• Non ci sono risultati.

Incidenza di complicazioni nel FAME study

Nel FAME study, già esaminato in precedenza, in cui si confrontavano le due diverse dosi degli impianti di FA sono emerse le due complicazioni oculari più frequenti

derivanti dall'uso dei corticosteroidi: progressione della cataratta ed incremento della pressione oculare. La cataratta è stata riscontrata nel 42.7% del gruppo di pazienti trattati con la dose più bassa di farmaco e nel 51.7% del gruppo ad alta dose, rispetto al gruppo placebo in cui tale percentuale si fermava al solo 9.7%. Nel caso dei pazienti fachici tale percentuale saliva all'81.7% di quelli trattati con l'inserto a bassa dose, e all'88.7% di quelli trattati ad alta dose rispetto al 27.3% dei pazienti trattati con placebo, e, un'operazione chirurgica è stata richiesta nell'80%, nell'87.2% e nel 27.3% dei pazienti rispettivamente. Per quanto riguarda l'aumento di pressione intraoculare, valori superiori a 30 mmHg sono stati registrati nel 37.1% dei pazienti del gruppo a bassa dose (di questi l'1.3% è stato trattato con trabeculoplastica laser, e il 4.8% con incisional IOP-lowering surgery) e nel 45.5% del gruppo dei pazienti ad alta dose (2.5% trattato con trabeculoplastica laser, e 8.1 incisional IOP-lowering

surgery) rispetto all'11% del gruppo placebo (0%, 0.5%) [Campochiaro PA, 2012;

Sarao V, 2014; Haritoglu C, 2013].

Conclusioni

L'uso di steroidi intravitreali sembra essere un'opzione molto valida per il trattamento dell'EMD. Un crescente numero di oftalmologi fa utilizzo di steroidi intravitreali per il trattamento di vari disturbi del segmento posteriore, specialmente quando i tradizionali metodi terapeutici hanno fallito. Il triamcinolone acetonide è stato uno dei primi farmaci utilizzati, ed è stato studiato in numerosi test clinici per il trattamento di patologie oculari. Tuttavia, la sua necessità di ripetute iniezioni, ed i potenziali effetti collaterali hanno portato allo sviluppo di sistemi alternativi per il rilascio di questi tipi di farmaci nell'occhio. I sistemi di rilascio di DEX e FA richiedono infatti una minore

frequenza di somministrazione rispetto ai trattamenti con TA, riducendo il rischio di endoftalmiti e migliorando la compliance del paziente. Gli impianti, inoltre, grazie ad un rilascio graduale, riducono il rischio di complicazioni dovute all’agente steroideo, che tuttavia rimane elevato. Comparando i due sistemi di rilascio prolungato possiamo affermare che l'impianto con DEX ha il vantaggio di una facile somministrazione, la procedura d'impianto può infatti essere svolta in ambito ambulatoriale, e la matrice di polimero biodegradabile permette il ritrattamento senza la necessità di dover prima rimuovere l'impianto preesistente. Il FA ha invece, rispetto al DEX, il vantaggio di una durata d'azione molto più elevata. Un punto molto importante nel confronto tra i due farmaci è sicuramente l'incidenza di complicazioni oculari, su tutte, l'aumento della pressione intraoculare e l'insorgenza di cataratta. Il DEX è meno lipofilo del fluocinolone acetonide e mostra quindi un minor sequestro nel cristallino e nella reta trabecolare, motivo per il quale presenta, potenzialmente, un minor rischio di causare cataratta ed elevata pressione intraoculare. Anche rispetto ai farmaci Anti-VEGF, i sistemi a rilascio prolungato richiedono una minore frequenza di ri-iniezione, il che si traduce in una minore incidenza di complicazioni correlate a trattamenti frequenti, una maggiore compliance del paziente ed una riduzione sostanziale dei costi di trattamento, che ad esempio, nel caso di ranibizumab e di aflibercept possono essere molto elevati. Appare difficile che i corticosteroidi possano sostituire i VEGF come terapia di prima linea nel trattamento dell'edema maculare diabetico a causa dell' elevato rischio di complicazioni intraoculari correlate agli steroidi. Tuttavia, grazie alle favorevoli proprietà farmacocinetiche potrebbero costituire un'ottima terapia di prima linea per l'EMD in occhi vitrectomizati, nei quali i farmaci Anti-VEGF sono meno efficaci a causa della loro emivita più breve. Inoltre sembrano essere una sensata opzione terapeutica nei casi di EMD persistente o

resistente agli anti-VEGF e alla laser terapia.

Bibliografia:

IDF Diabetes Atlas. 6th ed. Brussels, Belgium: International Diabetes Federation; 2013. 


Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. The Wisconsin epidemiologic study of diabetic retinopathy. IV. Diabetic macular edema. Ophthalmology. 1984 (1);91(12):1464–1474.

Yau JW, Rogers SL, Kawasaki R, et al. Meta-Analysis for Eye Disease (META-EYE) study group. Global prevalence and risk factors of diabetic retinopathy. Diabetes Care 2012;35:556–64. 


Das A, McGuire PG, Rangasamy S, PhD. Diabetic Macular Edema: Pathophysiology and Novel Therapeutic Targets Ophthalmology 2015;122:1375- 1394

The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329: 977– 86.

King P, Peacock I, Donnelly R. The UK Prospective Diabetes Study (UKPDS): clinical and therapeutic implications for Type 2 diabetes. Br J Clin Pharmacol 1999;48:643–8.

The ACCORD Study Group, ACCORD Eye Study Group. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med 2010;363:233– 44.

Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005;54:1615–25. 


Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C- dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49 (2000) 1939–1945.

Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, Feener EP, Herbert TP, Rhodes CJ, King GL. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation 101 (2000) 676–681.

Pathak D, Gupta A, Kamble B, Kuppusamy G, Suresh B. Oral targeting of protein kinase C receptor: promising route for diabetic retinopathy? Curr. Drug Deliv. 9 (2012) 405–413.

Ha H, Mi RY, Yoon JC, Kitamura M, Hi BL. Role of high glucose-induced nuclear factor-kB activation in monocyte chemoattractant protein-1 expression by mesangial cells, J. Am. Soc. Nephrol. 13 (2002) 894–902.

Milne R, Brownstein S, Advanced glycation end products and diabetic retinopathy, Amino Acids 44 (2013) 1397–1407. 


Sharma Y, Saxena S, Mishra A, Saxena A, Natu SM, Advanced glycation end products and diabetic retinopathy, J. Ocul. Biol. Dis. Inform. 5 (2012) 63–69. 
 Boyer DS, Hopkins JJ, Sorof J, Ehrlich JS. Anti-vascular endothelial growth factor therapy for diabetic macular edema. Ther Adv Endocrinol Metab. 2013 Dec;4(6):151- 69

Miller JW,Le Couter J, Strauss EC, Ferrara N, Vascular Endothelial Growth Factor A in Intraocular Vascular Disease. Ophtalmology 2013;120(1);106-14.

Med 9: 669–676.

He H, Venema V, Gu X, Venema R, Marrero M, Caldwell R. (1999) Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through flk-1/KDR activation of c-Src. J Biol Chem 274: 25130–25135. Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N. et al. (2003) Glomerular- specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 111: 707–716.

Nissen N, Polverini P, Koch A, Volin M, Gamelli R, DiPietro L. (1998) Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol 152: 1445–1452.

Ferrara N, Damico L, Shams N, Lowman H, Kim, R. (2006) Development of ranibizumab, an anti- vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 26: 859–870. Papadopoulos N, Martin J, Ruan Q, Rafique A, Rosconi M, Shi E. et al. (2012) Binding
 and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 15: 171–185. Stewart M. (2012) Anti-vascular endothelial growth factor drug treatment of diabetic macular edema: the evolution continues. Curr Diabetes Rev 8: 237–246.

Miller J, Le Couter J, Strauss E, Ferrara N. (2012) Vascular endothelial growth factor A in intraocular vascular disease. Ophthalmology 120: 106–114.

Adamis A, Shima D, Yeo K, Yeo T, Brown L, Berse B. et al. (1993) Synthesis and secretion of vascular permeability factor/vascular endothelial growth factor by human retinal pigment epithelial cells. Biochem Biophys Res Commun 193: 631–638. Rangasamy S, Srinivasan R, McGuire PG, Das A. Diabetic macular edema: molecular mechanisms. In: Das A, Friberg T, eds. Therapy for Ocular Angiogenesis. Philadelphia, PA: Wolters Kluwer; 2011:88–99. 


Navaratna D, McGuire PG, Menicucci G, Das A. Proteolytic degradation of VE- cadherin alters the blood-retinal barrier in diabetes. Diabetes 2007;56:2380–7. 
 Antonetti DA, Barber AJ, Khin S, et al. Vascular perme- ability in experimental diabetes is associated with reduced endothelial occludin content. Diabetes 1998;47:1953–9. 


Das A, Frank RN, Weber ML, et al. ATP causes retinal pericytes to contract in vitro. Exp Eye Res 1988;46:349–62. 


Kuwabara T, Cogan DG. Retinal vascular patterns. VI. Mural cells of the retinal capillaries. Arch Ophthalmol 1963;69: 492–502. 


Frank RN. Etiologic mechanisms in diabetic retinopathy. In: Ryan SJ, ed. RetinaVolume II. Philadelphia, PA: Elsevier 
 Mosby; 2006:1241–70. 


Lindahl P, Johansson BR, Levéen P, et al. Pericyte loss and 
 microaneurysm formation in PDGF-B deficient mice. Science 
 1997;277:242–5. 


Moss SE, Klein R, Klein BE. The 14-year incidence of visual loss in a diabetic population. Ophthalmology 1998;105: 998–1003.

Panagiotoglou TD, Ganotakis ES, Kymionis GD, et al. Ator- vastatin for diabetic macular edema in patients with diabetes mellitus and elevated serum cholesterol. Ophthalmic Surg Lasers Imaging 2010;41:316–22.

Das R, Kerr R, Chakravarthy U, Hogg RE. Dyslipidemia and Diabetic Macular Edema: A Systematic Review and Meta-Analysis.

Ophthalmology. 2015 Sep;122(9):1820-7.

Tauber JP, Cheng J, Gospodarowicz D. Effect of high and low density lipoproteins on proliferation of cultured bovine vascular endothelial cells. J Clin Invest 1980;66:696– 708.

Barter PJ, Nicholls S, Rye KA, et al. Antiinflammatory properties of HDL. Circ Res 2004;95:764–72.

Chew E, Davis MD, Danis R, et al. The effects of medical management on the progression of diabetic retinopathy in persons with type 2 diabetes: the Action to Control Cardio- vascular Risk in Diabetes (ACCORD) Eye Study. Ophthal- mology 2014;121:2443–51.

Diabetic Retinopathy Clinical Research Network. Vitrectomy outcomes in eyes with diabetic macular edema and vitre- omacular traction. Ophthalmology 2010;117:1087– 93. 


Ozaki H, Hayashi H, Vinores SA, et al. Intravitreal sustained release of VEGF causes retinal neovascularization in rabbits and breakdown of the blood-retinal barrier in rabbits and primates. Exp Eye Res 1997;64:505–17. 


Miyamoto K, Khosrof S, Bursell SE, et al. Vascular endo- thelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1). Am J Pathol 2000;156:1733–9.


 Funatsu H, Noma H, Mimura T, et al. Association of vitreous inflammatory markers in diabetic macular edema. Ophthal- mology 2009;116:73–9.

Nguyen, Q., Brown, D., Marcus, D., Boyer, D., Patel, S., Feiner, L. et al. (2012a) Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 119: 789–801.

Ip M, Domalpally A, Hopkins J, Wong P, Ehrlich J. (2012) Long-term effects of ranibizumab on diabetic retinopathy severity and progression. Arch Ophthalmol 130: 1145–1152.

Virgili G, Parravano M, Menchini F, Evans, J. (2014) Anti-vascular endothelial growth factor for diabetic macular oedema. Cochrane Database Syst Rev 10: CD007419.

Yu L, Liang X, Ferrara N. (2011) Comparing protein VEGF inhibitors: in vitro biological studies. Biochem Biophys Res Commun 408: 276–281.

Brown DM, Nguyen QD, Marcus DM, et al; RIDE and RISE Research Group. Long- term outcome of ranibizumab therapy for diabetic macular edema: 36 month results from two Phase III trials: RISE and RIDE. Ophthalmology 2013;120:2013–22. 
 Elman M, Qin H, Aiello L, Beck R, Bressler N, Ferris F, III et al. (2012) Intravitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: three-year randomized trial results. Ophthalmology 119: 2312–2318.

Do D, Nguyen Q, Khwaja A, Channa R, Sepah Y, Sophie R. et al. (2013) Ranibizumab for edema of the macula in diabetes study: 3-year outcomes and the need for prolonged frequent treatment. JAMA Ophthalmol 131: 139–145.

Nguyen Q, Shah S, Khwaja A, Channa R, Hatef E, Do D. et al. (2010) Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study. Ophthalmology 117: 2146–2151.

Clinical Research Network DRCR, Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med 2015;372: 1193–203. 


Cunningham E, Jr Adamis A, Altaweel M, Aiello L, Bressler N, D’Amico D. et al. (2005) A phase
 II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology 112: 1747–1757.

Holash J, Davis S, Papadopoulos N, Croll S, Ho L, Russell M et al. (2002) VEGF- Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A 99: 11393–11398.

Edelman JL. Differentiating intraocular glucocorticoids. Ophthalmo- logica. 2010;224(suppl 1):25–30. 


Clark AR, Belvisi MG. Maps and legends: the quest for dissoci- ated ligands of the glucocorticoid receptor. Pharmacol Ther. 2012; 134(1):54–67. 


Busillo JM, Cidlowski JA. The five Rs of glucocorticoid action during inflammation: ready, reinforce, repress, resolve, and restore. Trends Endocrinol Metab. 2013;24(3):109–119. 


Solito E, Mulla A, Morris JF, Christian HC, Flower RJ, Buckingham JC. Dexamethasone induces rapid serine-phosphorylation and membrane translocation of annexin 1 in a human folliculostellate cell line via a novel nongenomic mechanism involving the glucocorticoid receptor, protein kinase C, phosphatidylinositol 3-kinase, and mitogen-activated protein kinase. Endocrinology. 2003;144(4):1164–1174. 
 Dalli J, Norling LV, Renshaw D, Cooper D, Leung KY, Perretti M. Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil- derived microparticles. Blood. 2008;112(6):2512–2519. 


Stewart MW. Corticosteroid use for diabetic macular edema: old fad or new trend? Curr Diab Rep. 2012;12(4):364–375.

Logie JJ, Ali S, Marshall KM, Heck MM, Walker BR, Hadoke PW. Glucocorticoid- mediated inhibition of angiogenic changes in human endothelial cells is not caused by reductions in cell proliferation or migration. PLoS One. 2010;5(12):e14476. 


Zhang W, Liu H, Rojas M, Caldwell RW, Caldwell RB. Anti- inflammatory therapy for diabetic retinopathy. Immunotherapy. 2011; 3(5):609–628.

Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res. 2011;30(5):343–358. 


Lupo G, Motta C, Giurdanella G, et al. Role of phospholipases A2 in diabetic retinopathy: in vitro and in vivo studies. Biochem Pharmacol. 2013;86(11):1603– 1613.

Tamura H, Miyamoto K, Kiryu J, et al. Intravitreal injection of corti- costeroid attenuates leukostasis and vascular leakage in experimental diabetic retina. Invest Ophthalmol Vis Sci. 2005;46(4):1440–1444.

Aveleira CA, Lin CM, Abcouwer SF, Ambrosio AF, Antonetti DA. TNF-alpha signals through PKCzeta/NF-kappaB to alter the tight junction complex and increase retinal endothelial cell permeability. Diabetes. 2010;59(11):2872–2882. 


Miura Y, Roider J. Triamcinolone acetonide prevents oxidative stress- induced tight junction disruption of retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol. 2009;247(5):641–649.

Zhao M, Bousquet E, Valamanesh F, et al. Differential regulations of AQP4 and Kir4.1 by triamcinolone acetonide and dexametha- sone in the healthy and inflamed retina. Invest Ophthalmol Vis Sci. 2011;52(9):6340–6347.

Dugel PU, Bandello F, Loewenstein A. Dexamethasone intravitreal implant in the treatment of diabetic macular edema. Clin Ophthalmol. 2015 Jul 16;9:1321-35.

Hughes PM, Olejnik O, Chang-Lin JE, Wilson CG. Topical and sys- temic drug delivery to the posterior segments. Adv Drug Deliv Rev. 2005;57(14):2010–2032. Edelhauser HF, Rowe-Rendleman CL, Robinson MR, et al. Oph- thalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications. Invest Ophthalmol Vis Sci. 2010;51(11):5403–5420.

Maurice DM. Drug delivery to the posterior segment from drops. Surv Ophthalmol. 2002;47(suppl 1):S41–S52.

Kim SH, Lutz RJ, Wang NS, Robinson MR. Transport barriers in transscleral drug delivery for retinal diseases. Ophthalmic Res. 2007;39(5):244–254.

Jager RD, Aiello LP, Patel SC, Cunningham ET Jr. Risks of intravitre- ous injection: a comprehensive review. Retina. 2004;24(5):676–698

Kwak HW, D’Amico DJ. Evaluation of the retinal toxicity and pharmacokinetics of dexamethasone after intravitreal injection. Arch Ophthalmol. 1992;110(2):259–266. Sarao V, Veritti D, Boscia F, Lanzetta P. Intravitreal Steroids for the Treatment of Retinal Diseases. ScientificWorldJournal. 2014 Jan 8;2014:989501.

Hardman JG, Limbird LE, Gilman AG. Goodman and Gilman’s the Pharmacological Basis of Therapeutics, McGraw- Hill, 10th edition, 2001.

Abelson MB, Neufeld AH, Topping TM. Principlesand Practice of Ophthalmology, WB Saunders, 1994.

Scholes GN, O’Brien WJ, Abrams GW, Kubicek MF, “Clearance of triamcinolone from vitreous,” Archives of Ophthalmology, vol. 103, no. 10, pp. 1567–1569, 1985. Mansoor S, Kuppermann BD, Kenney MC. Intraocular sustained-release delivery systems for triamcinolone acetonide. Pharm Res 2009;26:770–784.

Beer PM, Bakri SJ, Singh RJ, Liu W, Peters GB 3rd, Miller M.“Intraocular concentration and pharmacokinetics of triamcinolone acetonide after a single intravitreal injection,” Ophthalmology, vol. 110, no. 4, pp. 681–686, 2003. 


Yang Y, Bailey C, Loewenstein A, Massin P. INTRAVITREAL CORTICOSTEROIDS IN DIABETIC MACULAR EDEMA. Retina. 2015 Sep 7. Audren F, Erginay A, Haouchineetal B.“Intravitrealtriamci- nolone acetonide for diffuse diabetic macular oedema: 6-month results of a prospective controlled trial,” Acta Ophthalmologica Scandinavica, vol. 84, no. 5, pp. 624–630, 2006. 


Hauser D, Bukelman A, Pokroy R et al. “Intravitreal triamci- nolone for diabetic macular edema: comparison of 1, 2, and 4 mg,” Retina, vol. 28, no. 6, pp. 825–830, 2008. 


Lam DSC, Chan CKM, Mohamed S et al., “A prospective randomised trial of different doses of intravitreal triamcinolone for diabetic macular oedema,” British Journal of Ophthalmology, vol. 91, no. 2, pp. 199–203, 2007. 


Ciulla TA, Harris A, McIntyre N, Jonescu-Cuypers C. Treatment of diabetic macular edema with sustained-release glucocorticoids: intravitreal triamcinolone acetonide, dexamethasone implant, and fluocinolone acetonide implant. Expert Opin Pharmacother. 2014 May;15(7):953-9.

Diabetic Retinopathy Clinical Research Network, “A random- ized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema,” Oph- thalmology, vol. 115, no. 9, pp. 1447–1449, 2008.

Moisseiev E, Regenbogen M, Rabinovitch T, Barak A, Loewenstein A, Goldstein M. Evaluation of pain during intravitreal Ozurdex injections vs intravitreal bevacizumab injections. Eye. 2014;28(8):980–985.

Meyer CH, Klein A, Alten F, et al. Release and velocity of micron- ized dexamethasone implants with an intravitreal drug delivery system: kinematic analysis

with a high-speed camera. Retina. 2012;32(10):2133–2140.

Berarducci A, Sian IS, Ling R. Inadvertent dexamethasone implant injection into the lens body management. Eur J Ophthalmol. 2014; 24(4):620–622.

Fasce F, Battaglia Parodi M, Knutsson KA, et al. Accidental injection of dexamethasone intravitreal implant in the crystalline lens. Acta Ophthalmol. 2014;92(4):e330–e331.

Agrawal R, Fernandez-Sanz G, Bala S, Addison PK. Desegmentation of Ozurdex implant in vitreous cavity: report of two cases. Br J Oph- thalmol. 2014;98(7):961– 963.

Rishi P, Mathur G, Rishi E. Fractured OzurdexTM implant in the vitreous cavity. Ind J Ophthalmol. 2012;60(4):337–338.

Wai Ch’ng S, Padroni S, Banerjee S. Anterior vitreous displace- ment of the intravitreal dexamethasone implant (Ozurdex). Eye. 2014;28(2):238–239. 


Khurana RN, Appa SN, McCannel CA, et al. Dexamethasone implant anterior chamber migration: risk factors, complications, and manage- ment strategies. Ophthalmology. 2014;121(1):67–71. 


Kishore SA, Schaal S. Management of anterior chamber dislocation of dexamethasone implant. Ocul Immunol Inflamm. 2013;21(1):90–91. 


Callanan DG, Gupta S, Boyer DS, et al. Dexamethasone intra- vitreal implant in combination with laser photocoagulation for the treatment of diffuse diabetic macular edema. Ophthalmol- ogy 2013;120:1843–1851.

Kamppeter BA, Cej A, Jonas JB. Intraocular concentration of triamcinolone acetonide after intravitreal injection in the rabbit eye. Ophthalmology 2008;115:1372–1375. 
 Boyer DS, Faber D, Gupta S, et al. Dexamethasone intravitreal implant for treatment of diabetic macular edema in vitrectom- ized patients. Retina 2011;31:915–923. Boyer DS, Yoon YH, Belfort R Jr., et al. Three-year, random- ized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmol- ogy 2014;121:1904–1914.

Chang-Lin JE, Attar M, Acheampong AA, et al. Pharmacokinetics and 
 pharmacodynamics of a sustained-release dexamethasone intravitreal 
 implant. Invest Ophthalmol Vis Sci. 2011;52(1):80–86.

Chin HS, Park TS, Moon YS, Oh JH. Difference in clearance of intra- vitreal triamcinolone acetonide between vitrectomized and nonvitrec- tomized eyes. Retina. 2005;25(5):556–560. 


Boyer DS, Faber D, Gupta S, et al; Ozurdex CHAMPLAIN Study Group. Dexamethasone intravitreal implant for treatment of diabetic macular edema in

vitrectomized patients. Retina. 2011b;31(5):915–923.

Mehta H, Gillies M, Fraser-Bell S. Perspective on the role of Ozurdex (dexamethasone intravitreal implant) in the management of diabetic macular oedema. Ther Adv Chronic Dis. 2015 Sep;6(5):234-45

Gillies M, Lim L, Campain A, Quin G,
 Salem W, Li J. et al. (2014) A randomized clinical trial of intravitreal bevacizumab versus intravitreal dexamethasone for diabetic macular edema: the BEVORDEX study. Ophthalmology 121: 2473–2481. Bausch & Lomb. RETISERT (fluocinolone acetonide intravi- treal implant) 0.59 mg [package insert]. Rochester, NY: Bausch & Lomb; 2012. 


ILUVIEN summary of product characteristics. Aldershot, United Kingdom: Alimera Sciences F Limited; 2013. 


Driot JY, Novack GD, Rittenhouse KD, et al. Ocular pharma- cokinetics of fluocinolone acetonide after retisert intravitreal implantation in rabbits over a 1-year period. J Ocul Pharmacol Ther 2004;20:269–275.

Campochiaro PA, Brown DM, Pearson A et al. “Sustained delivery fluocinolone acetonide vitreous inserts provide benefit for at least 3 years in patients with diabetic macular edema,” Ophthalmology, vol. 119, no. 10, pp. 2125–2132, 2012. 


Pearson PA, Comstock TL, Ip M, et al. Fluocinolone acetonide intravitreal implant for diabetic macular edema:
 a 3-year multicenter, randomized, controlled clinical trial. Ophthalmology 2011;118(8):1580-7 


Bakri SJ, Kaiser PK, “Posterior subtenon triamcinolone acetonide for refractory diabetic macular edema,” American Journal of Ophthalmology, vol. 139, no. 2, pp. 290–294, 2005.

Scott IU, Flynn HW Jr. “Reducing the risk of endoph- thalmitis following intravitreal injections,” Retina, vol. 27, no. 1, pp. 10–12, 2007. 


Jonas JB, Kreissig I, Spandau UH, Harder B, “Infectious and noninfectious endophthalmitis after intravitreal high- dosage triamcinolone acetonide,” American Journal of Ophthal- mology, vol. 141, no. 3, pp. 579–580, 2006. 


Kuppermann BD, Blumenkranz MS, Haller JA et al., “Randomized controlled study of an intravitreous dexametha- sone drug delivery system in patients with persistent macular edema,” Archives of Ophthalmology, vol. 125, no. 3, pp. 309–317, 2007. Haller JA, Bandello F, Belfort R Jr. et al., “Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion,” Ophthalmology, vol. 117, no. 6, pp. 1134–1146, 2010.

Detry-Morel M, Escarmelle A, Hermans I, “Refractory ocular hypertension secondary to intravitreal injec- tion of triamcinolone acetonide,” Bulletin de la Societe Belge d’Ophtalmologie, vol. 292, pp. 45–51, 2004. 


Documenti correlati