• Non ci sono risultati.

3. Conclusions and Future Perspectives 1 DNA Topology and Transcription

3.4 DNA Topoisomerases and their poisoning

Topoisomerases are ubiquitous enzymes involved in maintaining genomic stability of the cell by modulating the level of supercoiling of DNA strands. Besides their customary functions, topoisomerases are important cellular targets of widely used anticancer drugs. In particular, topoisomerase IIα (Top2α) has been postulated as the primary molecular target of anthracycline’s anticancer activity (Mordente et al. 2017). Despite their wide use in chemotherapy, amthracyclines have a limiting side effect. In particular the cardiotoxicity is the most frequent adverse effect of both conventional and modern anticancer-targeted therapy, representing the leading noncancer-related cause of morbidity and mortality in long-term survivors (Hamo et al. 2015).

Coupling the drug to peptide carrier could improve solubility, decrease side effects and can offer the possibility of cell or tissue specific introduction (Hudecz et al. 1992; Duncan et al. 1987). Another approach for intracellular delivery is using cell-penetrating peptides like oligoarginines with cationic character; this method is less specific but could be highly efficient (Nakase et al. 2008;

Futaki et al. 2005).

In my work, I analyzed the biochemical properties of a new oligoarginine-daunomycin conjugate previously described by Miklàn et al. (2009). It’s known that anticancer activity of Daunomycin is based on both DNA binding properties and inhibition of human topoisomerase IIα. So I investigated the inhibition effect of Arg-derivative on both human topoisomerase IIα and topoisomerase I and I

124    

found that it is able to inhibit both topoisomerases relaxation activity efficiently as Daunomycin.

Then I analyzed the DNA binding properties of Daunomycin conjugate and I demonstrated that it is able to interact with DNA mainly by intercalative mode as already known for the free drug.

Furthermore Arg-derivative is also able to stabilize the double helical structure of DNA as demonstrated by melting experiment. These results suggest that oligoarginine-daunomycin conjugate could be a promising alternative to Daunomycin in antitumor therapy.

125    

References

1. Aliye N, Fabbretti A, Lupidi G, Tsekoa T, Spurio R. Engineering color variants of green fluorescent protein (GFP) for thermostability, pH-sensitivity, and improved folding kinetics.

Appl Microbiol Biotechnol 2015, 99:1205–1216.

2. Balke V.L and Gralla J.D. Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli. J. Bacteriol. 1987; 169, 4499–4506.

3. Bell S.D, Botting C.H, Wardleworth B.N, Jackson S.P, White M.F. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science 2002; 29, 148–151.

4. Brochier-Armanet C and Forterre P. Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggest a complex hystory of vertical inheritance and lateral gene transfers. Archaea. 2007 May;2(2):83-93.

5. Burns H. and Minchin S. (1994) Thermal energy requirement for strand separation during transcription initiation: the effect of supercoiling and extended protein DNA contacts.

Nucleic Acids Res. 1994; 22, 3840–3845.

6. Capranico G, Tinelli S, Austin C.A, Fisher M.L, Zunino F. Different patterns of gene expression of topoisomerase II isoforms in differentiated tissues duringmurine development.

Biochim. Biophys. Acta, 1992, 1132, 43-48.

7. Cava F, de Pedro M.A, Blas-Galindo E, Waldo G.S, Westblade L.F, Berenguer J.

Expression and use of superfolder green fluorescent protein at high temperatures in vivo: a tool to study extreme thermophile biology. Environ Microbiol 2008, 10:605–613.

8. Chalfie M, Tu Y, Euskirchen G, Ward W.W, Prasher D.C. Green fluorescent protein as a marker for gene expression. Science 1994, 5148:802–805.

9. Charbonnier, F and Forterre P. Comparison of plasmid DNA topology among mesophilic and thermophilic eubacteria and archaebacteria. J. Bacteriol. 1994; 176, 1251–1259.

10. Chen D and Lilley D.M. Transcription-inducedhypersupercoiling of plasmid DNA. J. Mol.

Biol. 1999; 285, 443–448.

11. Chen Y, Saari J.T, Kang Y.J. Weak antioxidant defenses make the heart a target for damage in copper-deficient rats. Free Radic. Biol. Med., 1994, 17, 529-536.

12. Corless S and Gilbert N. Effects of DNA supercoiling on chromatin architecture. Biophys Rev (2016) 8:245–258 DOI 10.1007/s12551-016-0210-1.

13. Couturier M, Bizard A.H, Garnier F, Nadal M. Insight into the cellular involvement of the two Reverse gyrases from the hyperthermophilic Archaeon Sulfolobus solfataricus. BMC Molecular Biology 2014, 15:18.

126    

14. Dangkulwanich M, Ishibashi T, Bintu L, Bustamante C.   Molecular mechanisms of transcription through single-molecule experiments. Chem Rev. 2014 Mar 26;114(6):3203-23. doi: 10.1021/cr400730x.

15. Doroshow J.H and Davies K.J. Redox cycling of anthracyclines by cardiac mitochondria. II.

Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J. Biol. Chem., 1986, 261, 3068-3074.

16. Doroshow J.H, Locker G.Y, Myers C.E. Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. J. Clin.Invest., 1980, 65, 128-135.

17. Duncan R, Kopečkova-Rejmanova P, Strohalm J, Hume I, Cable H.C, Pohl J, Lloyd J.B, Kopecek J. Anticancer agents coupled to N-(2-hydroxypropyl)methacrylamide copolymers.

I. Evaluation of daunomycin and puromycin conjugates in vitro. Br. J. Cancer 55 (1987) 165–174.

18. Force T and Wang Y. Mechanism-based engineering against anthracycline cardiotoxicity.

Circulation, 2013, 128, 98-100.

19. Forterre P, Bergerat A, Lopez-Garcia P. The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea. FEMS Microbiol. Rev. 1996; 18, 237–248.

20. Futaki S, Membrane-permeable arginine-rich peptides and the translocation mechanisms.

Adv. Drug Deliv. Rev. 57 (2005) 547–558.

21. Gammella E, Maccarinelli F,Buratti P, Recalcati S, Cairo G. The role of iron in anthracycline cardiotoxicity. Front. Pharmacol., 2014, 5, 25.

22. Gautier A, Juillerat A, Heinis C, Corrêa IR Jr, Kindermann M, Beaufils F, Johnsson K. An engineered protein-tag for multiprotein labeling in living cells. Chem Biol 2008, 15:128–

136.

23. Goffart S, von Kleist-Retzow J.C, Wiesner R.J. Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy. Cardiovasc. Res., 2004, 64, 198-207.

24. Goormaghtigh E, Brasseur R, Huart P, Ruysschaert J.M. Study of the adriamycin-cardiolipin complex structure using attenuated total reflection infrared spectroscopy. Biochemistry, 1987, 26, 1789-1794.

25. Hamo C.E and Bloom M.W. Getting to the Heart of the Matter: An Overview of Cardiac Toxicity Related to Cancer Therapy. Clin Med Insights Cardiol. 2015; 9(Suppl 2): 47–51.

127    

26. Hsieh T.S and Plank J.L. Reverse gyrase functions as a DNA renaturase: annealing of complementary single-stranded circles and positive supercoiling of a bubble substrate. J.

Biol. Chem. 2006, 281, 5640–5647.

27. Hudecz F, Clegg J.A, Kajtá J, Embleton M.J, Szekerke M, Baldwin R.W. Synthesis, conformation, biodistribution, and in vitro cytotoxicity of daunomycin branched polypeptide conjugates. Bioconjug. Chem. 3 (1992) 49–57.

28. Irobalieva R.N, Fogg J.M, Catanese D.J, Sutthibutpong T, Chen M, Barker A.K, Ludtke S.J, Harris S.A, Schmid M.F, Chiu W, Zechiedrich L. Structural diversity of supercoiled DNA.

Nature Communications 2015 DOI:10.1038/ncomms9440.

29. Japaridze A, Muskhelishvili G, Benedetti F, Gavriilidou A.F.M, Zenobi R, De Los Rios P, Longo G, Dietler G. Hyperplectonemes: A Higher Order Compact and Dynamic DNA Self Organization. DOI: 10.1021/acs.nanolett.6b05294 Nano Lett 2017.

30. Jiang Y and Yin Y. Analyzing DNA Structure Quantitatively at a Single-Molecule Level by Atomic Force Microscopy. Atomic Force Microscopy Investigations into Biology - From Cell to Protein, Dr. Christopher Frewin (Ed.), InTech, DOI: 10.5772/35796 2012.  

31. Kampmann M and Stock D. Reverse gyrase has heat-protective DNA chaperone activity independent of supercoiling. Nucleic Acids Res. 2004, 32, 3537–3545.

32. Larson M.H, Landick R, Block S.M.  Single-molecule studies of RNA polymerase: one singular sensation, every little step it takes. Mol Cell. 2011 Feb 4;41(3):249-62.

doi:10.1016/j.molcel.2011.01.008.

33. Lulchev P and Klostermeier D. Reverse gyrase––recent advances and current Mechanistic understanding of positive DNA Supercoiling. 8200–8213 Nucleic Acids Research, 2014, Vol. 42, No. 13 Doi: 10.1093/nar/gku589.

34. Lyu Y.L, Kerrigan J.E,Lin C.P, Azarova A.M, Tsai Y.C, Ban Y, Liu L.F. Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res.,2007, 67, 8839-8846.

35. Lyubchenko Y.L and Shlyakhtenko L.S. Visualization of supercoiled DNA with atomic force Microscopy in situ. Proc. Natl. Acad. Sci. USA Vol. 94, pp. 496–501, January 1997.

36. Ma J, Bai L, Wang M.D. Transcription under torsion. Science 2013, 340: 1580–1583.

37. Menna P, Gonzalez Paz O, Chello M, Covino E, Salvatorelli E, Minotti G. Anthracycline cardiotoxicity. Expert Opin. Drug Saf., 2011.

38. Menzel R and Gellert M. Regulation of the genes for E. coli DNA gyrase: homeostatic control of DNA supercoiling. Cell. 1983 Aug;34(1):105-13.

128    

39. Mikla Z, Orba E, Csik G, Schlosser G, Magyar A, Hudecz F. New Daunomycin–

Oligoarginine Conjugates: Synthesis, Characterization, and Effect on Human Leukemia and Human Hepatoma Cells. Published online 11 June 2009 in Wiley interscience (www.interscience.wiley.com). DOI 10.1002/bip.21264.

40. Minotti G, Cairo G, Monti E. Role of iron in anthracycline cardiotoxicity: new tunes for an old song? FASEB J., 1999, 13, 199-212.

41. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev., 2004, 56, 185-229.

42. Mordente A, Meucci E, Martorana G.E, Giardina B, Minotti G. Human heart cytosolic reductases and anthracycline cardiotoxicity. IUBMB Life, 2001, 52, 83-88.

43. Mordente A, Meucci E, Silvestrini A, Martorana G.E, Giardina B. New developments in anthracycline-induced cardiotoxicity. Curr. Med. Chem., 2009, 16, 1656-1672.

44. Mordentea A, Meuccia E, Martoranaa G.E, Tavianb D, Silvestrinia A. Topoisomerases and Anthracyclines: Recent Advances and Perspectives In Anticancer Therapy and Prevention of Cardiotoxicity. Current Medicinal Chemistry, 2017, 24, 1-20.

45. Musgrave D, Forterre P, Slesarev A. Negative constrained DNA supercoiling in archaeal nucleosomes. Mol. Microbiol. 2000; 35, 341–349.

46. Musgrave D, Sandman K.M, Reeve J.N. DNA binding by the archaeal histone HMf results in positive supercoiling. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10397-401.

47. Nakase I, Takeuchi T, Tanaka G, Futaki S. Methodological and cellular aspects that govern the internalization mechanisms of arginine-rich cell-penetrating peptides. Adv. Drug Deliv.

Rev. 60 (2008) 598–607.

48. Napoli A, Kvaratskelia M, White M.F, Rossi M, Ciaramella M. A novel member of the bacterial–archaeal regulator family is a nonspecific DNA-binding protein and induces positive supercoiling. J. Biol. Chem. 2001; 276, 10745–10752.

49. Napoli A, Valenti A, SalernoV, Nadal M, Garnier F, Rossi M, Ciaramella M. (2004) Reverse gyrase recruitment to DNA afterUV light irradiation in Sulfolobus solfataricus. J.

Biol. Chem. 2004, 279, 33192–33198.

50. Naughton C, Corless S, Gilbert N. Divergent RNA transcription: a role in promoter unwinding? Transcription, 2013, 4,162–166.

51. Neumann, S. and Quinones A. Discoordinate gene expression of gyrA and gyrB in response to DNA gyrase inhibition in Escherichia coli. J. Basic Microbiol. 1997; 37, 53–69.

129    

52. Pédelacq J.D, Cabantous S, Tran T, Terwilliger T.C, Waldo G.S. Engineering and characterization of a superfolder green fluorescent protein. Nature Biotech 2006, 24:79–88.

53. Richet E and Raibaud O. Supercoiling is essential for the formation and stability of the initiation complex at the divergent malEp and malKp promoters. J. Mol. Biol. 1991; 218, 529–542.

54. Ruff E.F, Record M.T Jr, Artsimovitch I.  Initial events in bacterial transcription initiation.

Biomolecules. 2015 May 27;5(2):1035-62. doi: 10.3390/biom5021035.

55. Salvatorelli E, Guarnieri S, Menna P, Liberi G, Calafiore A.M, Mariggio M.A, Mordente A, Gianni L, Minotti G. Defective one- or two-electron reduction of the anticancer anthracycline epirubicin in human heart. Relative importance of vesicular sequestration and impaired efficiency of electron addition. J. Biol. Chem., 2006, 281, 10990-11001.

56. Sarduy L.A, Roduit C, Dietler G, Kasas S. Human topoisomerase II–DNA interaction study by using atomic force microscopy. FEBS Letters 585 (2011) 3139–3145.

57. Schmatko T, Muller P, Maaloum M. Surface charge effects on the 2D conformation of Supercoiled DNA. Soft Matter, 2014, 10, 2520–2529.

58. Sinden R.R. DNA Structure and Function. Academic Press, San Diego, 1994, pp. 95–128.

59. Snoep J.L, van der Weijden, C.C, Andersen H.W, Westerhoff H.V, Jensen P.R. DNA supercoiling in Escherichia coli is under tight and subtle homeostatic control, involving gene-expression and metabolic regulation of both topoisomerase I and DNA gyrase. Eur. J.

Biochem., 2002; 269, 1662–1669.

60. Sobetzko P. Transcription-coupled DNA supercoiling dictates the chromosomal arrangement of bacterial genes. 1514–1524 Nucleic Acids Research, 2016, Vol. 44, No. 4 Published online 17 January 2016 doi: 10.1093/nar/gkw007.

61. Sterba M, Popelova O, Vavrova A, Jirkovsky E, Kovarikova P, Gersl V, Simunek T.

Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection. Antioxid. Redox Signal., 2013, 18, 899-929.

62. Szabó R, Bánóczi Z, Mező G, Láng O, Kőhidai L, Hudecz F. Daunomycin-polypeptide conjugates with antitumor activity. Biochimica et Biophysica Acta 1798 (2010) 2209–2216.

63. Tokarska-Schlattner M, Zaugg M, Zuppinger C, Wallimann T, Schlattner U. New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. J. Mol. Cell.

Cardiol., 2006, 41, 389-405.

64. Tsien R.Y. The green fluorescent protein. Annu Rev Biochem 1998, 67:509–544.

Documenti correlati