• Non ci sono risultati.

Dipartimento di Scienze Agrarie e Forestali, Università di Palermo, Italy

Non

commercial

use

Article

chimica quali-quantitativa ha evidenziato la presenza in particolare di allantoina 0.3-0.5%, collagene 0.1-0.3%, acido glicolico 0.05-0.1%, acido lattico 0.05-0.1%, anti-proteasi 1.3-1.8%, vitamine e minerali in tracce. In un recente lavoro4 è stato messo in evidenza che il secreto di

Crymptophalus aspersa, utilizzato per applicazioni cutanee, possiede

proprietà rigenerative per la pelle umana per le quali sono state fatte interessanti ipotesi di meccanismo d’azione Studi clinici hanno dimo- strato che prodotti cosmetici a base di secreto di Cornu aspersum (

Helix aspersa) favoriscono la cicatrizzazione delle ustioni dei bambini

riducendo la formazione del cheloide, l’iperpigmentazione e miglioran- do complessivamente l’aspetto estetico della cicatrice. In altri studi è stata confermata l’efficacia del secreto di Cornu aspersum (Helix asper-

sa) nella cicatrizzazione delle ustioni facciali di soggetti adulti. Sembra

che la secrezione di Cornu aspersum (Helix aspersa) contribuisca con tutti i suoi componenti a promuovere la cicatrizzazione della ferita e la riduzione della formazione del cheloide. In particolare l’allantoina in essa contenuta ha spiccate proprietà cicatrizzanti già note anche per favorire la riparazione di ferite suppuranti, ulcere resistenti, emorroidi e varie infezioni dermatologiche. L’allantoina stimola la formazione tessutale e rende più rapida la cicatrizzazione delle ferite. Diverse pre- parazioni medicamentose topiche per la cicatrizzazione dei tessuti sono formulate con allantoina e si sono dimostrate particolarmente efficaci nel velocizzare la riparazione dei tessuti e nel ridurre la forma-

zione delle cicatrici e dei cheloidi. L’acido glicolico e l’acido lattico, naturalmente contenuti nella bava di Cornu aspersum (Helix aspersa), contribuiscono a idratare e levigare la pelle riducendo l’iperpigmenta- zione e prevenendo la formazione delle smagliature anche durante la gravidanza. Migliorano l’estetica delle cicatrici anche di vecchia data. L’acido glicolico promuove il turnover epidermico e favorisce la prolife- razione dei cheratinociti.

Bibliografia

1. Novelli E, Giaccone V, Balzan S, et al. Indagine sul valore dietetico- nutrizionale della lumaca. Confronto fra specie e fra soggetti rac- colti in natura ed allevati. Ann. Fac. Medic. Vet. di Parma 2002;22:49-56.

2. Penazzi G. Potenziali proprietà ed usi in cosmesi del secreto di Helix aspersa o bava di lumaca. Cosmetic Technol 2010;13:25-8. 3. Pawlicki JM, Pease LB, Pierce CM, et al. The effect of molluscan

glue proteins on gel mechanics. J Exp Biol 2004;207:1127-35. 4. Brieva A, Philips N, Tajedor R, et al. Molecular basis for the rege-

nerative properties of a secretion of the mollusk Crymptophalus aspersa. Skin Pharmacol Physiol 2008;21:15-22.

Non

commercial

use

Journal of Biological Research 2015; volume 88:5161

It is well confirmed that a strong relationship exists between Down’s syndrome (DS) and Alzheimer’s disease (AD). Neurochemical investi- gations reported that many central neurotransmitter systems are simi- larly affected in aging Down and in Alzheimer patients, respectively. Airaksinem and colleagues1found numerous neurofibrillary tangles in

the tuberomammillary area of the hypothalamus, where cell bodies of histaminergic neurons are located. While Mazurkiewicz-Kwilecki and colleagues2found deficits of the endogenous diamine, Cacabelos and

colleagues3reported an increase of central histamine levels. In the pres-

ent study, in order to test whether AD-like neuropathological changes involve the central histaminergic system, we measured the concentra- tion of histamine, histidine as well as the activity of histidine decarboxy- lase (HDC) and histamine-N-methyltransferase (HMT) in temporal cor- tex (TC) of aging Down, Alzheimer and control patients.

Post-mortem samples (temporal cortex, TC; grey matter) of AD neu- ropathologically confirmed cases (72.1±7.6 years old), of karyotyped patients with DS (56.1±7.1 years old), and control adults (72,7±9.7 years old) were obtained from the MRC London Brain Bank for Neurodegenerative Diseases, Department of Neuropathology, Institute of psychiatry, London, U.K.

Each block of brain tissue from AD, DS and controls were thawed on ice and homogenized in ice-cold HDC-solution of 0.1 M sodium phos- phate buffer (pH 6.8) containing dithiothreitol and antipain protease inhibitor. Homogenates of brain specimens were centrifuged at 12,000 x

g for 20 min at 4°C. The supernatants were poured into CENTRIPEP-3

concentrators (Amicon), and centrifuged at 2,000 x g for two 10 min periods at 4°C. The clear extracts were stored in small quantities in Eppendorf tubes at -80°C until analysis. HDC activity has been meas- ured with the procedure described by Gueli and colleagues4and briefly

summarized. Extract aliquots were pre- incubated for 10 min with HDC assay-solution (0.1 M PBS, 0.2 mM DTT, 0.01 mM PLP, 0.1 mM Aminoguanidine), then incubation was started by adding 0.5 mM L-his- tidine for 0-3 h at 37°C. At the established times, the reactions were stopped with 60% ice-cold PCA, and stored overnight. Finally, the reac-

tion mixture was centrifuged at 19,000 x g for 30 min at 4°C. The super- natants were withdrawn and filtered (0.45 m Millipore filter). The HPLC system consisted of a 600E Waters pump with a Waters 474 scanning flu- orescence detector (ex 350 nm, em 450 nm). Chromatograms and calcu- lations were performed by Empower TM2 Data Software. Histamine was separated and quantified after pre-column derivatization with Shore’s o- phthalaldehyde reaction,5using a Spherisorb ODS2 analytical column,

particle size 3 m (20 x 0.46 cm; Waters, Milano), a 10 μL injection vol- ume, and a mobile phase of methanol, 20 mmol/L sodium acetate in water, acetic acid (55:43:2 v/v) and 0.33 mmol/L 1-octanesulfonic acid sodium salt. The flow rate was 1.0 ml/min. In order to measure HMT activity brain tissue was disperged with a glass Teflon homogenizer in 0.1 M PBS (pH 7.2). After centrifugation the supernatant was used for the radioenzymatic assay.6Histidine contents were measured using the

procedure described by Borum.7

We observed a increase of histamine levels in temporal cortex of AD (+15%) patients. Down brains also showed a mild increase of the endogenous diamine concentration (+8%). HDC activity in both groups of diseased brains was significantly increased compared with controls (+59% for DS and +21% for AD, respectively). In accord to HDC actvity, HMT activity run in parallel in both pathological groups. In contrast to histamine, histidine levels were markedly decreased in temporal cortex of both pathological groups. These results put together leads us to think of a similar high turnover rate in the metabolic happenings of the hista- minergic system in the temporal cortex of the patients with Alzheimer’s disease and Down’s syndrome. The fast histaminergic changes may con- tribute to the clinical manifestation of dementia in both disorders.

References

1. Airaksinen MS, Paetau A, Paljarvi L, et al. Histamine neurons in human hypothalamus: anatomy in normal and Alzheimer diseased brains. Neuroscience 1991;9:465-81.

2. Mazurkiewicz-Kwilecki IM, Nsonwah S. Changes in the regional brain histamine and histidine levels in postmortem brains of Alzheimer patients. Can J Physiol Pharmacol 1989;67:75-8. 3. Cacabelos R, Yamatodani A, Niigawa H, et al. Brain histamine in

Alzheimer’s disease. Meth Find Exp Clin Pharmacol 1989;11:353-60. 4. Gueli MC. The mental disorders in the elderly: new therapeutic

approaches. Rome: Brunello Ed.; 1997.

5. Shore PA, Burkhalter A, Cohn VH. A method for the fluorometric assay of histamine in tissues. J Pharmacol Exp Ther 1959;127:182-6. 6. Prast H, Gujrati V, Walser S, Philippu A. Histamine, histidine decarboxylase and histamine-N-methyltransferase in brain areas of spontaneously hypertensive rats, Naunyn-Schmiedeberg’s Arch. Pharmacol 1988;338:573-83.

7. Borum PR. Manual for amino acid analysis of physiological samples. Atlanta, GA: American Association for Clinical Chemistry Publ.; 1997.

Correspondence: Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, via Del Vespro 129, 90127, Palermo, Italy.

E-mail: [email protected]

©Copyright M.C. Gueli, 2015 Licensee PAGEPress, Italy

Journal of Biological Research 2015; 88:5161

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License (by-nc 3.0) which permits any noncom- mercial use, distribution, and reproduction in any medium, provided the orig- inal author(s) and source are credited.

High turnover rate of central histaminergic system in patients