• Non ci sono risultati.

Pressione per l'innesco del processo circa 2.04 × 10−1mbar, gas: 80 sccm Ar/ 5 sccm O 2,

Bibliograa

[1] A. Rogalski F. Sizov. THz Detectors, Progress in Quantum Electronics, 34, 278-347. 2010.

[2] M. Shur M. Dyakonov. Shallow Water Analogy for a Ballistic Field Eect Transistor: New Mechanism of Plasma Wave Generation by dc Current, Physicsl Review Letters, 71, 2465-2468. 1993.

[3] M. Shur M. Dyakonov. Detection, Mixing, and Frequency Multiplication of Terahertz Radiation by Two-Dimensional Electronic Fluid , IEEE Transactions on Electron Devices, 43, 380-387. 1996.

[4] E. Ojefors P.H. Bolivar D. Glaab H.G. Roskos A. Lisauskas, U. Pfeier. Rational design oh high-responsivity detector of terahertz radiation based on distribuited self- mixing in silicon eld-eect transistor, Journal of Applied Physics , 105, 114511. 2009.

[5] J.L. Hesler L. Sun R. Weikle J.Q. Lu, M. Shur. Terahertz Detector Utilizing Two- Dimensional Electronic Fluid, ieee Electron Devices Letters, 19, 373-375. 1998. [6] Y. Deng S. Rumyantsev J.Q. Lu R. Gaska M. Shur G. Simin X. Hu M.A. Khan

W. Knap, V. Kachorovskii. Nonresonant detection of terahertz radiation in eld eect transistor , Jounal of Applied Physics 91, 9346. 2002.

[7] S. Rumyantsev M. Shur W. Knap, Y. Deng. Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron eld-eect transistor , Applied Physics Letters 81, 4637. 2002.

[8] N. Dyakonova N. Lusakowski W. Knap, F. Meziani. Plasma wave detection of sub-terahertz radiation by silicon eld-eect transistor, Applied Physics Letters 85, 675.

[9] E. Ojefors U.R. Pfeier. 600-GHz CMOS focal-plane array for terahertz imaging application, Proceeding European Solid-State Circuit Conference ,110-114. 2008.

[10] N. M. R. Peres K. S. Novoselov A. K. Geim A. H. Castro Neto, F. Guinea. The electronic properties of graphene, Review of Modern Physics , 109-162. 2009. [11] K. S. Novoselov M. I. Katsnelson and A. K. Geim. Chiral tunnelling and the Klein

paradox in graphene ,Nature Physics , 29, 620-625. 2006.

[12] B. Huard N. Stander and D. Goldhaber Gordon. Evidence for Klein tunneling in graphene p-n junctions, Physicsl Review Letters , 102,. 2009.

[13] S. V. Morozov D. Jiang M. I. Katsnelson I. V. Grigorieva S. V. Dubonos K. S. No- voselov, A. K. Geim and A. A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene , Nature , 438, 197-200. 2005.

[14] Y. Zhang S. V. Morozov H. L. Stormer U. Zeitler J. C. Maan G. S. Boebinger P. Kim K. S. Novoselov, Z. Jiang and A. K. Geim. Room-Temperature Quantum Hall Eect in Graphene , Science , 315, 1379. 2007.

[15] E.H. Hwang E. Rossi S. Das Sarma, S. Adam. Eletronic transport in two-dimensional graphene , , 83, 408-459. 2011.

[16] N. Ghattamaneni B. Harack M. Hilke A. Horth N. Majlis M. Massicotte L. Vand- sburger E. Whiteway V. Yu D. R. Cooper, B. D Anjou. Experimental Review of Graphene, ISRN Condensed Matter Physics , 12. 2012.

[17] N. M. R. Peres. The Transport properties of graphene , Journal of Physics-Condensed Matter , 21. 2009.

[18] V. M. Galitski S. Das Sarma S. Adam, E. H. Hwang. A self-consistent theory for graphene transport , PNSA , 104, 18392-18397. 2007.

[19] S. Adam M. S. Fuhrer E. D. Williams M. Ishigami J. H. Chen, C. Jang. Charged- impurity scattering in graphene , Nature Physics , 4, 377-381. 2008.

[20] N. M. R. Peres T. Stauber and F. Guinea. A semiclassical approach including midgap states, Physicsl Review B , 76, 205423. 2007.

[21] E. H. Hwang and S. Das Sarma. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene, Physicsl Review B , 77, 115449. 2008. [22] D. Keefer J. Zhu K. Zou, X. Hong. Deposition of high-quality HfO2 on graphene and

the eect of remote oxide phonon scattering, Physical Review Letters , 105, 126601. 2010.

[23] S. V. Morozov D. Jiang Y. Zhang S. V. Dubonos I. V. Grigorieva A. A. Firsov K. S. Novoselov, A. K. Geim. Electric eld eect in atomically thin carbon lms, Science , 306, 666-669. 2004.

[24] C. Girit A. Zettl Y. Zhang, V. W. Brar and M. F. Crommie. Origin of spatial charge inhomogeneity in graphene , Nature Physics , 5, 722-726. 2009.

[25] G. Ulbricht T. Lohmann J. H. Smet K. Von Klitzing A. Yacoby J. Martin, N. Akerman. Observation of electron-hole puddles in graphene using a scanning single-electron transistor, Nature Physics , 4, 144-148. 2008.

[26] S. Ryu L.E. Brus K.S. Kim P. Kim Y. Yu, Y. Zhao. Tuning the graphene work function by electric eld eect, Nano Letters , 9, 3430-3434. 2009.

[27] I. Jo D. Shahrjerdi L. Colombo Z. Yao E. Tutuc S.K. Baneriee S. Kim, J. Nah. Realization of high mobility dual-gated graphene eld-eect transistor with Al2O3

dielectric , Applied Physics Letters , 94, 062107. 2009.

[28] D.K. Schroder. Semiconductor material and device characterization , Wiley- Interscience Publication. 1998.

[29] C.G. Kang C. Cho S. Lee H. J. Hwang U. Jung B. H. Lee Y.G. Lee, Y.J. Kim. Inuence of extrinsic factor on accurancy of mobility extraction in graphene metal- oxide-semiconductor eld eect transistor , Applied Physics Letters , 102, 093121. 2013.

[30] S. Das Sarma E.H. Hwang. Dielectric function, screening, and plasmons in two- dimensional graphene , Physical Review B , 75, 205418. 2007.

[31] J. Horng C. Girit M. Martin Z. Hao H.A. Bechtel X. Liang A. Zettl Y.R. Shen F. Wang L. Ju, B. Geng. Graphene plasmonic for tunable terahertz metamaterials , Nature Nanotechnology , 6, 630-634. 2011.

[32] M. Polini A. Principi, R. Asgari. Acoustic plasmons and composite hole-acoustic satellite bands in graphene on a metal gate , Solid State Communication , 151, 1627. 2011.

[33] M. Polini A. Tomadin. Theory of the plasma-wave photoresponse of gated graphene sheet , Physical Review B , 88, 205426. 2013.

[34] L. Brey R. Roldan. Dielectric screening and plasmons in AA-stacked bilayer graphene , Physical Review B , 88, 115420. 2013.

[35] N. Dyakonova W. Knap D. Seliuta G. Valusis A. Shchepetov Y. Roelens S. Bollaert A. Cappy S. Rumyantsev A. El Fatimy, F. Teppe. Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistor , Applied Physics Letters , 89, 131926. 2006.

[36] O.A. Klimenko F. Schuster D. Coquillat F. Teppe W. Knap M. Sakowicz, M.B. Lif- shits. Terahertz responsivity of eld eect transistor versus their static channel conductivity and loading eect , Journal of Applied Physics , 110, 054512. 2011. [37] D.J. Paul M. Perenzoni. Physics and Applications of Terahertz Radiation , Springer

77-100. 2014.

[38] A. Lisauskas H.G. Roskos E. Ojefors, U.R. Pfeier. A 0.65 THz focal-plane array in a quarter-micron CMOS process technology , IEEEJournal of Solid-State Circuits , 44(7),. 2009.

[39] M. Siegel A. Scheuring, S. Wuensch. A novel analytical model of resonance eect of log-periodic planar antennas , IEEETransact. Antennas and Propagation 57, 3482. 2009.

[40] D. Coquillat A. Lombardo A.C. Ferrari W. Knap M. Polini V. Pellegrini A. Tredi- cucci L. Vicarelli, M.S. Vitiello. Graphene eld-eect transistor as room-temperature terahertz detector , Nature Material, 11 865-871. 2012.

[41] L. Vicarelli. Tesi di Laurea Magistrale, Terahertz Photodetection in Graphene Field Eect Transistor, 2012.

[42] A.H. Castro Neto K.S. Novoselov D. Jiang R. Yang T.J. Booth A.K. Geim P. Blake, E.W. Hill. Making graphene visible , Applied Physics Letters , 91 063124. 2007. [43] D.M. Basko A.C. Ferrari. Raman spectroscopy as a versatile tool for studying the

properties of graphene , Nature Nanotechnology , 8 235-246. 2013.

[44] K.Kita A. Toriumi K. Nagashio, T. Nishimura. Metal/graphene contacts as per- formance killer of ultra-high mobility graphene-Analysis of intrisic and contact resistance , In Electron Devices Meeting , 1-4. 2009.

[45] C.M. Marcus J.S. Becker R.G. Gordon M.J. Biercuk, D.J. Monsma. Low-temperature atomic-layer-deposition lift-o method for microelectronic and nanoelectronic applications , Applied Physics Letters , 83, 2405-2407. 2003.

[46] J. Y. Veuillen L. Magaud F. Varchon, P. Mallet. Ripples in epitaxial graphene on the Si-terminated SiC(0001) surface , Physics Review B , 77, 235412. 2008.

[47] K.V. Emtsev C. Coletti U. Starke, S. Forti. Engineering the electronic structure of epitaxial graphene by transfer doping and atomic intercalation , Materials Research Society, 37, 1177-1186. 2012.

[48] Z. Guo R. Dong J. Palmer J. Hankinsons C. Berger W. A de Heer Y. Hu, M. Ruan. Structured epitaxial graphene: growth and properties ,Journal of Physics D , 45, 150101. 2012.

[49] H.G. Roskos E. Oiefors U.R. Pfeier A. Lisauskas, D. Glaab. Terahertz imaging with Si MOSFET focal-plane arrays , Proc SPIE, 7215 72150j. 2009.

[50] S. Boubanga D. Coquillat W. Knap R. Tauk, F. Teppe. Plasma wave detection of te- rahertz radiation by silicon eld eect transistor: Responsivity and Noise Equivalent Power , Appl. Phys. Lett., 89 253511. 2006.

[51] C.M. Marcus L.S. Levitov J.C. Song, M.S. Rudner. Hot carrier transport and photocurrent response in graphene , Nano Letters , 11, 4688-4692. 2011.

[52] Q. Ma N.L. Nair T. Taychatanapat K. Watanabe T. Taniguchi L.S. Levitov P.Jarillo- Herrero N.M. Gabor, J.C.W. Song. Hot carrier assisted intrinsic photoresponse in graphene , Science, 334 648-652. 2011.

Documenti correlati