• Non ci sono risultati.

Convergence to equilibrium

3.3 Hamiltonian case

3.3.3 Convergence to equilibrium

= −{Φ, H} , (3.37)

i.e. iff Ψ(q, t) := Φ −Rt

0sids satisfies the Liouville equation Ψt+ {Ψ, H} = 0. But this is not possible, since then Ψ(q, t) must depend on p. Indeed, the Liouville equation for Ψ(q, t) implies

Ψ(q, t + ∆t) = Ψ(q, t) − ∆t ∇qΨ(q, t) · ∇pH(q, p) + o(∆t) .

For physical Hamiltonians the right hand side depends on p. Then, the only possibility is that Ψ, and thus Φ, does not depend on q, so that ρ = ρeq.

The conclusion of the above argument is that F (ρ) → min F = F (ρeq) as t → +∞. However, one cannot simply and straightforwardly conclude that ρ → ρeq, which is meaningful only when the norm ruling the distances is specified. Notice that, due to some technical reasons, in infinite-dimensional problems the Lyapunov function method does not ensure stability, in general.

3.3.3 Convergence to equilibrium

In the sequel it is proven that the quantity η := (ρ − ρeq)/ρeq converges exponentially fast to zero in the L2eq) norm. More precisely, one proves that there exists a constant C > 0 such that dkηk/dt ≤ −Ckηk, where kηk2 := R

Γη2eq = hη2ic. As a consequence, for any initial relative error η0 such that R

Γη0eq = 0 and kη0k < +∞, one has kη(t)k ≤ e−Ct0k, which implies kη(t)k → 0 in a characteristic time of the order 1/C.

First of all, the Fokker-Planck equation is rewritten for the variable η. Upon substituting ρ = ρeq(1 + η) into (3.21)-(3.22), one easily gets (do it)

ηt= −{η, H} + γQ(η) , (3.38)

where

Q(η) := −∇pH · ∇pη + T ∆pη . (3.39) Exercise 3.3. Show that (3.38)-(3.39) imply that R ηdµeq is independent of time. Hint: show that R {η, H}dµeq = 0, and that R Q(η)dµeq = 0.

Exercise 3.4. Prove that R 2η{η, H}ρeqdV = 0 and that R 2ηQ(η)ρeqdV = −2TR |∇pη|2eq. On multiplying (3.38) by 2ηρeq and integrating on the whole phase space, one gets

dkηk2 dt = −

Z

2η{η, H}ρeqdV + γ Z

2ηQ(η)ρeqdV = −2γT Z

|∇pη|2eq . (3.40) Now, one makes use of the following technical inequality, the so-called Chernoff-Poincar´e in-equality.

Theorem 3.1 (CP inequality [12]). Let dµG(x) := e−x2/2dx/√

2π be the normal measure (Gaus-sian with zero mean and unit variance) on R. Then, for any function f ∈ L2G) one has

[f0(x)]2

G≥[f − hf iG]2

G , (3.41)

where h·iG :=R · dµG.

Now, by a (nontrivial) extension of the above inequality to dimension n, observing that the equilibrium density on the momenta is Gaussian, and that R ηdµeq = 0, one proves that there exists a constant C > 0 such that

Z

|∇pη|2eq≥ C Z

η2eq . (3.42)

As a consequence, (3.40) implies dkηk2

dt =≤ −2 τ

Z

η2eq = −2

τkηk2 ⇔ dkηk

dt ≤ −1

τkηk , (3.43)

where 1/τ := γT C. Integrating the above differential inequality one gets kηk(t) ≤ e−t/τkηk(0) ,

which implies kηk(t) → 0 as t → +∞ for any η(0) ∈ L2eq) with zero average. For what concerns the expectation of any observable F ∈ L2eq), the convergence in norm to zero of η impliesR F ρdV → R F dµeqin the sup-norm sense (prove it by means of the Schwartz inequality in L2eq)).

Chapter 4

Kinetic theory of gasses and fluids

The treatment of this topics makes reference to the book [24]; see also [41] and [48].

45

Bibliography

[1] M. Ageno, Le origini della irreversibilit`a, Bollati Boringhieri, 1992.

[2] V. I. Arnol’d, Mathematical Methods of Classical Mechanics, Springer-Verlag, 1989.

[3] V. I. Arnol’d, Ordinary Differential Equations, MIT Press, 1978.

[4] V. I. Arnol’d, Metodi geometrici della teoria delle equazioni differenziali ordinarie, Editori Riuniti, 1989.

[5] V. I. Arnol’d, Lectures on Partial Differential Equations, Springer, 2004.

[6] V. I. Arnol’d and A. Avez, Ergodic problems of classical mechanics, W. A. Benjamin, 1968.

[7] V. I. Arnol’d, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, 3rd edition, Springer, 2006.

[8] J. Binney and S. Tremaine, Galactic Dynamics, Princeton University Press, 1987.

[9] G. Boffetta and A. Vulpiani, Probabilit`a in Fisica, Springer, 2012.

[10] N. N. Bogolyubov, Y. A. Mitropolsky: Asymptotic Methods in the Theory of Non-Linear Oscillations, New York, Gordon and Breach, 1961.

[11] S. Bonometto, Cosmologia & cosmologie, Zanichelli, 2008.

[12] H. Chernoff, A note on an inequality involving the Normal distribution, The Annals of Probability 9 (1981), 533-535.

[13] S.G. Brush, The Kinetic Theory of Gasses, Imperial College Press, 2003.

[14] S. Chandrasekhar, Stochastic Problems in Physics and Astronomy, Rev. Mod. Phys. 15 (1943), 1-89.

[15] R. Clausius, On a Mechanical Theorem Applicable to Heat, Phil. Magazine 40 (1870), 122-127.

47

[16] G. W. Collins, The Virial Theorem in Stellar Astrophysics, Pachart Publishing House, 1978; available for free on the NASA ADS archive:

http://ads.harvard.edu/books/1978vtsa.book/

[17] A. Fasano and S. Marmi, Analytical Mechanics, Oxford University Press, 2006.

[18] E. Fermi, Generalizzazione del teorema di Poincar´e sopra la non esistenza di integrali uniformi di un sistema di equazioni canoniche normali, Il Nuovo Cimento XXV (1923), 105-113.

[19] E. Fermi, Dimostrazione che in generale un sistema meccanico normale `e quasi-ergodico (1923), 267-269.

[20] J. N. Franklin, Matrix Theory, Dover, 1968.

[21] F. R. Gantmacher, Lezioni di Meccanica Analitica, Editori Riuniti, 1980.

[22] J. W. Gibbs, Elementary Principles in Statistical Mechanics, Dover, 1960 (originally pub-lished by the Yale University press, 1902).

[23] P. R. Halmos, Lectures on Ergodic Theory, Chelsea Publishing Company, 1956.

[24] K. Huang, Statistical Mechanics, John Wiley & Sons, 1987.

[25] J. Jacod and P. Protter, Probability Essentials, Springer-Verlag 2004.

[26] M. Kac, Probability and related topics in physical sciences, Interscience Publishers, 1959.

[27] L.P. Kadanoff, Statistical Physics, World Scientific, 2000.

[28] A. I. Khinchin, Mathematical Foundations of Statistical Mechanics, Dover, N.Y., 1949.

[29] Y.L. Klimontovich, Kinetic Theory of Nonideal Gases and Nonideal Plasmas, Pergamon Press, 1982.

[30] A. N. Kolmogorov and S. V. Fomin, Elementi di teoria delle funzioni e di analisi funzionale, Mir, 1980.

[31] B.O. Koopman, Hamiltonian systems and transformations in Hilbert spaces, PNAS 17 (1931), 315-318.

[32] V.V. Kozlov, Integrability and non-integrability in Hamiltonian mechanics, Russ. Math.

Surv. 38 (1983), 1-76.

[33] V.V. Kozlov, The generalized Vlasov kinetic equation, Russ. Math. Surv. 63 (2008), 691-726.

BIBLIOGRAPHY 49 [34] L. D. Landau and E. M. Lifˇsits, Mechanics, Butterworth-Heinemann, 3rd ed., 1976.

[35] L. D. Landau and E. M. Lifˇsits, Statistical Physics, Pergamon Press, 1980.

[36] U. Marini Bettolo Marconi, A. Puglisib, L. Rondoni and A. Vulpiani, Fluctuation-dissipation: Response theory in statistical physics, Phys. Rep. 461 (2008), 111-195.

[37] L. Markus and K. R. Meyer, Generic Hamiltonian Dynamical Systems are neither Inte-grable nor Ergodic, Memoirs of the AMS 144, 1974.

[38] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, 2nd edition, Springer, 1999.

[39] V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations, Dover, 1989.

[40] W. Pauli, Thermodynamics and the Kinetic Theory of Gases, Pauli Lectures on Physics, Volume 3, Dover, 2000.

[41] W. Pauli, Statistical Mechanics, Pauli Lectures on Physics, Volume 4, Dover, 2000.

[42] H. Pollard, A Sharp Form of the Virial Theorem, Bull. Amer. Math. Soc. 70 (1964), 703-705.

[43] H. Pollard, Mathematical Introduction to Celestial Mechanics, Prentice-Hall, 1966.

[44] D. G. Saari, Collisions, Rings, and Other Newtonian N -Body Problems, AMS, 2005.

[45] W. Rudin, Real and Complex Analysis, 3-rd ed., McGraw-Hill, 1987.

[46] J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical systems, Springer-Verlag, 2007.

[47] G. E. Shilov, Elementary Functional Analysis, Dover, N.Y., 1996.

[48] C. J. Thompson, Mathematical Statistical Mechanics, Macmillan, 1971.

[49] G. E. Uhlenbeck, G. W. Ford and E. W. Montroll, Lectures in Statistical Mechanics, American Mathematical Society, 1963.

[50] F. Zwicky, On the Masses of Nebulae and of Clusters of Nebulae, The Astrophysical Journal, 86 (1937), 217-246.

Documenti correlati