• Non ci sono risultati.

Lo scopo di questa tesi era di comprendere come alcune proprietà molecolari dei polimeri potessero influenzare la loro capacità di interagire con le membrane biologiche. A questo scopo si è valutata, tramite DSC, la capacità di quattro differenti polimeri di modificare l’andamento della transizione gel – liquido di membrane liposomiali costituite da DPPC (zwitterionica) e DPPG (anionica). Il PEG ha confermato la sua biocompatibilità non interagendo né con la DPPC né con la DPPG, mentre per i tre polimeri cationici sono state rilevate interazioni di rilevante entità nei confronti della membrana anionica DPPG. Solo la PAMAM G5 ha invece instaurato una debole interazione con la membrana zwitterionica DPPC, peraltro solo alla massima concentrazione testata. Le interazioni, quando presenti, sono risultate concentrazione – dipendenti, aumentando d’intensità con l’aumentare della concentrazione di polimero in soluzione. La presenza di cariche sul polimero sembra essere la principale caratteristica necessaria perché si osservi un’ interazione, dal momento che il principale meccanismo di interazione sembra essere il legame elettrostatico. In ogni caso, ulteriori studi sono necessari per comprendere l’effetto del peso molecolare e della presenza di cariche negative sulla superficie del polimero, nonché la presenza di sali e specie ioniche, in modo da mimare con più precisione i sistemi biologici. Sebbene la DSC sia risultata un metodo utile, altre tecniche calorimetriche come la calorimetria isotermica di titolazione (ITC) o tecniche non calorimetriche come la microscopia a forza atomica (AFM) potrebbero essere utili per comprendere meglio alcune modalità di interazione.

Detto ciò, tenendo conto della maggiore complessità delle membrane biologiche rispetto alle membrane liposomiali studiate in questo lavoro, ricerche future potrebbero orientarsi verso l’utilizzo di modelli di membrana più realistici, ad esempio doppi strati fosfolipidici o membrane costituite da più tipi di fosfolipidi e/o contenenti carboidrati e proteine, i quali potrebbero portare a risultati molto diversi.

5 Bibliografia

Bangham AD, R.W. Horne (1964). Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. Journal of

Molecular Biology. Volume 8, Issue 5, 660–668.

Co-Minh HB, P Demoly, B Guillot, N Raison-Peyron (2007). Anaphylactic shock after oral intake and contact urticaria due to polyethylene glycols.European journal of allergy and

clinical immunology ,Vol 62, Issue 1, 92–93.

Delgado C, Francis GE, Fisher D (1992). The uses and properties of PEG-linked proteins.

Crit Rev Ther Drug Carrier Syst. 249-304.

Dhandapani Nagasamy Venkatesh, Anup Thapa, Goti Sandip, Ayush Shrestha, Niroj Shrestha, Rajan Sharma Bhattarai (2013). Liposomes as novel drug delivery system: A comprehensive review. Int. J. Res. Pharm. Sci., 4 (2), 187-193.

Duncan, R (2003). The dawning era of polymer therapeutics.Nature Reviews Drug

Discovery, 2, 347–360.

Ehrlich, P (1908) Partial cell functions: Nobel lecture, December 11, 1908.Physiology or

Medicine. Nobel Prize Winners in Medicine and Physiology 1901-1965.

Esfanda Roseita, Donald A. Tomalia (2001). Poly(amidoamine) dendrimers: from

biomimicry to drug delivery and biomedical applications.Drug Discovery Today, Volume 6, Issue 8, 427–436.

Felczak A, Wronska N, Janaszewska A, Klajnert B, Bryszewska M, Appelhans D, Voit B, Rozalska S, Lisowska K (2012). Antimicrobial activity of poly(propyleneimine)

dendrimers.New J. Chem., 36, 2215–2222

Fischer Dagmar, Youxin Li, Barbara Ahlemeyerc, Josef Krieglsteinc, Thomas Kissela (2003). In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis.Biomaterials Volume 24, Issue 7, March 2003, Pages 1121–1131.

Frey L, Zhang D, Carignano MA, Szleifer I (2007). Effects of block copolymer’s

architecture on its association with lipid membranes: Experiments and simulations. THE

JOURNAL OF CHEMICAL PHYSICS 127, 114904 , 2007

Garay RP, JP Labaune (2011). Immunogenicity of Polyethylene Glycol (PEG).The Open

Conference Proceedings Journal, 2, 104-107

Haag Rainer, Kratz Felix (2006). Polymer Therapeutics: Concepts and Applications.

Angew. Chem. Int. Ed. 2006, 45, 1198 – 1215

Han S, Kanamoto T, Nakashima H, Yoshida T (2012). Synthesis of a new amphiphilic glycodendrimer with antiviral functionality. Carbohydr Polym. October

Hong S, Leroueil PR, Janus EK, Peters JL, Kober MM, Islam MT, Orr BG, Baker JR Jr, Banaszak Holl MM. (2006). Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability.

Bioconjug Chem. May-Jun 2006.

Jain K, Kesharwani P, Gupta U, Jain NK (2010). Dendrimer toxicity: Let's meet the challenge.Int J Pharm, 394(1-2). 122-142.

Jatzkewitz H (1955) Peptamin (glycyl-L-leucyl-mescaline) bound to blood plasma expander (polyvinylpyrrolidone) as a new depot form of a biologically active primary amine.Z.

Naturforsch. 1955

Klajnert Barbara, Maria Bryszewska (2001). Dendrimers: properties and applications.Acta

Biochimica Polonica, Vol. 48 No.1/2001, 199-208.

Kopeèek Jindøich, Pavla Kopeèková (2010). HPMA copolymers: Origins, early developments, present, and future.Adv Drug Deliv Rev. 62(2): 122–149.

Larsen AK, Malinska D, Koszela-Piotrowska I, Parhamifar L, Hunter AC, Moghimi SM. (2012). Polyethylenimine-mediated impairment of mitochondrial membrane potential, respiration and membrane integrity: implications for nucleic acid delivery and gene

Lee HJ, Koo AN, Kwon IK, Lee SC (2013). Polymer therapeutics for treating cancer.

Biomaterials for cancer therapeutics, 2013, 113-133

Leitmannova Liu (2006)Advances in Planar Lipid Bilayers and Liposomes, Volume 6, p.112

Li C, Liu H, Sun Y, Wang H, Guo F, Rao S, Deng J, Zhang Y, Miao Y, Guo C, Meng J, Chen X, Li L, Li D, Xu H, Wang H, Li B, Jiang C (2009). PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway.J Mol Cell Biol. 2009 Oct;1(1), 37-45.

Lins L, Decaffmeyer M, Thomas A, Brasseur R (2008). Relationships between the orientation and the structural properties of peptides and their membrane interactions.

Biochimica et Biophysica Acta (BBA) – Biomembranes Volume 1778, Issues 7–8,

July–August 2008, Pages 1537–1544

Marlovsky E, Baabur-Cohen H, Eldar-Boock A, Omer L, Tiram G, Ferber S, Ofek P, Polyak D, Scomparin A, Satchi-Fainaro R (2012). Administration, distribution, metabolism and elimination of polymer therapeutics.Journal of Controlled Release 161, 446–460. Massenburg, D, Lentz BR (1993). Poly(ethylene glycol)-induced fusion and rupture of dipalmitoylphosphatidylcholine large, unilamellar extruded vesicles.Biochemistry, 32, 9172–9180.

Muñoz-Bonilla Alexandra, Marta Fernández-García (2012). Polymeric materials with antimicrobial activity. Progress in Polymer Science. Volume 37, Issue 2, 281–339. Nakajima Naoki, Yoshito Ikada (1995). Effects of Concentration, Molecular Weight, and Exposure Time of Poly(ethylene glycol) on Cell Fusion.Polymer Journal 27, 211-219. Nyitrai G, Keszthelyi T, Bóta A, Simon A, Tõke O, Horváth G, Pál I, Kardos J, Héja L (2013). Sodium selective ion channel formation in living cell membranes by

polyamidoamine dendrimer. Biochim Biophys Acta. Aug 2013, 1873-80

Palermo Edmund F., Dong-Kuk Lee, Ayyalusamy Ramamoorthy, Kenichi Kuroda (2012). The Role of Cationic Group Structure in Membrane Binding and Disruption by Amphiphilic Copolymers. Journal Phys Chem B. Jan 20, 2011, 115(2), 366–375.

Parimi S, Barnes TJ, Prestidge CA (2008). PAMAM dendrimer interactions with supported lipid bilayers: a kinetic and mechanistic investigation.Langmuir. Dec 2008

Peetla C, Stine A, Labhasetwar V (2009). Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol Pharm. 2009 Sep–Oct; 6(5), 1264–1276.

Richter Ralf P, Rémi Bérat, Alain R Brisson (2006). Formation of Solid-Supported Lipid Bilayers: An Integrated View.Langmuir 2006, 22, 3497-3505.

Shah Nimish, RKMewada, Tejal Shah (2011). Application of biodegradable Polymers in Controlled drug Delivery. Institute of Technology, Nirma University, Ahmedabad, December 2011.

Sharma A, Gautam SP, Gupta AK (2011). Surface modified dendrimers: synthesis and characterization for cancer targeted drug delivery.Bioorg Med Chem, June.

Singer, SJ & Nicolson, GL (1972). The fluid mosaic model of the structure of cell membranes. Science, 175, 720–731.

Singh Ajay V, Aditi AS, WN Gade, Tanushree Vats, Cristina Lenardi, Paolo Milani, Aditi AS (2010). Nanomaterials: New Generation Therapeutics in Wound Healing and Tissue Repair.Current Nanoscience,Vol.6 Issue 6, 577-586

Sprott, GD (1992). Structures of archaebacterial membrane lipids.J. Bioenerg. Biomembr., 24, 555–566.

Vance DE (2002). Phospholipid biosynthesis in eukaryotes. Biochemistry of lipids,

lipoproteins and membranes. Chapter 8, 205-230.

Verma A., Stellacci F. (2009). Effect of Surface Properties on Nanoparticle - Cell Interactions.Small journal 2009, 1-10

Wightman L, Kircheis R, Rössler V, Carotta S, Ruzicka R, Kursa M, Wagner E.J. (2001). Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo.Gene Med. 2001 Jul-Aug, 3(4), 362-372.

Yasuhara Kazuma, Manami Tsukamoto, Yasutaka Tsuji, Jun-ichi Kikuchi (2012). Unique concentration dependence on the fusion of anionic liposomes induced by polyethyleneimine

. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Volume 415,

461–467.

Yudovin-Farber Ila, Jacob Golenser, Nurit Beyth, Ervin I. Weiss, Abraham J. Domb (2010) Quaternary Ammonium Polyethyleneimine: Antibacterial Activity. Journal of

Documenti correlati