• Non ci sono risultati.

generazione, la gestione dell’epilessia rimane ancora un lavoro molto complesso, anche perché il preciso meccanismo d’azione primario di molti AEDs più nuovi è ancora sconosciuto. Molti meccanismi e bersagli molecolari dei farmaci antiepilettici sono implicati anche nella regolazione dell’umore e del comportamento, il che potrebbe spiegare perché ogni AED è associato a specifici effetti psicotropi. L’attuale conoscenza dei meccanismi alla base degli effetti degli AEDs sul comportamento e sull’umore è ben lungi dall’essere completa, con molti dati provenienti da studi che presentano delle limitazioni metodologiche; sono urgentemente necessarie ulteriori indagini. Definire meglio i profili psicotropi degli AED permetterebbe di ampliare le opportunità di adattamento dei trattamenti in pazienti con epilessia e potrebbe potenzialmente portare all’identificazione di nuove strategie di trattamento di condizioni psichiatriche. Una patologia che in molti casi si associa all’epilessia è l’emicrania. Emicrania ed epilessia sono disordini episodici che condividono meccanismi patofisiologici che portano ad un’ipereccitabilità neuronale; questo spiega l’uso di farmaci simili in entrambi i disordini. Anche in questo caso, però,

i dati e le informazioni disponibili non sono del tutto soddisfacenti. 55

In generale, la ricerca deve andare avanti per fare maggiormente luce sull’epilessia e su tutti gli aspetti ad essa correlati, soprattutto per cercare di migliorare lo stile di vita dei soggetti colpiti da questa malattia da cui purtroppo non è possibile, almeno per il momento, guarire.

BIBLIOGRAFIA

[1] Berg AT, Scheffer IE. New concepts in classification of the epilepsies:

entering the 21st century. Epilepsia. 2011; 52:1058-1062.

[2] Perucca E, Tomson T. The pharmacological treatment of epilepsy in adults.

Lancet Neurol. 2011; 10:446-456.

[3] Perucca P, Carter J, Vahle V, Gilliam FG. Adverse antiepileptic drug effects:

toward a clinically and neurobiologically relevant taxonomy. Neurology 2009;

72:1223-1229.

[4] Pearce JMS. Bromide. The first effective antiepileptic agent. J Neurol

Neurosurg Psychiatry. 2002; 72:412.

[5] Willmore LJ, Abelson MB, Ben-Menachem E, Pellock JM, Shields WD. Vigabatrin:

2008 update. Epilepsia. 2009; 50:163-173.

[6] Hwang H, Kim KJ. New antiepileptic drugs in pediatric epilepsy. Brain Dev. 2008;

30:549-555.

[7] McDonagh J, Stephen LJ, Dolan FM et al. Peripheral retinal dysfunction in

patients taking vigabatrin. Neurology. 2003; 61:1690-1694.

[8] Parisi P, Bombardieri R, Curatolo P. Current role of vigabatrin in infantile spasms.

Eur J Paediatr Neurol. 2007; 11:331-336.

[9] Landmark CJ. Targets for antiepileptic drugs in the synapse. Med Sci Monit.

2007; 13:RA1-RA7.

[10] Borowicz KK, Zadrozniak M, Luszczki JJ, Czuczwar SJ. Interactions between

tiagabine and conventional antiepileptic drugs in the rat model of complex partial

seizures. J Neural Transm. 2008; 115:661-667.

[11] Bauer J, Cooper-Mahkorn D. Tiagabine: Efficacy and safety in partial seizures-

current status. Neuropsychiatr Dis Treat. 2008; 4:731-736.

[12] Chiron C, Marchand MC, Tran A, Rey E, d'Athis P, Vincent J, Dulac O, Pons G.

Stiripentol in severe myoclonic epilepsy in infancy: A randomised placebo-controlled

syndrome-dedicated trial. Lancet. 2000; 356:1638-1642.

[13] Giraud C, Treluyer JM, Rey E, Chiron C, Vincent J, Pons G, Tran A. In vitro and

in vivo inhibitory effect of stiripentol on clobazam metabolism. Drug Metab Dispos. 2006; 34:608-611.

[14] Fisher JL. The anti-convulsant stiripentol acts directly on the GABA (A)

receptor as a positive allosteric modulator. Neuropharmacology. 2009; 56:190-197.

[15] Messenheimer JA. Lamotrigine. Epilepsia. 1995; 36:S87-S95. [16] Zheng C, Yang K, Liu Q, Wang MY, Shen J, Valles AS, Lukas RJ, Barrantes FJ,

Wu J. The anticonvulsive drug lamotrigine blocks neuronal α4β2 nicotinic acetylcholine receptors. Pharmacol Exp Ther. 2010; 335:401-408.

[17] Wang SJ, Sihra TS, Gean PW. Lamotrigine inhibition of glutamate release from

isolated cerebrocortical nerve terminals (synaptosomes) by suppression of voltage-

activated calcium channel activity. Neuroreport 2001; 12:2255-2258.

[18] Zona C, Tancredi V, Longone P et al. Neocortical potassium currents are

enhanced by the antiepileptic drug lamotrigine. Epilepsia 2002; 43:685-690.

[19] Kocki T, Wielosz M, Turski WA, Urbanska EM. Enhancement of brain kynurenic

acid production by anticonvulsants-novel mechanism of antiepileptic activity? Eur J Pharmacol 2006; 541:147-151.

[20] Mackay FJ, Wilton LV, Peace GL, Freemantle SN, Mann RD. Safety of long-term

lamotrigine in epilepsy. Epilepsia. 1997; 38:881-886.

[21] Pugazhendhy S, Shrivastava PK, Sinha SK, Shrivastava SK. Lamotrigine-dextran

conjugates-synthesis, characterization, and biological evaluation. Med Chem Res.

2001; 20:595-600.

[22] Blaszczyk B, Czuczwar SJ. Efficacy, safety, and potential of extended-release

lamotrigine in the treatment of epileptic patients. Neuropsychiatr Dis Treat. 2010;

6:145-150.

[23] Biton V, Di Memmo J, Shukla R, Lee YY, Poverennova I, Demchenko V, Saiers J,

Adams B, Hammer A, Vuong A, Messenheimer J. Adjunctive lamotrigine XR for primary generalized tonic-clonic seizures in a randomized, placebo-controlled study.

Epilepsy Behav. 2010; 19:352-358.

[24] Knoester PD, Keyser A, Renier WO, Egberts ACG, Hekster YA, Deckers CLP.

Effectiveness of lamotrigine in clinical practice: Results of a retrospective

population-based study. Epilepsy Res. 2005; 65:93-100.

[25] Walker MC, Sander JW. Topiramate: A new antiepileptic drug for refractory

epilepsy. Seizure. 1996; 5:199-203.

[26] Gryder DS, Rogawski MA. Selective antagonism of GluR5 kainate-receptor-

mediated synaptic currents by topiramate in rat basolateral amygdala neurons. J

Neurosci. 2003; 23:7069-7074.

[27] Rosenfeld WE. Topiramate: A review of preclinical, pharmacokinetic, and clinical

data. Clin Ther. 1997; 19:1294-1308.

[28] Luna-Tortos C, Rambeck B, Jurgens UH, Loscher W. The antiepileptic drug

topiramate is a substrate for human P-glycoprotein but not multidrug resistance

proteins. Pharm Res. 2009; 26:2464-2470.

[29] Ohman I, Sabers A, de Flon P, Luef G, Tomson T. Pharmacokinetics of

topiramate during pregnancy. Epilepsy Res. 2009; 87:124-129.

[30] Grosso S, Galimberti D, Farnetani MA, Cioni M, Mostardini R, Vivarelli R, Di

Bartolo RM, Bernardoni E, Berardi R, Morgese G, Balestri P. Efficacy and safety

oftopiramate in infants according to epilepsy syndromes. Seizure. 2005; 14:183-189. 58

[31] Ramsay E, Faught E, Krumholz A, Naritoku D, Privitera M, Schwarzman L, Mao

L, Wiegand F, Hulihan J. Efficacy, tolerability, and safety of rapid initiation of topiramate versus phenytoin in patients with new-onset epilepsy: A randomized

double-blind clinical trial. Epilepsia. 2010; 51:1970-1977.

[32] McCabe RT, Wasterlain CG, Kucharczyk N, Sofia RD, Vogel JR. Evidence for

anticonvulsant and neuroprotectant action of felbamate mediated by strychnine-

insensitive glycine receptors. J Pharmacol Exp Ther 1993; 264:1248-1252.

[33] Schmidt D. Felbamate: Successful development of a new compound for the

treatment of epilepsy. Epilepsia. 1993; 34:S30-S33.

[34] Roecklein BA, Sacks HJ, Mortko H, Stables J. Fluorofelbamate.

Neurotherapeutics. 2007; 4:97-101.

[35] Landmark CJ, Johannessen SI. Modifications of antiepileptic drugs for

improved tolerability and efficacy. Perspect Medicin Chem. 2008; 2:21-39.

[36] Lees GJ. Pharmacology of AMPA/Kainate receptor ligands and their therapeutic

potential in neurological and psychiatric disorders. Drugs. 2000; 59:33-78.

[37] De Sarro G, Gitto R, Russo E, Ibbadu GF, Barreca ML, De Luca L, Chimirri A.

AMPA receptor antagonists as potential anticonvulsant drugs. Curr Top Med Chem.

2005; 5:31-42.

[38] Chimirri A, Gitto R, Zappala M. AMPA receptor antagonists. Exp Opin Ther

Patents. 1999; 9:557-570.

[39] Donevan SD, Rogawski MA. GYKI 52466, a 2,3-benzodiazepine, is a highly

selective, noncompetitive antagonist of AMPA/kainate receptor responses.

Neuron.1993; 10:51-59.

[40] Rogawski MA. Revisiting AMPA receptors as an antiepileptic drug target.

Epilepsy Currents 2011; 11:56-63.

[41] Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress

report on new antiepileptic drugs: A summary of the Ninth Eilat Conference (EILAT

IX). Epilepsy Res. 2009; 83:1-43.

[42] Fattore C, Perucca E. Novel medications for epilepsy. Drugs 2011; 71:2151-2178. [43] Elger C, Halasz P, Maia J, Almeida L, Soares-da-Silva P. Efficacy and safety of

eslicarbazepine acetate as adjunctive treatment in adults with refractory partial- onset seizures: A randomized, double-blind, placebo-controlled, parallel-group phase III study. Epilepsia. 2009; 50:454-463.

[44] Perucca E, Yasothan U, Clincke G, Kirkpatrick P. Lacosamide. Nat Rev Drug

Discov. 2008; 7:973-974.

[45] Luszczki JJ. Third-generation antiepileptic drugs: Mechanisms of action,

pharmacokinetics and interactions. Pharmacol Rep. 2009; 61:197-216.

[46] Errington AC, Stohr T, Heers C, Lees G. The investigational anticonvulsant

lacosamide selectively enhances slow inactivation of voltage-gated sodium channels.

Mol Pharmacol 2008; 73:157-169.

[47] Becerra JL, Ojeda J, Corredera E, Ruiz Gimenez J. Review of therapeutic

options for adjuvant treatment of focal seizures in epilepsy: focus on lacosamide.

CNS Drugs 2011; 25(Suppl. 1):3–16.

[48] Curia G, Biagini G, Perucca E, Avoli M. Lacosamide: A new approach to target

voltage-gated sodium currents in epileptic disorders. CNS Drugs. 2009; 23:555-568.

[49] Doty P, Rudd GD, Stoehr T, Thomas D. Lacosamide. Neurotherapeutics. 2007;

4:145-148.

[50] White HS, Franklin MR, Kupferberg HJ, Schmutz M, Stables JP, Wolf HH. The

anticonvulsant profile of rufinamide (CGP 33101) in rodent seizure models. Epilepsia.

2008; 49:1213-1220.

[51] Perucca E, Cloyd J, Critchley D, Fuseau E. Rufinamide: Clinical pharmacokinetics

and concentration-response relationships in patients with epilepsy. Epilepsia. 2008;

49:1123-1141.

[52] Arroyo S. Rufinamide. Neurotherapeutics 2007; 4:155-162. [53] Wisniewski CS. Rufinamide: A new antiepileptic medication for the treatment of

seizures associated with lennox-gastaut syndrome. Ann Pharmacother. 2010; 44:658- 667.

[54] Stefan H, Feuerstein TJ. Novel anticonvulsant drugs. Pharmacol Ther. 2007;

113:165-183.

[55] Baulac M. Introduction to zonisamide. Epilepsy Res. 2006; 68:S3-S9. [56] Leppik IE. Zonisamide: Chemistry, mechanism of action, and pharmacokinetics.

Seizure. 2004; 13:S5-S9.

[57] Ohtahara S. Zonisamide in the management of epilepsy-Japanese experience.

Epilepsy Res. 2006; 68:S25-S33.

[58] Zaccara G, Tramacere L, Cincotta M. Drug safety evaluation of zonisamide for

the treatment of epilepsy. Expert Opin Drug Saf. 2011; 10:623-631.

[59] Kelemen A, Rasonyl G, Neuwirth M, Barcs G, Szucs A, Jakus R, Fabo D, Juhos V,

Palfy B, Halasz P. Our clinical experience with zonisamide in resistant generalized

epilepsy syndromes. Ideggyogy Sz. 2011; 64:187-192.

[60] Hamandi K, Sander JW. Pregabalin: A new antiepileptic drug for refractory

epilepsy. Seizure. 2006; 15:73-78.

[61] Kavoussi R. Pregabalin: From molecule to medicine. Eur Neuropsychopharmacol.

2006; 2:S128-S133.

[62] Dworkin RH, Kirkpatrick P. Fresh from the pipeline: Pregabalin. Nat Rev Drug

Discov. 2005; 4:455-456.

[63] Briggs DE, Lee CM, Spiegel K, French JA. Reduction of secondarily generalized

tonic-clonic (SGTC) seizures with pregabalin. Epilepsy Res. 2008; 82:86-92.

[64] Gunthorpe MJ, Large CH, Sankar R. The mechanism of action of retigabine

(ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy.

Epilepsia 2012; 53:412-424.

[65] Rundfeldt C. The new anticonvulsant retigabine (D-23129) acts as an opener of

K+ channels in neuronal cells. Eur J Pharmacol. 1997; 336:243-249.

[66] Wuttke TV, Seebohm G, Bail S, Maljevic S, Lerche H. The new anticonvulsant

retigabine favors voltage-dependent opening of the Kv7.2 (KCNQ2) channel by

binding to its activation gate. Mol Pharmacol. 2005; 67:1009-1017.

[67] Czuczwar P, Wojtak A, Cioczek-Czuczwar A, Parada-Turska J, Maciejewski R,

Czuczwar SJ. Retigabine: The newer potential antiepileptic drug. Pharmacol Rep.

2010; 62:211-219.

[68] Lynch BA, Lambeng N, Nocka K, et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci U S A 2004; 101:9861-9866.

[69] French JA, Tonner F. Levetiracetam. In: Shorvon S, Perucca E, Engel Jr J,

editors. The treatment of epilepsy. 3rd ed. Oxford: Wiley-Blackwell; 2009. p. 559- 574.

[70] Noyer M, Gillard M, Matagne A, Henichart JP, Wulfert E. The novel

antiepileptic drug levetiracetam (ucb L059) appears to act via a specific binding site in CNS membranes. Eur J Pharmacol. 1995; 286:137-146.

[71] Ulloa CM, Towfigh A, Safdieh J. Review of levetiracetam, with a focus on the

extended release formulation, as adjuvant therapy in controlling partial-onset

seizures. Neuropsychiatr Dis Treat. 2009; 5:467-476.

[72] Ettinger AB. Psychotropic effects of antiepileptic drugs. Neurology 2006;

67:1916-1925.

[73] Mula M, Pini S, Cassano GB. The role of anticonvulsant drugs in anxiety

disorders: a critical review of the evidence. J Clin Psychopharmacol 2007; 27: 263-

272.

[74] Spina E, Perugi G. Antiepileptic drugs: indications other than epilepsy. Epileptic

Disord 2004; 6:57-675.

[75] Mula M, Sander JW. Negative effects of antiepileptic drugs on mood in

patients with epilepsy. Drug Saf 2007; 30:555-567.

[76] Sanacora G, Saricicek A. GABAergic contributions to the pathophysiology of

depression and the mechanism of antidepressant action. CNS Neurol Disord Drug

Targets 2007; 6:127-140.

[77] Comai S, Tau M, Gobbi G. The psychopharmacology of aggressive behavior: a

translational approach: part 1: neurobiology. J Clin Psychopharmacol 2012; 32:83-94. 61

[78] Levinson DF, Devinsky O. Psychiatric adverse events during vigabatrin therapy.

Neurology 1999; 53:1503-1511.

[79] Chadwick D. Safety and efficacy of vigabatrin and carbamazepine in newly

diagnosed epilepsy: a multicentre randomised double-blind study. Vigabatrin European

monotherapy study group. Lancet 1999; 354:13-19.

[80] Ferrie CD, Robinson RO, Panayiotopoulos CP. Psychotic and severe behavioural

reactions with vigabatrin: a review. Acta Neurol Scand 1996; 93:1-8.

[81] Thomas L, Trimble M, Schmitz B, Ring H. Vigabatrin and behaviour disorders: a

retrospective survey. Epilepsy Res 1996; 25:21-27.

[82] Chiron C, Marchand MC, Tran A, et al. Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. STICLO study group. Lancet 2000; 356:1638-1642.

[83] Inoue Y, Ohtsuka Y, Oguni H, et al. Stiripentol open study in Japanese patients with Dravet syndrome. Epilepsia 2009; 50:2362-2368.

[84] Dodrill CB, Arnett JL, Shu V, Pixton GC, Lenz GT, Sommerville KW. Effects of

tiagabine monotherapy on abilities, adjustment, and mood. Epilepsia 1998; 39:33-42.

[85] Suppes T, Chisholm KA, Dhavale D, et al. Tiagabine in treatment refractory bipolar disorder: a clinical case series. Bipolar Disord 2002; 4:283-289.

[86] Rosenthal M. Tiagabine for the treatment of generalized anxiety disorder: a

randomized, open-label, clinical trial with paroxetine as a positive control. J Clin Psychiatry 2003; 64:1245-1249.

[87] Leppik IE. Tiagabine: the safety landscape. Epilepsia 1995; 36(Suppl. 6):S10-13. [88] Sheline YI. Hippocampal atrophy in major depression: a result of depression-

induced neurotoxicity? Mol Psychiatry 1996; 1:298-299.

[89] Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric

disorders. Arch Gen Psychiatry 2000; 57:925-935.

[90] Kendell SF, Krystal JH, Sanacora G. GABA and glutamate systems as

therapeutic targets in depression and mood disorders. Expert Opin Ther Targets 2005; 9:153-168.

[91] Bagley J, Moghaddam B. Temporal dynamics of glutamate efflux in the

prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam. Neuroscience 1997; 77:65-73.

[92] Nowak G, Ordway GA, Paul IA. Alterations in the N-methyl-D-aspartate

(NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res 1995; 675:157-164.

[93] Bartanusz V, Aubry JM, Pagliusi S, Jezova D, Baffi J, Kiss JZ. Stress-induced

changes in messenger RNA levels of N-methyl-D-aspartate and AMPA receptor subunits in selected regions of the rat hippocampus and hypothalamus. Neuroscience 1995; 66:247-252.

[94] Altamura CA, Mauri MC, Ferrara A, Moro AR, D'Andrea G, Zamberlan F. Plasma

and platelet excitatory amino acids in psychiatric disorders. Am J Psychiatry 1993; 150:1731-1733.

[95] Mauri MC, Ferrara A, Boscati L, et al. Plasma and platelet amino acid

concentrations in patients affected by major depression and under fluvoxamine treatment. Neuropsychobiology 1998; 37:124-129.

[96] Ketter TA, Post RM, Theodore WH. Positive and negative psychiatric effects

of antiepileptic drugs in patients with seizure disorders. Neurology 1999; 53(5 Suppl 2):S53-67.

[97] Gay PE, Mecham GF, Coskey JS, Sadler T, Thompson JA. Behavioral effects of

felbamate in childhood epileptic encephalopathy (Lennox–Gastaut syndrome). Psychol Rep 1995; 77(3 Pt 2):1208-1210.

[98] Theodore WH, Albert P, Stertz B, et al. Felbamate monotherapy: implications for antiepileptic drug development. Epilepsia 1995; 36:1105-1110.

[99] Frye MA. Clinical practice. Bipolar disorder—a focus on depression. N Engl J

Med 2011; 364:51-59.

[100] Goodwin GM, Bowden CL, Calabrese JR, et al. A pooled analysis of 2 placebo- controlled 18-month trials of lamotrigine and lithium maintenance in bipolar I disorder. J Clin Psychiatry 2004; 65:432-441.

[101] Schindler F, Anghelescu IG. Lithium versus lamotrigine augmentation in

treatment resistant unipolar depression: a randomized, open-label study. Int Clin Psychopharmacol 2007; 22:179-182.

[102] Ettinger AB, Kustra RP, Hammer AE. Effect of lamotrigine on depressive

symptoms in adult patients with epilepsy. Epilepsy Behav 2007; 10:148-154.

[103] Kremer I, Vass A, Gorelik I, et al. Placebo-controlled trial of lamotrigine added to conventional and atypical antipsychotics in schizophrenia. Biol Psychiatry 2004; 56:441-446.

[104] Goff DC, Keefe R, Citrome L, et al. Lamotrigine as add-on therapy in

schizophrenia: results of 2 placebo-controlled trials. J Clin Psychopharmacol 2007; 27:582-589.

[105] Tritt K, Nickel C, Lahmann C, et al. Lamotrigine treatment of aggression in female borderline-patients: a randomized, double-blind, placebo-controlled study. J Psychopharmacol 2005; 19:287-291.

[106] Reich DB, ZanariniMC, Bieri KA. A preliminary study of lamotrigine in the

treatment of affective instability in borderline personality disorder. Int Clin Psychopharmacol 2009; 24:270-275.

[107] Beran RG, Gibson RJ. Aggressive behaviour in intellectually challenged patients

with epilepsy treated with lamotrigine. Epilepsia 1998; 39:280-282.

[108] Besag FM. Behavioural effects of the newer antiepileptic drugs: an update.

Expert Opin Drug Saf 2004; 3:1-8.

[109] Mula M, Trimble MR, Lhatoo SD, Sander JW. Topiramate and psychiatric

adverse events in patients with epilepsy. Epilepsia 2003; 44:659-663.

[110] Mula M, Hesdorffer DC, Trimble M, Sander JW. The role of titration schedule

of topiramate for the development of depression in patients with epilepsy. Epilepsia 2009; 50:1072-1076.

[111] Nickel C, Lahmann C, Tritt K, et al. Topiramate in treatment of depressive and anger symptoms in female depressive patients: a randomized, double-blind, placebo-

controlled study. J Affect Disord 2005; 87:243-252.

[112] Mowla A, Kardeh E. Topiramate augmentation in patients with resistant major

depressive disorder: a double-blind placebo-controlled clinical trial. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:970-973.

[113] Nickel MK, Nickel C, Mitterlehner FO, et al. Topiramate treatment of aggression in female borderline personality disorder patients: a double-blind, placebo-controlled study. J Clin Psychiatry 2004; 65:1515-1519.

[114] Nickel MK, Nickel C, Kaplan P, et al. Treatment of aggression with topiramate in male borderline patients: a double-blind, placebo-controlled study. Biol Psychiatry 2005; 57:495-499.

[115] Tiihonen J, Halonen P, Wahlbeck K, et al. Topiramate add-on in treatment- resistant schizophrenia: a randomized, double-blind, placebo-controlled, cross-over trial. J Clin Psychiatry 2005; 66:1012-1015.

[116] Afshar H, Roohafza H, Mousavi G, et al. Topiramate add-on treatment in schizophrenia: a randomised, double-blind, placebo-controlled clinical trial. J Psychopharmacol 2009; 23:157-162.

[117] Muscatello MR, Bruno A, Pandolfo G, et al. Topiramate augmentation of clozapine in schizophrenia: a double-blind, placebo-controlled study. J

Psychopharmacol 2011; 25:667-674.

[118] Delbello MP, Findling RL, Kushner S, et al. A pilot controlled trial of topiramate for mania in children and adolescents with bipolar disorder. J Am Acad Child Adolesc Psychiatry 2005; 44:539-547.

[119] Roy Chengappa KN, Schwarzman LK, Hulihan JF, Xiang J, Rosenthal NR.

Adjunctive topiramate therapy in patients receiving a mood stabilizer for bipolar I disorder: a randomized, placebo-controlled trial. J Clin Psychiatry 2006; 67: 1698- 1706.

[120] Lindley SE, Carlson EB, Hill K. A randomized, double-blind, placebo-controlled

trial of augmentation topiramate for chronic combat-related posttraumatic stress disorder. J Clin Psychopharmacol 2007; 27:677-681.

[121] Tucker P, Trautman RP, Wyatt DB, et al. Efficacy and safety of topiramate monotherapy in civilian posttraumatic stress disorder: a randomized, double-blind, placebo-controlled study. J Clin Psychiatry 2007; 68:201-206.

[122] Leombruni P, Lavagnino L, Fassino S. Treatment of obese patients with binge

eating disorder using topiramate: a review. Neuropsychiatr Dis Treat 2009; 5: 385- 392.

[123] Mula M, Cavanna AE, Monaco F. Psychopharmacology of topiramate: from

epilepsy to bipolar disorder. Neuropsychiatr Dis Treat 2006; 2:475-488.

[124] Lerer B, Macciardi F. Pharmacogenetics of antidepressant and mood-stabilizing

drugs: a review of candidate-gene studies and future research directions. Int J Neuropsychopharmacol 2002; 5:255-275.

[125] Vawter MP, Freed WJ, Kleinman JE. Neuropathology of bipolar disorder. Biol

Psychiatry 2000; 48:486-504.

[126] Naylor GJ, McNamee HB, Moody JP. Changes in erythrocyte sodium and

potassium on recovery from a depressive illness. Br J Psychiatry 1971; 118:219-223.

[127] Mendels J, Frazer A. Alterations in cell membrane activity in depression. Am J

Psychiatry 1974; 131:1240-1246.

[128] El-Mallakh RS, Huff MO. Mood stabilizers and ion regulation. Harv Rev

Psychiatry 2001; 9:23-32.

[129] Farber NB, Jiang XP, Heinkel C, Nemmers B. Antiepileptic drugs and agents

that inhibit voltage-gated sodium channels prevent NMDA antagonist neurotoxicity. Mol Psychiatry 2002; 7:726-733.

[130] Wheless JW, Conry J, Krauss G, Mann A, LoPresti A, Narurkar M. Safety and

tolerability of rufinamide in children with epilepsy: a pooled analysis of 7 clinical studies. J Child Neurol 2009; 24:1520-1525.

[131] Fava M. The possible antianxiety and mood-stabilizing effects of rufinamide.

Psychother Psychosom 2010; 79:194-195.

[132] Kaufman KR, Struck PJ. Activation of suicidal ideation with adjunctive

rufinamide in bipolar disorder. Epilepsy Behav 2010; 20:386-389.

[133] Bhat S, Dao DT, Terrillion CE, et al. CACNA1C (Ca(v)1.2) in the pathophysiology of psychiatric disease. Prog Neurobiol 2012; 99:1–14.

[134] Mogilnicka E, Czyrak A, Maj J. Dihydropyridine calcium channel antagonists

reduce immobility in the mouse behavioral despair test; antidepressants facilitate nifedipine action. Eur J Pharmacol 1987; 138:413-416.

[135] Galeotti N, Bartolini A, Ghelardini C. Blockade of intracellular calcium release

induces an antidepressant-like effect in the mouse forced swimming test. Neuropharmacology 2006; 50:309-316.

[136] Sinnegger-Brauns MJ, Hetzenauer A, Huber IG, et al. Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca2+ channels. J Clin Invest 2004; 113:1430-1439.

[137] Quintero JE, Dooley DJ, Pomerleau F, Huettl P, Gerhardt GA. Amperometric

measurement of glutamate release modulation by gabapentin and pregabalin in rat neocortical slices: role of voltage-sensitive Ca2+ alpha2delta-1 subunit. J Pharmacol Exp Ther 2011; 338:240-245.

[138] Dooley DJ, Mieske CA, Borosky SA. Inhibition of K(+)-evoked glutamate

release

from rat neocortical and hippocampal slices by gabapentin. Neurosci Lett 2000; 280:107-110.

[139] McElroy SL, Suppes T, Keck Jr PE, et al. Open-label adjunctive zonisamide in the treatment of bipolar disorders: a prospective trial. J Clin Psychiatry 2005; 66: 617-624.

[140] Ghaemi SN, Shirzadi AA, Klugman J, Berv DA, Pardo TB, FilkowskiMM. Is

adjunctive open-label zonisamide effective for bipolar disorder? J Affect Disord 2008; 105:311-314.

[141] Dauphinais D, Knable M, Rosenthal J, PolanskiM, Rosenthal N. Zonisamide for

bipolar disorder,mania or mixed states: a randomized, double blind, placebo-

controlled adjunctive trial. Psychopharmacol Bull 2011; 44:5–17. 65

[142] White JR, Walczak TS, Marino SE, Beniak TE, Leppik IE, Birnbaum AK.

Zonisamide discontinuation due to psychiatric and cognitive adverse events: a case– control study. Neurology 2010; 75:513-518.

[143] Pande AC, Davidson JR, Jefferson JW, et al. Treatment of social phobia with gabapentin: a placebo-controlled study. J Clin Psychopharmacol 1999; 19:341-348.

[144] Grunze HC. Anticonvulsants in bipolar disorder. J Ment Health 2010; 19:127-

141.

[145] Pande AC, Crockatt JG, Janney CA, Werth JL, Tsaroucha G. Gabapentin in

bipolar disorder: a placebo-controlled trial of adjunctive therapy. Gabapentin bipolar disorder study group. Bipolar Disord 2000; 2(3 Pt 2):249-255.

[146] Frye MA, Ketter TA, Kimbrell TA, et al. A placebo-controlled study of lamotrigine and gabapentin monotherapy in refractory mood disorders. J Clin Psychopharmacol 2000; 20:607-614.

[147] Vieta E, Manuel Goikolea J, Martinez-Aran A, et al. A double-blind, randomized,

placebo-controlled, prophylaxis study of adjunctive gabapentin for bipolar disorder. J Clin Psychiatry 2006; 67:473-477.

[148] Wolf SM, Shinnar S, Kang H, Gil KB, Moshe SL. Gabapentin toxicity in children

manifesting as behavioral changes. Epilepsia 1995; 36:1203-1205.

[149] Lee DO, Steingard RJ, Cesena M, Helmers SL, Riviello JJ, Mikati MA.

Behavioral side effects of gabapentin in children. Epilepsia 1996; 37:87-90.

[150] Montgomery S, Chatamra K, Pauer L, Whalen E, Baldinetti F. Efficacy and safety of pregabalin in elderly people with generalised anxiety disorder. Br J Psychiatry 2008; 193:389-394.

[151] Kasper S, Herman B, Nivoli G, et al. Efficacy of pregabalin and venlafaxine-XR in generalized anxiety disorder: results of a double-blind, placebo-controlled 8-week trial. Int Clin Psychopharmacol 2009; 24:87-96.

[152] Feltner DE, Liu-Dumaw M, Schweizer E, Bielski R. Efficacy of pregabalin in

generalized social anxiety disorder: results of a double-blind, placebo-controlled, fixed-dose study. Int Clin Psychopharmacol 2011; 26:213-220.

[153] Greist JH, Liu-Dumaw M, Schweizer E, Feltner D. Efficacy of pregabalin in

preventing relapse in patients with generalized social anxiety disorder: results of a double-blind, placebo-controlled 26-week study. Int Clin Psychopharmacol 2011; 26:243-251.

[154] Englisch S, Esser A, Enning F, Hohmann S, Schanz H, Zink M. Augmentation

with pregabalin in schizophrenia. J Clin Psychopharmacol 2010; 30:437-440.

[155] Showraki M. Pregabalin in the treatment of depression. J Psychopharmacol

Documenti correlati