• Non ci sono risultati.

M ATERIALI E METOD

4.3 Conseguenze funzionali del trasporto di BoNT/A

Dagli studi finora condotti possiamo osservare che esiste una propagazione degli effetti della tossina, sia in senso anterogrado che retrogrado. Ci domandiamo adesso se la BoNT/A possa alterare i normali cicli di esocitosi ed endocitosi a livello sinaptico. Per far questo useremo il saggio che ho descritto nei “Risultati” (vedi il paragrafo 3.2.4): usando l’anticorpo rivolto contro il dominio luminale della sinaptotagmina è stato possibile dimostrare una captazione specifica ed attività dipendente di quest’anticorpo, evento che è ideale per lo studio di eventuali conseguenze funzionali dell’iniezione di BoNT/A. Con tale saggio sarà possibile BoNT/A

Midollo

Nocicettore dei gangli delle radici

verificare se le sinapsi contenenti SNAP-25 (e distanti dal sito di iniezione) saranno deficitarie nei cicli di eso- ed endocitosi.

Un altro approccio usato nel nostro laboratorio è stato quello di valutare l’ultrastruttura nel sito di iniezione e in sinapsi lontane. Un’osservazione è stata quella che le sinapsi intossicate hanno una densità di vescicole e una dimensione maggiore rispetto a quelle non intossicate. A questo punto ci proponiamo quindi di valutare l’ultrastruttura delle sinapsi in siti distanti dall’iniezione di BoNT/A, per comprendere se ci siano eventuali alterazioni nei cicli di eso- ed endocitosi.

B

IBLIOGRAFIA

Antonucci, F., Bozzi., J., Caleo, M., 2008. Anticonvulsivant effects of BoNT/E in chronic epilepsy.

Angaut-Petit, D., Molgo, J., Comella, J. X., Faille, L. and Tabti, N., 1990. Terminal sprouting in mouse neuromuscular junctions poisoned with botulinum type A toxin: morphological and electrophysiological features. Neuroscience. 37, 799-808.

Aoki, KR., 2008. Future aspects of botulinum neurotoxins. J Neural Transm. 115(4): 567-73.

Ashton, A. C. and Dolly, J. O., 1988. Characterization of the inhibitory action of botulinum neurotoxin type A on the release of several transmitters from rat cerebrocortical synaptosomes. J Neurochem. 50, 1808-1816.

Ashton, A. C. and Dolly, J. O., 1991. Microtubule-dissociating drugs and A23187 reveal differences in the inhibition of synaptosomal transmitter release by botulinum neurotoxins types A and B. J Neurochem. 56, 827-835.

Bajjalieh, S. M., Frantz, G. D., Weimann, J. M., McConnell, S. K. and Scheller, R. H., 1994. Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J Neurosci. 14, 5223-5235.

Bajjalieh, S. M., Peterson, K., Linial, M. and Scheller, R. H., 1993. Brain contains two forms of synaptic vesicle protein 2. Proc Natl Acad Sci U S A. 90, 2150-2154.

Bajjalieh, S. M., Peterson, K., Shinghal, R. and Scheller, R. H., 1992. SV2, a brain synaptic vesicle protein homologous to bacterial transporters. Science. 257, 1271-1273.

Bennett, M. K., Calakos, N. and Scheller, R. H., 1992. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science. 257, 255-259.

Bennett, M. K., Garcia-Arraras, J. E., Elferink, L. A., Peterson, K., Fleming, A. M., Hazuka, C. D. and Scheller, R. H., 1993. The syntaxin family of vesicular transport receptors. Cell. 74, 863-873.

Berardelli, A., Rothwell, J. C., Day, B. L. and Marsden, C. D., 1985. Pathophysiology of blepharospasm and oromandibular dystonia. Brain. 108 ( Pt 3), 593-608.

Bigalke, H., Ahnert-Hilger, G. and Habermann, E., 1981a. Tetanus toxin and botulinum A toxin inhibit acetylcholine release from but not calcium uptake into brain tissue. Naunyn Schmiedebergs Arch Pharmacol. 316, 143-148.

Bigalke, H., Dreyer, F. and Bergey, G., 1985. Botulinum A neurotoxin inhibits non-cholinergic synaptic transmission in mouse spinal cord neurons in culture. Brain Res. 360, 318-324.

Bigalke, H., Heller, I., Bizzini, B. and Habermann, E., 1981b. Tetanus toxin and botulinum A toxin inhibit release and uptake of various transmitters, as studied with particulate preparations from rat brain and spinal cord. Naunyn Schmiedebergs Arch Pharmacol. 316, 244-251.

Borodic, G. E., Ferrante, R., Pearce, L. B. and Smith, K., 1994. Histologic assessment of dose-related diffusion and muscle fiber response after therapeutic botulinum A toxin injections. Mov Disord. 9, 31-39.

Bozzi, Y., Costantin, L., Antonucci, F. and Caleo, M., 2006. Action of botulinum neurotoxins in the central nervous system: antiepileptic effects. Neurotox Res. 9, 197-203.

Burgen, A. S., Dickens, F. and Zatman, L. J., 1949. The action of botulinum toxin on the neuro-muscular junction. J Physiol. 109, 10-24.

Calakos, N. and Scheller, R. H., 1994. Vesicle-associated membrane protein and synaptophysin are associated on the synaptic vesicle. J Biol Chem. 269, 24534-24537.

Caleo, M. and Schiavo., G, 2009. Central effects of tetanus and boulinum neurotoxins.

Caleo, M., Antonucci, F., Restani L., Mazzocchio R., 2008. Retrograde axonal transport: a new mechanism for the central actions of BoNT/A?

Capogna, M., McKinney, R. A., O'Connor, V., Gahwiler, B. H. and Thompson, S. M., 1997. Ca2+ or Sr2+ partially rescues synaptic transmission in hippocampal cultures treated with botulinum toxin A and C, but not tetanus toxin. J Neurosci. 17, 7190-7202.

Casale, R., Tugnoli, V., 2008. Botulinum toxin for pain. Drugs R D., 9(1): 11-27.

Charvin, N., L'Eveque, C., Walker, D., Berton, F., Raymond, C., Kataoka, M., Shoji-Kasai, Y., Takahashi, M., De Waard, M. and Seagar, M. J., 1997. Direct interaction of the calcium sensor protein synaptotagmin I with a cytoplasmic domain of the alpha1A subunit of the P/Q-type calcium channel. Embo J. 16, 4591-4596.

Costantin, L., Bozzi, Y., Richichi, C., Viegi, A., Antonucci, F., Funicello, M., Gobbi, M., Mennini, T., Rossetto, O., Montecucco, C., Maffei, L., Vezzani, A. and Caleo, M., 2005. Antiepileptic effects of botulinum neurotoxin E. J Neurosci. 25, 1943-1951.

Critchley, D. R., Nelson, P. G., Habig, W. H. and Fishman, P. H., 1985. Fate of tetanus toxin bound to the surface of primary neurons in culture: evidence for rapid internalization. J Cell Biol. 100, 1499-1507.

Dong, M., Yeh, F., Tepp, W. H., Dean, C., Johnson, E. A., Janz, R. and Chapman, E. R., 2006. SV2 is the protein receptor for botulinum neurotoxin A. Science. 312, 592-596.

Dong, M., Liu, H., Tepp, W.H., Johnson, E.A., Janz, R., Chapman, E.R., 2008. Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Molecular Biology of the Cell. 19, 5226-5237.

Dressler, D., Saberi, F. A. and Barbosa, E. R., 2005. Botulinum toxin: mechanisms of action. Arq Neuropsiquiatr. 63, 180-185.

Eleopra, R., Tugnoli, V., Rossetto, O., De Grandis, D. and Montecucco, C., 1998. Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Lett. 256, 135-138.

Eleopra, R., Tugnoli, V., Rossetto, O., Montecucco, C. and De Grandis, D., 1997. Botulinum neurotoxin serotype C: a novel effective botulinum toxin therapy in human. Neurosci Lett. 224, 91-94.

Fabian, R. H., Ritchie, T. C. and Coulter, J. D., 1985. Transneuronal transport of protein in the visual system pathways. Prog Clin Biol Res. 176, 61-72.

Fassio, A., Sala, R., Bonanno, G., Marchi, M. and Raiteri, M., 1999. Evidence for calcium-dependent vesicular transmitter release insensitive to tetanus toxin and botulinum toxin type F. Neuroscience. 90, 893-902.

Fernandez-Salas, E., Steward, L. E., Ho, H., Garay, P. E., Sun, S. W., Gilmore, M. A., Ordas, J. V., Wang, J., Francis, J. and Aoki, K. R., 2004. Plasma membrane localization signals in the light chain of botulinum neurotoxin. Proc Natl Acad Sci U S A. 101, 3208-3213.

Foran, P., Lawrence, G. W., Shone, C. C., Foster, K. A. and Dolly, J. O., 1996. Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin

cells: correlation with its blockade of catecholamine release. Biochemistry. 35, 2630-2636.

Foran, P., Shone, C. C. and Dolly, J. O., 1994. Differences in the protease activities of tetanus and botulinum B toxins revealed by the cleavage of vesicle-associated membrane protein and various sized fragments. Biochemistry. 33, 15365- 15374.

Foran, P. G., Mohammed, N., Lisk, G. O., Nagwaney, S., Lawrence, G. W., Johnson, E., Smith, L., Aoki, K. R. and Dolly, J. O., 2003. Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A. Basis for distinct durations of inhibition of exocytosis in central neurons. J Biol Chem. 278, 1363-1371.

Gilio, F., Curra, A., Lorenzano, C., Modugno, N., Manfredi, M. and Berardelli, A., 2000. Effects of botulinum toxin type A on intracortical inhibition in patients with dystonia. Ann Neurol. 48, 20-26.

Girlanda, P., Quartarone, A., Sinicropi, S., Nicolosi, C. and Messina, C., 1996. Unilateral injection of botulinum toxin in blepharospasm: single fiber electromyography and blink reflex study. Mov Disord. 11, 27-31.

Girlanda, P., Quartarone, A., Sinicropi, S., Nicolosi, C., Roberto, M. L., Picciolo, G., Macaione, V., Battaglia, F., Ruggeri, M. and Messina, C., 1997. Botulinum toxin in upper limb spasticity: study of reciprocal inhibition between forearm muscles. Neuroreport. 8, 3039-3044.

Grandas, F., Traba, A., Alonso, F. and Esteban, A., 1998. Blink reflex recovery cycle in patients with blepharospasm unilaterally treated with botulinum toxin. Clin Neuropharmacol. 21, 307-311.

Grosse, G., Grosse, J., Tapp, R., Kuchinke, J., Gorsleben, M., Fetter, I., Hohne-Zell, B., Gratzl, M. and Bergmann, M., 1999.

SNAP-25 requirement for dendritic growth of hippocampal neurons. J Neurosci Res. 56, 539-546.

Hayashi, T., McMahon, H., Yamasaki, S., Binz, T., Hata, Y., Sudhof, T. C. and Niemann, H., 1994. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. Embo J. 13, 5051-5061.

Heckmann, M., Ceballos-Baumann, A. O. and Plewig, G., 2001. Botulinum toxin A for axillary hyperhidrosis (excessive sweating). N Engl J Med. 344, 488-493.

Hicks, A., Davis, S., Rodger, J., Helme-Guizon, A., Laroche, S. and Mallet, J., 1997. Synapsin I and syntaxin 1B: key elements in the control of neurotransmitter release are regulated by neuronal activation and long-term potentiation in vivo. Neuroscience. 79, 329-340.

Howe, C. L., Valletta, J. S., Rusnak, A. S. and Mobley, W. C., 2001. NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras- MAPK pathway. Neuron. 32, 801-814.

Iezzi, M., Theander, S., Janz, R., Loze, C. and Wollheim, C. B., 2005. SV2A and SV2C are not vesicular Ca2+ transporters but control glucose-evoked granule recruitment. J Cell Sci. 118, 5647-5660.

Jankovic, J., 1994. Botulinum toxin in the treatment of dystonic tics. Mov Disord. 9, 347-349.

Janz, R. and Sudhof, T. C., 1999. SV2C is a synaptic vesicle protein with an unusually restricted localization: anatomy of a synaptic vesicle protein family. Neuroscience. 94, 1279-1290. Keller, J. E., Neale, E. A., Oyler, G. and Adler, M., 1999. Persistence of botulinum neurotoxin action in cultured spinal cord cells. FEBS Lett. 456, 137-142.

Kitamura, M., Iwamori, M. and Nagai, Y., 1980. Interaction between Clostridium botulinum neurotoxin and gangliosides. Biochim Biophys Acta. 628, 328-335.

Kitamura Y., Matuska, Spiegelman, Ishihara, Yamamoto, Sonoyama, Kuboki and Oguma, 2009. Botulinum toxin type A (150 kDa) decreases exaggerated neurotransmitter release from trigeminal ganglion neurons and relieves neuropahty behaviors induced by infraorbital nerve constriction.

Neurosciences 159, 1422-1429.

Lacy, D. B., Tepp, W., Cohen, A. C., DasGupta, B. R. and Stevens, R. C., 1998. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol. 5, 898- 902.

Lalli, G., Herreros, J., Osborne, S. L., Montecucco, C., Rossetto, O. and Schiavo, G., 1999. Functional characterisation of tetanus and botulinum neurotoxins binding domains. J Cell Sci. 112 ( Pt 16), 2715-2724.

Ledeen, R. W., 1978. Ganglioside structures and distribution: are they localized at the nerve ending? J Supramol Struct. 8, 1- 17.

Luvisetto, S., Marinelli, S., Rossetto, O., Montecucco, C. and Pavone, F., 2004. Central injection of botulinum neurotoxins: behavioural effects in mice. Behav Pharmacol. 15, 233-240.

Luvisetto, S., Rossetto, O., Montecucco, C. and Pavone, F., 2003. Toxicity of botulinum neurotoxins in central nervous system of mice. Toxicon. 41, 475-481.

Matteoli, M., Verderio, C., Rossetto, O., Iezzi, N., Coco, S., Schiavo, G. and Montecucco, C., 1996. Synaptic vesicle endocytosis mediates the entry of tetanus neurotoxin into hippocampal neurons. Proc Natl Acad Sci U S A. 93, 13310- 13315.

McMahon, H. T., Foran, P., Dolly, J. O., Verhage, M., Wiegant, V. M. and Nicholls, D. G., 1992. Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action. J Biol Chem. 267, 21338-21343.

Minton, N. P., 1995. Molecular genetics of clostridial neurotoxins. Curr Top Microbiol Immunol. 195, 161-194.

Montal, M., 2008. Translocation of botulinum neurotoxin light chain protease by the heavy chain protein-conducting channel. Toxicon, 2008.11.018.

Montecucco, C. and Molgo, J., 2005. Botulinal neurotoxins: revival of an old killer. Curr Opin Pharmacol. 5, 274-279.

Montecucco, C., Rossetto, O. and Schiavo, G., 2004. Presynaptic receptor arrays for clostridial neurotoxins. Trends Microbiol. 12, 442-446.

Montecucco, C., Schiavo, G., Brunner, J., Duflot, E., Boquet, P. and Roa, M., 1986. Tetanus toxin is labeled with photoactivatable phospholipids at low pH. Biochemistry. 25, 919-924.

Montecucco, C., Schiavo, G., Gao, Z., Bauerlein, E., Boquet, P. and DasGupta, B. R., 1988. Interaction of botulinum and tetanus toxins with the lipid bilayer surface. Biochem J. 251, 379-383.

Neale, E. A., Bowers, L. M., Jia, M., Bateman, K. E. and Williamson, L. C., 1999. Botulinum neurotoxin A blocks synaptic vesicle exocytosis but not endocytosis at the nerve terminal. J Cell Biol. 147, 1249-1260.

Neuhuber, W. L. and Zenker, W., 1989. Central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal, and upper thoracic spinal nuclei. J Comp Neurol. 280, 231-253.

Osen-Sand, A., Catsicas, M., Staple, J. K., Jones, K. A., Ayala, G., Knowles, J., Grenningloh, G. and Catsicas, S., 1993. Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature. 364, 445-448.

Osen-Sand, A., Staple, J. K., Naldi, E., Schiavo, G., Rossetto, O., Petitpierre, S., Malgaroli, A., Montecucco, C. and Catsicas, S., 1996. Common and distinct fusion proteins in axonal growth and transmitter release. J Comp Neurol. 367, 222-234.

Pastor, A. M., Moreno-Lopez, B., De La Cruz, R. R. and Delgado-Garcia, J. M., 1997. Effects of botulinum neurotoxin type A on abducens motoneurons in the cat: ultrastructural and synaptic alterations. Neuroscience. 81, 457-478.

Porta, M., 2000. A comparative trial of botulinum toxin type A and methylprednisolone for the treatment of myofascial pain syndrome and pain from chronic muscle spasm. Pain. 85, 101- 105.

Pozzi, D., Condliffe, S., Bozzi, Y., Chikhladze, M., Grumelli, C., Proux-Gillardeaux, V., Takahashi, M., Franceschetti, S., Verderio, C., Matteoli, M., 2007. Activity-dependent phosphorylation of Ser187 is required for SNAP-25-negative modulation of neuronal voltage-gated calcium channels. PNAS, 323-328.

Rizo, J. and Sudhof, T. C., 1998. Mechanics of membrane fusion. Nat Struct Biol. 5, 839-842.

Roberts, L. A., Morris, B. J. and O'Shaughnessy, C. T., 1998. Involvement of two isoforms of SNAP-25 in the expression of long-term potentiation in the rat hippocampus. Neuroreport. 9, 33-36.

Rossetto, O., Schiavo, G., Montecucco, C., Poulain, B., Deloye, F., Lozzi, L. and Shone, C. C., 1994. SNARE motif and neurotoxins. Nature. 372, 415-416.

Sadoul, K., Berger, A., Niemann, H., Regazzi, R., Catsicas, S. and Halban, P. A., 1997. SNAP-25 can self-associate to form a disulfide-linked complex. Biol Chem. 378, 1171-1176.

Schiavo, G., Benfenati, F., Poulain, B., Rossetto, O., Polverino de Laureto, P., DasGupta, B. R. and Montecucco, C., 1992. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 359, 832-835.

Schiavo, G., Malizio, C., Trimble, W. S., Polverino de Laureto, P., Milan, G., Sugiyama, H., Johnson, E. A. and Montecucco, C., 1994. Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond. J Biol Chem. 269, 20213-20216.

Schiavo, G., Matteoli, M. and Montecucco, C., 2000. Neurotoxins affecting neuroexocytosis. Physiol Rev. 80, 717- 766.

Schiavo, G., Papini, E., Genna, G. and Montecucco, C., 1990. An intact interchain disulfide bond is required for the neurotoxicity of tetanus toxin. Infect Immun. 58, 4136-4141.

Schiavo, G., Shone, C. C., Rossetto, O., Alexander, F. C. and Montecucco, C., 1993. Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J Biol Chem. 268, 11516-11519.

Schwab, M. and Thoenen, H., 1977. Selective trans-synaptic migration of tetanus toxin after retrograde axonal transport in peripheral sympathetic nerves: a comparison with nerve growth factor. Brain Res. 122, 459-474.

Schwab, M. E., Suda, K. and Thoenen, H., 1979. Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport. J Cell Biol. 82, 798-810.

Sheng, Z. H., Yokoyama, C. T. and Catterall, W. A., 1997. Interaction of the synprint site of N-type Ca2+ channels with the C2B domain of synaptotagmin I. Proc Natl Acad Sci U S A. 94, 5405-5410.

Shimazaki, Y., Nishiki, T., Omori, A., Sekiguchi, M., Kamata, Y., Kozaki, S. and Takahashi, M., 1996. Phosphorylation of 25- kDa synaptosome-associated protein. Possible involvement in protein kinase C-mediated regulation of neurotransmitter release. J Biol Chem. 271, 14548-14553.

Shone, C. C., Hambleton, P. and Melling, J., 1985. Inactivation of Clostridium botulinum type A neurotoxin by trypsin and purification of two tryptic fragments. Proteolytic action near the COOH-terminus of the heavy subunit destroys toxin- binding activity. Eur J Biochem. 151, 75-82.

Shone, C. C., Quinn, C. P., Wait, R., Hallis, B., Fooks, S. G. and Hambleton, P., 1993. Proteolytic cleavage of synthetic fragments of vesicle-associated membrane protein, isoform-2 by botulinum type B neurotoxin. Eur J Biochem. 217, 965-971.

Silberstein, S., Mathew, N., Saper, J. and Jenkins, S., 2000. Botulinum toxin type A as a migraine preventive treatment. For the BOTOX Migraine Clinical Research Group. Headache. 40, 445-450.

Simpson, L. L., 1980. Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. J Pharmacol Exp Ther. 212, 16-21.

Sudhof, T. C., 1995. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature. 375, 645-653.

Sutton, M. A., Wall, N. R., Aakalu, G. N. and Schuman, E. M., 2004. Regulation of dendritic protein synthesis by miniature synaptic events. Science. 304, 1979-1983.

Turton, K., Chaddock, J. A. and Acharya, K. R., 2002. Botulinum and tetanus neurotoxins: structure, function and therapeutic utility. Trends Biochem Sci. 27, 552-558.

Umland, T. C., Wingert, L. M., Swaminathan, S., Furey, W. F., Schmidt, J. J. and Sax, M., 1997. Structure of the receptor binding fragment HC of tetanus neurotoxin. Nat Struct Biol. 4, 788-792.

Valls-Sole, J., Tolosa, E. S. and Ribera, G., 1991. Neurophysiological observations on the effects of botulinum toxin treatment in patients with dystonic blepharospasm. J Neurol Neurosurg Psychiatry. 54, 310-313.

Verderio, C., Pozzi, D., Pravettoni, E., Inverardi, F., Schenk, U., Coco, S., Proux-Gillardeaux, V., Galli, T., Rossetto, O., Frassoni, C. and Matteoli, M., 2004. SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization. Neuron. 41, 599-610.

Verderio, C., Grumelli, C., Raiteri, L., Coco, S., Paluzzi, S., Caccin, P., Rossetto, O., Bonanno, G., Montecucco, C., Matteoli, M., 2007. Traffic of botulinum neurotoxins A and E in excitatory and inhibitory neurons. Traffic, 1600-0854.

Von Bartheld, C. S., Wang, X. and Butowt, R., 2001. Anterograde axonal

transport, transcytosis, and recycling of neurotrophic factors: the concept of trophic currencies in neural networks. Mol Neurobiol. 24, 1-28.

Vyas, A. A., Patel, H. V., Fromholt, S. E., Heffer-Lauc, M., Vyas, K. A., Dang, J., Schachner, M. and Schnaar, R. L., 2002. Gangliosides are functional nerve cell ligands for myelin- associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci U S A. 99, 8412-8417.

Wassle, 2004. Parallel processing in the Mammalian Retina. Nature.

Williamson, L. C., Halpern, J. L., Montecucco, C., Brown, J. E. and Neale, E. A., 1996. Clostridial neurotoxins and substrate proteolysis in intact neurons: botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. J Biol Chem. 271, 7694-7699.

Ringraziamenti

Questo lavoro è stato svolto presso l’Istituto di Neuroscienze del CNR di Pisa. Il principale ringraziamento va dunque a tutti coloro che lavorano lì, ma in particolar modo al dott. Matteo Caleo a tutto il suo staff (Chiara C, Chiara R, Flavia, Laura G, Laura R, Marco e Marta): il loro contributo, la loro simpatia, umanità e disponibilità sono stati fondamentali alla realizzazione di questa tesi. Ringrazio anche il dott. Federico Cremisi e la prof.ssa Irma Nardi per la preziosa collaborazione.

Il secondo “grazie” va senza alcun dubbio alla mia famiglia ed a mio fratello Ferruccio, per aver finanziato i miei studi, aver accettato ogni mia scelta come se fosse la migliore possibile ed avermi dato tutto il loro supporto.

Ultimi per esigenza ma non per importanza, i miei amici (universitari, storici, ritrovati ed inaspettati). Senza di loro sarebbe impossibile mantenere quella buona dose di spensieratezza, sostegno ed allegria che non guasta mai. Ognuno, a suo modo, mi regala momenti importanti; ad ogni modo, fra i molti non posso non citare chi c’è davvero sempre: Emanuela, Niccolò, Carlo e Rossana. L’ultimo “grazie” va a Marco. Lui sa perché.

Documenti correlati