• Non ci sono risultati.

are lower, but development costs are higher. Both of the improvements can be easily integrated in the current toolchain due to the modular setup and flexibility of the architecture design space modeling method.

Analysis results show that the bleed-less environmental control system reaches the lowest fuel burn from all the architectures if combined with a hydraulic flight con-trol system. Potential improvements in analysis and design fidelity can be achieved by integrating control of the electrification degree at actuator-level instead of at system-level. This would allow to analyze intermediate design points where the SFC decrease and the mass increase that the electric actuators cause results in an average fuel burn reduction. More variables to define the ECS architecture can also be included, like control over the spacial layout of the system.

A Pareto trade-off between commonality and fuel burn was found as expected, although it was seen that for lower commonality indexes commonality and fuel burn correlated positively. The inflexion point was found to be the one with minimum fuel burn, which corresponds to a family consisting of the three aircraft with the architecture that needs the least fuel and without sharing subsystems. This effect is due to the fact that there is an architecture that has a noticeably lower fuel burn than the others. If this architecture is chosen for the three family members, the fuel burn will be the lowest possible while the commonality index will be high since all the aircraft have the same components. If one member has a different architecture, the commonality will decrease and the fuel burn will be penalized, hence the resulting point will move to the left side of the Pareto front. If one member shares subsystems with another one, the commonality index will increase but the fuel burn will also be higher since the aircraft is being over-sized. This will result in a point on the right side if the Pareto front.

The further work for this thesis would consist on:

• Increase the number of architecting choices for the FCS

• Increase the number of subsystems analyzed, like for instance the landing gear

• Develop some cost models for operation cost and acquisition cost

• Change the optimization objectives to the respective costs

• Check if the new trade-offs and Pareto front suffer big changes from the pre-vious ones

Appendix: Input data

Parameter Aircraft 1 Aircraft 2 Aircraft 3

Desired Range (km) 6500 5084 3894

Cruise altitude (m) 10000 10000 10000

Cruise Mach 0,78 0,78 0,78

Fuel density (g/L) 785 785 785

Minimum Static Margin (%) 8 8 8

Wing load, MTOM (kg/m2) 750 635 588

Thrust/weight installed (%) 31,5 32,5 31,4

CL maximum TO 2 2 2

CL maximum L 2,5 2,5 2,5

sTOFL (m) 2100 2010 1880

Reserve fuel (%) 4 4 4

Max payload (kg) 27000 19800 17100

Wing AR 10,3 10,3 10,3

Leading edge sweep (°) 27,3 27,3 27,3

Passengers per row 6 6 6

Fuselage width (m) 3,9 3,9 3,9

Fuselage height (m) 4,14 4,14 4,14

Engine model V2500 A5 V2500 A5 V2500 A5

Engine Bypass Ratio 5 5 5

Turbine exit temperature (°C) 1700 1700 1700

Enngine OPR 36 36 36

Table 14: TLARs for the three family members

Parameter Horizontal Tail Plane Vertical Tail Plane

CTH/CVT 1,11 0,092

AR 4,82 1,675

Dihedral 6

-Taper Ratio 0,32 0,32

LE Sweep (°) 32,3 40,5

Average thinkness (%) 11 12

Table 15: Horizontal and vertical tailplanes TLARs for the three aircraft

The wing is divided in 4 segments (between 5 stations). The one in the symmetry plane is called center, the one in the fuselage union is the root, and then three more to define the trapezoidal shape, which are kink, middle and tip.

Wing Station Parameter Value

Thickness (%) 15

Center Reference AOA (°) 3

Position (% of wingspan) 0

Thickness (%) 15

Root Reference AOA (°) 3

Position (% of wingspan) matching with fuselage

Thickness (%) 12

Kink Reference AOA (°) 1

Position (% of wingspan) 0,34

Thickness (%) 11,5

Middle Reference AOA (°) 0,7

Position (% of wingspan) 0,65

Thickness (%) 11

Tip Reference AOA (°) 0,4

Position (% of wingspan) 1 Table 16: Wing stations TLARs

Wing segment Parameter Value Center-Root Dihedral (°) 0

Taper ratio 1 Root-Kink Dihedral (°) 10

Taper ratio 0,535 Kink-Middle Dihedral (°) 7

Taper ratio 0,5616 Middle-Tip Dihedral (°) 7,5

Taper ratio 0,119 Table 17: Wing segments TLARs

Segment Mach Altitude (m)

Pre-flight checks 0 0

Engine start-up 0 0

Taxi out 0 0

Taxi out - flaps down 0 0

Take off run 0,22 0

Take off manoeuvre 0,28 0

Take off - landing gear up 0,3 15

Take off - flaps down 0,3 15

Climb 0,55 7000

Cruise 0,78 10000

Descent 0,55 7000

Descent - flaps down 0,4 2000

Approach - landing gear down 0,3 1500

Approach 0,3 1500

Landing manoeuvre 0,2 15

Landing run 0,15 0

Taxi in - flaps up 0 0

Taxi in 0 0

Engine shutdown 0 0

Emergency 0,7 10000

Table 18: Mission profile

Appendix: Pareto front values

ECS 1 ECS 2 ECS 3 FCS 1 FCS 2 FCS 3 NW 1 NW 2 NW 3 S 1and2 S 2and3 SF 1 SF 2 SF 3 Commonality Fuel

0 0 0 0 0 1 3 4 4 0 0 0 1 1 0.639 6622

0 0 0 0 0 1 4 3 2 0 0 0 0 0 0.513 6621

0 0 0 1 0 1 4 4 3 0 0 0 0 0 0.660 6599

0 0 0 1 1 0 3 3 2 0 0 1 0 1 0.555 6588

0 0 0 1 1 0 4 3 3 0 0 1 0 0 0.555 6587

0 0 1 0 0 1 4 3 4 0 0 1 0 0 0.514 6611

0 0 1 0 1 1 2 3 4 0 0 0 1 1 0.459 6564

0 0 1 1 0 0 2 4 3 0 0 1 1 0 0.458 6623

0 0 1 1 0 1 2 2 4 0 0 0 1 1 0.459 6590

0 0 1 1 0 1 2 3 3 0 0 0 0 0 0.476 6589

0 0 1 1 1 0 2 3 3 0 0 1 1 1 0.510 6576

0 1 0 0 0 0 2 4 4 0 0 1 1 1 0.655 6627

0 1 0 0 0 1 3 2 2 0 0 1 1 0 0.482 6591

0 1 0 0 1 0 2 2 4 0 0 0 0 1 0.424 6589

0 1 0 0 1 0 3 3 3 0 0 0 1 0 0.511 6584

0 0 0 0 0 0 2 2 2 0 0 0 0 0 0.845 6700

0 0 0 1 1 1 2 2 2 0 0 0 0 0 0.845 6610

0 0 0 1 1 1 2 2 2 0 0 1 1 1 0.841 6611

0 0 0 0 0 0 3 3 3 0 0 0 0 0 0.845 6698

0 0 0 1 1 1 3 3 3 0 0 0 0 0 0.845 6608

0 0 0 0 0 0 3 3 3 0 0 1 1 1 0.841 6700

0 0 0 1 1 1 3 3 3 0 0 1 1 1 0.841 6609

0 0 0 0 0 0 4 4 4 0 0 0 0 0 0.841 6698

0 0 0 1 1 1 4 4 4 0 0 0 0 0 0.841 6608

0 0 0 0 0 0 4 4 4 0 0 1 1 1 0.839 6702

0 0 0 1 1 1 4 4 4 0 0 1 1 1 0.839 6610

1 1 1 0 0 0 2 2 2 0 0 0 0 0 0.857 6610

1 1 1 1 1 1 2 2 2 0 0 0 0 0 0.857 6528

1 1 1 0 0 0 2 2 2 0 0 1 1 1 0.852 6614

1 1 1 1 1 1 2 2 2 0 0 1 1 1 0.852 6526

1 1 1 0 0 0 3 3 3 0 0 0 0 0 0.857 6616

1 1 1 1 1 1 3 3 3 0 0 0 0 0 0.857 6526

1 1 1 0 0 0 3 3 3 0 0 1 1 1 0.852 6617

1 1 1 1 1 1 3 3 3 0 0 1 1 1 0.852 6524

1 1 1 0 0 0 4 4 4 0 0 0 0 0 0.852 6613

1 1 1 1 1 1 4 4 4 0 0 0 0 0 0.852 6524

1 1 1 0 0 0 4 4 4 0 0 1 1 1 0.849 6615

1 1 1 1 1 1 4 4 4 0 0 1 1 1 0.849 6523

0 0 0 1 1 1 3 3 3 1 1 0 0 0 1 6786

0 0 0 0 0 0 3 3 3 1 1 1 1 1 1 6886

0 0 0 1 1 1 3 3 3 1 1 1 1 1 1 6787

0 0 0 0 0 0 4 4 4 1 1 1 1 1 1 6888

0 0 0 1 1 1 4 4 4 1 1 1 1 1 1 6788

1 1 1 0 0 0 2 2 2 1 1 0 0 0 1 6766

1 1 1 1 1 1 2 2 2 1 1 0 0 0 1 6677

1 1 1 0 0 0 2 2 2 1 1 1 1 1 1 6770

1 1 1 0 0 0 3 3 3 1 1 1 1 1 1 6775

1 1 1 1 1 1 4 4 4 1 1 1 1 1 1 6672

0 0 0 0 0 0 3 4 3 0 0 1 1 0 0.738 6656

0 0 0 0 0 1 2 2 3 0 0 1 1 1 0.592 6623

0 0 0 1 0 1 2 4 3 0 0 0 0 0 0.513 6599

0 0 0 1 1 1 4 3 3 0 0 1 1 0 0.738 6553

0 0 1 0 0 1 2 3 2 0 0 1 1 1 0.510 6612

0 0 1 0 0 0 3 3 3 1 0 1 1 1 0.760 6746

0 0 1 0 0 1 3 3 3 1 0 0 0 1 0.551 6712

1 1 0 1 1 1 4 4 3 1 0 1 1 0 0.800 6597

1 1 1 0 0 1 3 3 3 1 0 0 0 1 0.693 6659

1 1 1 0 0 0 3 3 4 1 0 0 0 1 0.789 6692

1 1 1 1 1 1 3 3 3 1 0 1 1 1 0.892 6587

0 0 0 0 0 0 3 3 3 1 0 1 1 0 0.848 6758

0 0 1 1 1 1 3 3 3 1 0 0 0 1 0.692 6632

0 0 0 0 0 0 3 3 2 1 0 1 1 1 0.772 6759

0 0 1 0 0 0 3 3 4 1 0 1 1 1 0.721 6745

1 1 0 1 1 1 2 2 3 1 0 0 0 0 0.739 6603

0 0 1 1 1 1 3 3 4 1 0 0 0 0 0.696 6633

0 0 1 1 1 0 3 3 2 1 0 0 0 1 0.485 6664

1 1 0 1 1 0 2 2 3 1 0 1 1 0 0.600 6633

0 0 1 1 1 1 3 3 4 1 0 0 0 1 0.659 6632

0 0 1 0 0 0 3 3 3 1 0 0 0 1 0.692 6745

1 1 0 0 0 1 3 3 3 1 0 0 0 1 0.630 6670

0 0 1 1 1 0 3 3 4 1 0 0 0 1 0.518 6664

0 0 0 1 0 0 3 2 2 0 1 1 0 0 0.558 6649

0 1 1 0 0 0 3 3 3 0 1 0 0 0 0.836 6625

Table 19: Pareto front values, first table

ECS 1 ECS 2 ECS 3 FCS 1 FCS 2 FCS 3 NW 1 NW 2 NW 3 S 1and2 S 2and3 SF 1 SF 2 SF 3 Commonality Fuel

1 1 1 1 0 0 4 3 3 0 1 1 1 1 0.707 6593

0 0 0 1 0 0 4 2 2 0 1 1 0 0 0.519 6649

0 1 1 1 1 1 2 3 3 0 1 0 0 0 0.752 6540

1 0 0 1 1 1 2 3 3 0 1 0 1 1 0.669 6567

0 1 1 1 1 1 3 3 3 0 1 1 1 1 0.839 6538

1 1 1 0 1 1 2 2 2 0 1 1 1 1 0.757 6546

1 1 1 0 0 0 3 3 3 0 1 0 0 0 0.902 6612

0 1 1 0 1 1 3 3 3 0 1 1 1 1 0.698 6559

0 0 0 1 0 0 3 3 3 0 1 1 0 0 0.661 6648

0 0 0 0 1 1 3 2 2 0 1 0 1 1 0.608 6600

1 0 0 1 0 0 4 3 3 0 1 1 1 1 0.586 6638

0 0 0 1 1 1 4 3 3 0 1 0 1 1 0.789 6577

1 1 1 0 1 1 2 2 2 0 1 0 1 1 0.730 6546

0 0 0 1 0 0 2 3 3 0 1 0 1 1 0.608 6650

0 0 0 1 0 0 3 4 4 0 1 0 0 0 0.713 6648

1 0 0 1 1 1 4 3 3 0 1 0 1 1 0.700 6566

1 1 1 0 0 0 2 2 2 0 1 1 0 0 0.847 6609

0 0 0 1 0 0 3 3 3 0 1 0 1 1 0.713 6649

1 0 0 1 1 1 3 3 3 0 1 0 1 1 0.736 6566

1 0 0 1 0 0 4 3 3 0 1 0 1 1 0.558 6639

0 0 0 0 0 0 2 4 4 0 0 1 0 0 0.659 6655

0 0 0 0 0 0 3 3 3 0 0 1 1 1 0.841 6657

0 0 0 0 0 1 2 3 3 0 0 1 0 1 0.555 6621

0 0 0 0 0 1 3 3 2 0 0 1 0 0 0.513 6621

0 0 0 0 0 1 3 4 2 0 0 1 0 1 0.512 6621

0 0 0 0 0 1 3 4 2 0 0 1 1 0 0.515 6623

0 0 0 0 1 1 3 2 4 0 0 1 0 1 0.512 6576

0 0 0 1 0 1 3 3 3 0 0 0 0 0 0.703 6598

0 0 0 1 1 0 4 3 3 0 0 1 1 0 0.596 6588

0 0 0 1 1 1 3 4 3 0 0 0 0 0 0.757 6553

0 0 1 0 0 0 3 3 4 0 0 0 1 1 0.657 6643

0 0 1 0 0 1 2 2 3 0 0 1 1 0 0.484 6614

0 0 1 0 1 0 2 3 3 0 0 0 0 0 0.476 6596

0 0 1 0 1 0 4 3 4 0 0 1 1 1 0.569 6597

0 0 1 0 1 1 3 2 3 0 0 0 1 1 0.485 6565

0 0 1 1 0 1 2 3 2 0 0 0 0 0 0.476 6591

0 0 1 1 0 1 4 2 3 0 0 0 0 0 0.447 6590

0 0 1 1 1 1 4 4 2 0 0 1 1 0 0.631 6546

0 1 0 0 0 0 3 3 3 0 0 1 1 1 0.721 6628

0 1 0 0 1 1 3 3 4 0 0 0 0 0 0.513 6551

0 1 0 1 0 0 2 2 4 0 0 1 1 0 0.456 6604

0 1 0 1 0 0 4 2 3 0 0 1 0 1 0.456 6604

0 1 0 1 0 0 4 4 3 0 0 1 1 1 0.571 6604

0 1 0 1 0 1 2 3 2 0 0 0 1 0 0.445 6571

0 1 0 1 0 1 3 3 3 0 0 0 0 0 0.558 6570

0 1 1 0 0 0 2 2 2 0 0 0 1 1 0.769 6612

0 1 1 0 0 1 2 4 2 0 0 0 1 1 0.527 6581

0 0 0 0 0 0 3 3 3 0 0 1 1 1 0.841 6657

0 0 0 0 1 0 3 3 3 0 0 1 1 1 0.699 6610

0 0 0 0 1 1 3 3 3 0 0 0 1 1 0.664 6575

0 0 0 1 0 1 4 4 4 0 0 0 0 0 0.699 6599

0 0 0 1 1 0 3 4 4 0 0 0 0 0 0.664 6587

0 0 0 1 1 1 4 3 4 0 0 0 1 0 0.735 6553

0 0 1 0 0 0 2 4 3 0 0 0 0 0 0.589 6642

0 0 1 0 0 1 3 2 2 0 0 0 1 0 0.447 6614

0 0 1 0 0 1 4 3 3 0 0 1 0 0 0.479 6611

0 0 1 0 1 1 3 3 4 0 0 1 0 0 0.479 6565

0 0 1 1 0 0 2 4 3 0 0 1 0 1 0.455 6621

0 0 1 1 0 1 2 3 3 0 0 1 1 0 0.484 6591

0 1 0 0 0 1 3 3 2 0 0 1 0 1 0.482 6593

0 1 0 1 0 0 3 3 2 0 0 1 1 0 0.482 6605

0 1 0 1 0 0 4 2 3 0 0 1 1 1 0.481 6604

0 1 1 0 1 1 4 3 3 0 0 0 1 0 0.555 6540

0 1 1 0 1 1 4 4 4 0 0 0 1 0 0.610 6539

0 1 1 1 0 0 2 3 3 0 0 0 0 1 0.527 6593

0 1 1 1 0 0 3 2 3 0 0 0 1 0 0.526 6590

0 1 1 1 0 1 2 4 2 0 0 1 1 0 0.526 6562

0 1 1 1 1 1 2 3 3 0 0 1 1 0 0.699 6519

1 0 0 0 1 0 4 4 3 0 0 0 0 0 0.543 6595

1 0 0 0 1 1 3 3 3 0 0 0 1 0 0.506 6561

1 0 0 1 0 1 3 3 4 0 0 0 0 1 0.473 6588

1 0 0 1 1 0 2 3 3 0 0 0 0 0 0.470 6577

1 0 0 1 1 0 2 4 3 0 0 0 0 1 0.419 6578

1 0 0 1 1 0 3 3 3 0 0 0 1 1 0.547 6577

1 0 0 1 1 0 3 3 3 0 0 1 1 0 0.549 6576

Table 20: Pareto front values, second table

[1] Alberto Jose and Michel Tollenaere. “Modular and platform methods for prod-uct family design: literature analysis”. In: Journal of Intelligent Manufacturing 16.3 (2005), pp. 371–390. issn: 1572-8145.

[2] Timothy W. Simpson, Jonathan R. Maier, and Farrokh Mistree. “Product platform design: method and application”. In: Research in Engineering Design 13.1 (2001), pp. 2–22. issn: 1435-6066.

[3] Timothy W Simpson. “Product platform design and customization: Status and promise”. In: Ai Edam 18.1 (2004), pp. 3–20.

[4] Karl Ulrich. “The role of product architecture in the manufacturing firm”. In:

Research policy 24.3 (1995), pp. 419–440.

[5] Rhea Liem, Gaetan Kenway, and Joaquim Martins. “Multi-point, multi- mis-sion, high-fidelity aerostructural optimization of a long-range aircraft config-uration”. In: 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2012, p. 5706.

[6] Atif Riaz, Marin D Guenov, and Arturo Molina-Cristobal. “Set-based ap-proach to passenger aircraft family design”. In: Journal of Aircraft (2017), pp. 310–326.

[7] Gregory T Mark. “Incorporating flexibility into system design: a novel frame-work and illustrated developments”. PhD thesis. Massachusetts Institute of Technology, 2005.

[8] Achille Messac, Michael P Martinez, and Timothy W Simpson. “Introduction of a product family penalty function using physical programming”. In: J. Mech.

Des. 124.2 (2002), pp. 164–172.

[9] Sridhar Kota, Kannan Sethuraman, and Raymond Miller. “A metric for evalu-ating design commonality in product families”. In: J. Mech. Des. 122.4 (2000), pp. 403–410.

[10] Edward Crawley, Bruce Cameron, and Daniel Selva. System architecture: strat-egy and product development for complex systems. Prentice Hall Press, 2015.

[11] Jaroslaw Sobieszczanski-Sobieski, Alan Morris, and Michel Van Tooren. Mul-tidisciplinary design optimization supported by knowledge based engineering.

John Wiley & Sons, 2015.

[12] Tim Lammering and Eike Stumpf. Integration of aircraft systems into concep-tual design synthesis. Tech. rep. Lehrstuhl und Institut f¨ur Luft-und Raum-fahrtsysteme (ILR), 2014.

[13] Imco van Gent, Gianfranco La Rocca, and Leo L Veldhuis. “Composing MDAO symphonies: graph-based generation and manipulation of large multidisci-plinary systems”. In: 18th AIAA/ISSMO Multidiscimultidisci-plinary Analysis and Op-timization Conference. 2017, p. 3663.

[14] Pier Davide Ciampa et al. “Streamlining Cross-Organizational Aircraft Devel-opment: Results from the AGILE Project”. In: AIAA Aviation 2019 Forum.

2019, p. 3454.

[16] Marko Alder et al. “Recent Advances in Establishing a Common Language for Aircraft Design with CPACS”. In: Aerospace Europe Conference. 2020.

[17] Andrew B Lambe and Joaquim RRA Martins. “Extensions to the design struc-ture matrix for the description of multidisciplinary design, analysis, and op-timization processes”. In: Structural and Multidisciplinary Opop-timization 46.2 (2012), pp. 273–284.

[18] Joaquim RRA Martins and Andrew B Lambe. “Multidisciplinary design opti-mization: a survey of architectures”. In: AIAA journal 51.9 (2013), pp. 2049–

2075.

[19] Olivier L de Weck, Eun Suk Suh, and David Chang. “Product family and platform portfolio optimization”. In: ASME 2003 international design engi-neering technical conferences and computers and information in engiengi-neering conference. American Society of Mechanical Engineers Digital Collection. 2003, pp. 175–185.

[20] Timothy W Simpson et al. “From user requirements to commonality speci-fications: an integrated approach to product family design”. In: Research in Engineering Design 23.2 (2012), pp. 141–153.

[21] Gaetan KW Kenway and Joaquim RRA Martins. “Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration”. In: Journal of Aircraft 51.1 (2014), pp. 144–160.

[22] Karen Willcox and Sean Wakayama. “Simultaneous optimization of a multiple-aircraft family”. In: Journal of Aircraft 40.4 (2003), pp. 616–622.

[23] Federal Aviation Regulations, ”FAR 25”.

[24] European Aviation Safety Agency, ”Certification Specifications for Large Aero-planes CS-25”.

[25] Daniel Bender. “Exergy-based analysis of aircraft environmental control sys-tems and its integration into model-based design”. In: (2019).

[26] Sabin Poudel. Modelling of a Generic Aircraft Environmental Control System in Modelica. 2019.

[27] Leo M¨akel¨a. “Model-based Fault Diagnosis of an Aircraft Environmental Con-trol System”. In: (2016).

[28] Alexander Pollok and Francesco Casella. “Comparison of control strategies for aircraft bleed-air systems”. In: IFAC-PapersOnLine 50.1 (2017), pp. 14194–

14199.

[29] Xiong Peng. “Aircraft environmental control systems modeling for configura-tion selecconfigura-tion”. In: (2013).

[30] Paolo, A. Numerical Models for Aircraft Systems – lecture notes, Chapter 6 – Environmental Control System, Politecnico Di Milano. 2019.

[31] Michael Sielemann et al. “A flexible toolkit for the design of environmental control system architectures”. In: Proceedings of the First CEAS European Air and Space Conference. 2007.

[32] Mathieu, K. Simulation of Components from the Environmental Control Sys-tem. 2006.

[35] Victor Crespo Cavalcanti and Cl´audia Regina de Andrade. A trade-off study of a bleedless and conventional air conditioning systems. Tech. rep. SAE Tech-nical Paper, 2008.

[36] Boeing database: boeing.com/commercial/aeromagazine/articles/2012 q1/4/.

Tech. rep.

[37] Andrea Lazzaretto and George Tsatsaronis. “SPECO: a systematic and gen-eral methodology for calculating efficiencies and costs in thermal systems”. In:

Energy 31.8-9 (2006), pp. 1257–1289.

[38] Christian M¨uller, Dieter Scholz, and Tim Giese. “Dynamic simulation of inno-vative aircraft air conditioning”. In: DGLR: Deutscher Luft-und Raumfahrt-skongress. Bonn: Deutsche Gesellschaft f¨ur Luft-und Raumfahrt (2007).

[39] Paul Feliot et al. “Design of a commercial aircraft environment control system using Bayesian optimization techniques”. In: arXiv preprint arXiv:1610.02271 (2016).

[40] Dieter Scholz et al. “FLECS: Functional Library of the Environmental Control System-A Simulation Tool for the Support of Industrial Processes”. In: Pro-ceedings of the 1st International Workshop on Aircraft System Technologies.

2007, pp. 143–157.

[41] Isidoro Martinez. “Aircraft environmental control”. In: academic website web-server. dmt. upm. es/isidoro (2014).

[42] Isabel P´erez-Grande and Teresa J Leo. “Optimization of a commercial aircraft environmental control system”. In: Applied thermal engineering 22.17 (2002), pp. 1885–1904.

[43] APP Santos, CR Andrade, and Edson Luiz Zaparoli. “A thermodynamic study of air cycle machine for aeronautical applications”. In: International Journal of Thermodynamics 17.3 (2014), pp. 117–125.

[44] Paolo Maggiore, Matteo D. L. Dalla Vedova, Lorenzo Pace, Marco Tosetti, Andrea Piovano. ”Development of an environmental control system pack sim-ulation model for a more electric aircraft”. 2014.

[45] Maria Aranda Rosales. “A preliminary study for selecting and optimizing the environmental control system”. In: (2018).

[46] Daniel Perez Linares. “Modeling and simulation of an aircraft environmental control system”. PhD thesis. ´Ecole Polytechnique de Montr´eal, 2016.

[47] Nicole Viola, Roberta Fusaro, Marco Fioriti, Davide Ferreto, Valeria Vercella, Laura Babetto, Gabriele Ferrari. Progetto dei sistemi aerospaciali integrati:

Environmental Control System. Support slides for lectures 2018-2019.

[48] A319/A320/A321 Environmental Control System. Familiarization Training.

Liebherr Aerospace, Lindenberg. 2004.

[49] Ian Moir and Allan Seabridge. Aircraft systems: mechanical, electrical, and avionics subsystems integration. Vol. 52. John Wiley & Sons, 2011.

[50] Haider Al-Lami et al. “The Evolution of Flight Control Systems”. In: (2015).

[51] Pascal Traverse, Isabelle Lacaze, and Jean Souyris. “A Process Toward Total Dependability Airbus Fly-by-Wire Paradigm”. In: EDCC. Springer. 2005, p. 1.

[53] U Persson and C Schallert. “The 728 JET flight control system”. In: Deutscher Luft-und Raumfahrtkongress 2001 (2001).

[54] Martin Recksiek. “Advanced high lift system architecture with distributed electrical flap actuation”. In: Workshop on Aviation System Technology (AST).

2009.

[55] https://forums.xplane.org/index.php?/forums/topic/109151magknight787 -9 -development-thread /&page=42.

[56] Navatha Alle et al. “Review on electro hydrostatic actuator for flight control”.

In: International Journal of Fluid Power 17.2 (2016), pp. 125–145.

[57] Kang Rongjie et al. “Design and simulation of electro-hydrostatic actuator with a built-in power regulator”. In: Chinese Journal of Aeronautics 22.6 (2009), pp. 700–706.

[58] Guan Qiao et al. “A review of electromechanical actuators for More/All Elec-tric aircraft systems”. In: Proceedings of the Institution of Mechanical En-gineers, Part C: Journal of Mechanical Engineering Science 232.22 (2018), pp. 4128–4151.

[59] B Aigner et al. Assessment of electromechanical flight control actuators with regard to direct operating costs. Deutsche Gesellschaft f¨ur Luft und Raumfahrt Lilienthal Oberth eV, 2016.

[60] Airbus S.A.S, ”Airbus Training - A320 Flight Crew Operating Manual: Flight Controls”.

[61] XL Tron. “A380 flight controls overview”. In: Presentation at Hamburg Uni-versity of Applied Sciences (2007).

[62] Airbus S.A.S, ”Airbus Training - A350-900 Flight Deck and Systems Briefing for Pilots”.

[63] B¨ohnke Daniel et al. “An Integrated Method for Determination of the Oswald Factor in a Multi- Fidelity Design Environment”. In: (2011).

[64] Daniel B¨ohnke, Bj¨orn Nagel, and Volker Gollnick. “An approach to multi-fidelity in conceptual aircraft design in distributed design environments”. In:

2011 Aerospace Conference. IEEE. 2011, pp. 1–10.

[65] S. W¨ohler et al. “Preliminary Aircraft Design within a Multi-disciplinary and Multi-fidelity Design Environment”. In: Aerospace Europe Conference, AEC2020 - 032. 2020.

[66] S. Chiesa et al. “ASTRID - Aircraft On Board Systems Sizing and Trade-Off Analysis in Inital Design”. In: 2012.

[67] Erwin Moerland et al. “Collaborative aircraft design using an integrated and distributed multidisciplinary product development process”. In: 30th Congress of the international council for aeronautical sciences. 2016.

[68] EH Baalbergen, J Kos, and WF Lammen. “Collaborative multi-partner mod-elling & simulation processes to improve aeronautical product design”. In:

(2013).

[69] Bureau of Transportation Statistics, United States Department of Transporta-tion, Washington, D.C., http://www.transtats.bts.gov/.

Documenti correlati