, Yee V, Weinshilboum RM. (2008). Human betaine-homocysteine methyltransferase (BHMT) and BHMT2: common gene sequence variation and functional characterization. Mol Genet

Metab. 94(3):326-35.

Licitra L. (2012). Multikinase inhibitors in thyroid cancer. uropean Journal of Cancer, 46(6), 1012-1018.

57 Lind P, Langsteger W, Molnar M, Gallowitsch HJ, Mikosch P, Gomez I. (1998). Epidemiology of thyroid diseases in iodine sufficiency. Thyroid, 8(12), 1179-83.

Liu S, Semenciw R, Ugnat AM, Mao Y. (2001). Increasing thyroid cancer incidence in Canada, 1970-1996: time trends and age.period-cohort effects. British Journal of Cancer, 1335-1339. LiVolsi VA. (2011). Papillary thyroid carcinoma: an update. Mod Pathol., 24 Suppl., S1-9. Liyanarachchi S, Wojcicka A, Li W, Czetwertynska M, Stachlewska E, Nagy R, Hoag K, Wen B, Ploski R, Ringel MD, Kozłowicz-Gudzinska I, Gierlikowski W, Jazdzewski K, He H, de la Chapelle A. (2013). Cumulative Risk Impact of Five Genetic Variants Associated with Papillary Thyroid Carcinoma. THYROID, 1532-1540.

Lo HS, Wang Z, Hu Y, Yang HH, Gere S, Buetow KH, Lee MP. (2003). Allelic variation in gene expression is common in the human genome. Genome Res, 13, 1855-1862.

Malchoff CD, Malchoff DM. (2006). Familial nonmedullary thyroid carcinoma. Cancer Control,

13, 106-110.

Manolio TA. (2010). Genomewide Association Studies and Assessment of the Risk of Disease.

The new england journal of medicine, 166-176.

Marotta V, Guerra A, Sapio MR, Vitale M. (2011). RET/PTC rearrangement in benign and malignant thyroid diseases: a clinical standpoint. European Journal of Endocrinology, 165(4), 499-507.

Marques MM, Junta CM, Zárate-Blades CR, Sakamoto-Hojo ET, Donadi EA, Passos GA. (2009) Transcriptional response of peripheral lymphocytes to early fibrosarcoma: a model system for cancer detection based on hybridization signatures. Exp Biol Med (Maywood). 234(7):802- 12.

Matsuse M, Takahashi M, Mitsutake N, Nishihara E, Hirokawa M, Kawaguchi T, Rogounovitch T, Saenko V, Bychkov A, Suzuki K, Matsuo K, Tajima K, Miyauchi A, Yamada R, Matsuda F, Yamashita S. (2011). The FOXE1 and NKX2-1 loci are associated with susceptibility to papillary thyroid carcinoma in the Japanese population. J Med Genet., 48(9), 645-648.

Mazzaferri EL, Kloos RT. (2001). Current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab, 1447-1463.

McIver B, Eberhardt NL. (2002). Cowden's desease and the PTEN/MMAC1 gene. In Akazimu T et al, Genetics of Complex Thyroid Desease (p. 151-175). New York, Tokyo: Springer.

Memon A, Varghese A, Suresh A. (2002). Benign thyroid desease and dietary factors in thyroid cancer: a case-control study in Kuwait. Br J Cancer, 86, 1745-1750.

Milani L, Gupta M, Andersen M, Dhar S, Fryknäs M, Isaksson A, Larsson R, Syvänen AC. (2007). Allelic imbalance in gene expression as a guide to cis-acting regulatory single nucleotide polymorphisms in cancer cells. Nucleic Acids Research, 35(5), e34.

58 Moffat MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, Depner M, von Berg A, Bufe A, Rietschel E, Heinzmann A, Simma B, Frischer T, Willis-Owen SA, Wong KC, Illig T, Vogelberg C, Weiland SK, von Mutius E, Abecasis GR, Farrall M, Gut IG, Lathrop GM, Cookson WO. (2007). Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma.

Nature, 448, 470-473.

Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, Guigo R, Dermitzakis ET. (2010). Transcriptome genetics using second generation sequencing in a Caucasian population. Nature, 464, 773-777.

Morari EC, Leite JL, Granja F, da Assumpção LV, Ward LS. (2002). The Null Genotype of Glutathione S-Transferase M1 and T1 Locus Increases the Risk for Thyroid Cancer. Cancer

Epidemiol Biomarkers, 11(11), 1485-8.

Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, Li X, Li H, Kuperwasser N, Ruda VM, Pirruccello JP, Muchmore B, Prokunina-Olsson L, Hall JL, Schadt EE, Morales CR, Lund-Katz S, Phillips MC, Wong J, Cantley W, et al. (2010). From non coding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature, 466, 714-719.

Namba H, Rubin SA, Fagin JA. (1990). Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol, 193-205.

Nesland JM, Sobrinho-Simões MA, Holm R, Sambade MC, Johannessen JV. (1985). Hürthle- cell lesions of the thyroid: a combined study using transmission electron microscopy, scanning electron microscopy, and immunocytochemistry. Ultrastruct Pathol., 8(4), 269-290. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. (2010). Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet, 6, e1000888.

Nwokoro NA, Korytkowski MT, Rose S, Gorin MB, Penles Stadler M, Witchel SF, Mulvihill JJ. (1997). Spectrum of malignancy and premalignancy in Carney syndrome. Am J Med Genet., 369-77.

Oleksiak MF, Churchill GA, Crawford DL. (2002). Variation in gene expression within and among natural populations. Nat Genet, 32, 261-266.

Papadopoulou F, Efthimiou E. (2009). Thyroid cancer after external or internal ionizing irradiation. Hellenic Journal of Nuclear Medicine, 266-270.

Park YM, Cheong HS, Lee JK. (2014). Genome-wide detection of allelic gene expression in hepatocellular carcinoma cells using a human exome SNP chipGenome-wide detection of allelic gene expression in hepatocellular carcinoma cells using a human exome SNP chip.

Gene, 236-242.

Pastinen T. (2010). Genome-wide allele-specific analysis: insights into regulatory variation.

59 Pearson TA, Manolio TA. (2008). How to Interpret a Genome-wide Association Study. JAMA, 1335-1344.

Perri F, Lorenzo GD, Scarpati GD, Buonerba C. (2011). Anaplastic thyroid carcinoma: a comprehensive review of current and future therapeutic options. World Journal of Clinical

Oncology, 2(3), 150-157.

Peterson E, De P, Nuttall R. (2012). BMI, diet and female reproductive factors as risks for thyroid cancer: a systematic review. PLoS One., 7(1), e29177.

Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras JB, Stephens M, Gilad Y, Pritchard JK. (2010). Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature, 464, 768-772.

Pomerantz MM, Shrestha Y, Flavin RJ, Regan MM, Penney KL, Mucci LA, Stampfer MJ, Hunter DJ, Chanock SJ, Schafer EJ, Chan JA, Tabernero J, Baselga J, Richardson AL, Loda M, Oh WK, Kantoff PW, Hahn WC, Freedman ML. (2010). Analysis of the 10q11 cancer risk locus implicates MSMB and NCOA4 in human prostate tumorigenesis. PLoS Genet., 6, e1001204. Rabes HB. (2000). Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post- chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin

Cancer Res, 1093–1103.

Randolph GW, Maniar D. (2000). Medullary carcinoma of the thyroid. Cancer Control, 253- 261.

Refetoff S, Harrison J, Karanfilski BT, Kaplan EL, De Groot LJ, Bekerman C. (1975). Continuing occurrence of thyroid carcinoma after irradiation to the neck in infancy and childhood. N Engl

J Med, 171-175.

Ris-Stalpers C, Bikker H. (2010). Genetics and phenomics of hypothyroidism and goiter due to TPO mutations. Mol Cell Endocrinol , 322, 38-43.

Rohaizak M, Jasmi AY, Ismail MA, Munchar MJ, Meah FA. (2003). Thyroid carcinoma in patients with familial adenomatous polyposis. Asian J Surg, 26(3), 183-185.

Ryu RA, Tae K, Min HJ, Jeong JH, Cho SH, Lee SH, Ahn YH. (2011). XRCC1 polymorphisms and risk of papillary thyroid carcinoma in a Korean sample. J Korean Med Sci, 26, 991-995.

Santoro M, Melillo RM, Carlomagno F, Fusco A, Vecchio G. (2002). Molecular mechanism of RETactivation in human cancer. ANN NY Acad Sci, 116-121.

Santo LS, Branco SC, Silva SN, Azevedo AP, Gil OM, Manita I, Ferreira TC, Limbert E, Rueff J, Gaspar JF. (2012). Polymorphisms in base excision repair genes and thyroid cancer risk. Oncol

60 Santos M, Azevedo T, Martins T, Rodrigues FJ, Lemos MC. (2014). Association of RET Genetic Polymorphisms and Haplotypes with Papillary Thyroid Carcinoma in the Portuguese Population: A Case-Control Study. PLoS One, 9(10), e109822.

Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH. (2003). Genetics of gene expression surveyed in maize, mouse and man. Nature, 422, 297-302.

Schierding W, Cutfield WS, O'Sullivan JM. (2014). The missing story behind Genome Wide Association Studies :single nucleotide polymorphisms in gene deserts have a story to tell.

Frontiers in Genetics, 5, 1-7.

Shen J, Medico L, Zhao H. (2011). Allelic Imbalance in BRCA1 and BRCA2 Gene Expression and Familial Ovarian Cancer. Cancer Epidemiol Biomarkers, 50-56.

Sherman SI. (2009). Advanced in chemotherapy of differentiated epithelialand medullary thyroid cancer. J. Clin. Endocrinol. Metab., 94(5), 1493-1499.

Shibuya K, Gilmour S, Oshima A. (2014). Time to reconsider thyroid cancer screening in Fukushima. Lancet., 383(9932), 1883-4.

Siriaj AK, Ibrahim M, Al-Rasheed M, Abubaker J, Bu R, Siddiqui SU, Al-Dayel F, Al-Sanea O, Al- Nuaim A, Uddin S, Al-Kuraya K. (2008). Polymorphisms of selected xenobiotic genes contribute to the development of papillary thyroid cancer susceptibility in Middle Eastern population. BMC Med Genet, 61.

Son EJ, Nosè V. (2012). Familial follicular cell-derived thyroid carcinoma. Frontiers in

Endocrinology, 2-6.

Stadler ZK, Gallagher DJ, Thom P, Offit K. (2010). Genome-Wide Association Studies of Cancer: Principles and Potential Utility. Cancer Network, 1-12.

Stewart BW, Wild CP. (2008). World Cancer Report. Lyon: IARC Press.

Sturgis EM, Li G. (2009) Molecular epidemiology of papillary thyroid cancer: in search of common genetic associations. Thyroid. 19(10):1031-4

Takahashi M, Saenko VA, Rogounovitch TI, Kawaguchi T, Drozd VM, Takigawa-Imamura H, Akulevich NM, Ratanajaraya C, Mitsutake N, Takamura N, Danilova LI, Lushchik ML, Demidchik YE, Heath S, Yamada R, Lathrop M, Matsuda F, Yamashita S. (2010). The FOXE1 locus is a major genetic determinant for radiation-related thyroid carcinoma in Chernobyl.

Hum. Mol. Genet., 19, 2516-2523.

Tomaz RA, Sousa I, Silva JG, Santos C, Teixeira MR, Leite V, Cavaco BM. (2012). FOXE1 polymorphisms are associated with familial and sporadic nonmedullary thyroid cancer susceptibility. Clinical Endocrinology, 926-933.

61 Trégouët DA, Ducimetière P, Tiret L. (1997). Testing association between candidate-gene markers and phenotype in related individuals, by use of estimating equations. Am J Hum Genet., 61(1), 189-199.

Tuttle RM. (2002). Serum vascular endothelial growth factor levels are elevated in metastatic differentiated thyroid cancer but not increased by short-term TSH stimulation. J. Clin.

Endocrinal. Metab., 87(4), 1737-1742.

UNSCLEAR, (2000). Sources and effects of ionizing radiation. New York: United Nation.

Viglietto G, De Marco C. (2011). Molecular Biology of Thyroid Cancer. Contemporary Aspects

of Endocrinology, 189-234.

Volante M, Collini P, Nikiforov YE, Sakamoto A, Kakudo K, Katoh R, Lloyd RV, LiVolsi VA, Papotti M, Sobrinho-Simoes M, Bussolati G, Rosai J. (2007). Poorly differentiated thyroid carcinoma: the Turin proposal for the use of uniform diagnostic criteria and an algorithmic diagnostic approach. Am J Surg Pathol, 1256-1264.

Watanobe H, Furutani T, Nihei M, Sakuma Y, Yanai R, Takahashi M, Sato H, Sagawa F. (2014). The Thyroid Status of Children and Adolescents in Fukushima Prefecture Examined during 20–30 Months after the Fukushima Nuclear Power Plant Disaster: A Cross-Sectional, Observational Study. Plos One, 1-19.

Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, Christiansen MW, Fairfax BP, Schramm K, Powell JE, Zhernakova A, Zhernakova DV, Veldink JH, Van den Berg LH, Karjalainen J, Withoff S, Uitterlinden AG, Hofman A, Rivadeneira F, 't Hoen PA, et al. (2013). Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 45(10):1238-43.

Williams D. (2009). Radiation carcinogenesis: lessons from Chernobyl. Oncogene(27), (Supplement 2) S9-S18.

Williams ED (1990). TSH and thyroid cancer. Horm Metab Res Suppl, 72-75.

Wu B, Guo D, Guo Y. (2014). Association between p53 Arg72Pro polymorphism and thyroid cancer risk: a meta-analysis. Tumour Biol., 35(1), 561-5.

Xing M. (2007). BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases,

Documenti correlati