• Non ci sono risultati.

5 APPLICAZIONE DEL MODELLO PROPAGATORIO

5.1 Il file SIM

Le istruzioni relative alle modalità di esecuzione delle simulazioni vengono lette dal modello all’interno di quello che viene comunemente chiamato “file SIM”; l’estensione “.sim” deriva appunto da simulazione, poiché tale documento contiene tutte le informazioni necessarie per l’esecuzione della stessa, in particolare relativamente alle condizioni al contorno da applicare per la risoluzione delle equazioni del moto nel dominio scelto. Affinché sia utilizzabile deve essere correttamente compilato, rispettando una struttura tale da essere compatibile con il modello (ossia, affinché il modello legga le informazioni in modo corretto e completo). Una volta generato, è possibile visualizzare a colpo d’occhio le condizioni al contorno applicate aprendo il file SIM insieme al corrispondente GEO in Incidenze.

Viene pertanto brevemente riassunta la struttura del file SIM, indicando tipologia e funzione delle informazioni da inserire, analizzate stringa per stringa.

STRUTTURA FILE SIM

Titolo Una stringa con la descrizione lavoro

Versione, titolo Versione (2.Xxxx) e una seconda stringa con la descrizione lavoro

Dati generali della simulazione Stringa di separazione

TT, dt, dtprt, dtconvet, dtRey, ivideo

ƒ TT = durata della simulazione [sec]

ƒ dt = passo temporale di calcolo; indica ogni quanto tempo il modello riproduce soluzioni [sec]

ƒ dtprt = passo temporale di stampa dei risultati [sec] ƒ dtconvet = tempo di attivazione dei termini convettivi [sec] ƒ dtRey = tempo di attivazione dei termini di Reynolds [sec], da

utilizzare nel caso in cui si voglia riprodurre l’effetto di vortici ƒ ivideo = indice per la stampa a video dei risultati con passo dtprt

poroETA, Csmago, Cverticale

ƒ poroETA = porosità

ƒ Csmago = coefficiente di Smagorinsky per la componente orizzontale della viscosità cinematica turbolenta (Cs=0.2) ƒ Cverticale = coefficiente per la componente verticale della

viscosità cinematica turbolenta (Cv=0.1) nomefile.geo Nome del file della geometria

nomefile.out Nome del file dei risultati

1/0 Se indice=1, viene calcolata l’idrodinamica, se indice=0 l’idrodinamica non viene calcolata (ad esempio nelle simulazioni della sola propagazione del moto ondoso)

MODELLAZIONE NUMERICA DELLA PROPAGAZIONE DELL'ONDA DI PIENA LUNGO IL TORRENTE MUSON DEI SASSI

72

Lista delle variabili da stampare Stringa di separazione

1/0 Livello Ho, quota della superficie libera (nodale)

1/0 Portate qx,qy nelle maglie e portate nei canali e tronchi speciali 1/0 Viscosità cinematica turbolenta (di maglia)

1/0 Sforzi di Reynolds (2 componenti di maglia)

1/0 Quota del fondo (nodale)

1/0 Portate specifiche al fondo (2 componenti di maglia) 1/0 Concentrazione solidi in sospensione (nodale) 1/0 Portata di filtrazione e volume immagazzinato

1/0 Altezza d’onda (di maglia)

1/0 Direzione d’onda (di maglia)

1/0 Radiation stress (2 componenti di maglia)

1/0 Concentrazione tracciante (nodale)

1/0 Accelerazioni convettive (2 componenti di maglia)

1/0 Curvature (di maglia)

1/0 Vuoto 1/0 Vuoto 1/0 Vuoto 1/0 Vuoto 1/0 Vuoto 1/0 Vuoto

Condizioni iniziali Stringa di separazione

H0 Valore iniziale della quota della superficie libera (utilizzato solo se non viene letto il file di restart)

iHiniz (1/0) Eventuale correzione livelli [se iHiniz=1 si inizializzano i livelli a max(h

f-Ylim, H0)]

irestart (1/0) Se irestart=1 la condizione iniziale viene letta dal file di restart nomefile.bup Nome del file di restart

Tabelle dati variabili nel tempo Stringa di separazione

ntab Numero di tabelle per l’assegnazione dei dati variabili nel tempo (livelli e portate)

RIPETUTI PER OGNUNA DELLE ntab DA INSERIRE

dtab, nvaltab, tabella jtab

ƒ dtab = passo temporale con cui vengono scanditi i valori (il primo valore si riferisce all’istante t=0)

ƒ nvaltab = numero di valori contenuti nella tabella ƒ jtab = indice della tabella

X1,X2,X3,….XN-1,XN nvaltab dati della tabella riportati per righe, massimo 10 dati per ogni riga

APPLICAZIONE DEL MODELLO PROPAGATORIO

Condizioni al contorno Stringa di separazione

nh Numero di nodi con livello assegnato

nodo, jtab, xcost [DA RIPETERE PER OGNUNO DEGLI nh NODI]

ƒ nodo = indice del nodo (nel file GEO) cui si applica il livello ƒ jtab = indice della tabella contenente la serie temporale del livello

da imporre

ƒ xcost = costante moltiplicativa dei livelli (generalmente xcost = 1, usata qualche volta per amplificare serie periodiche di livelli) nq Numero di nodi con portata assegnata (positiva entrante)

nodo, jtab, xcost [DA RIPETERE PER OGNUNO DEGLI nq NODI]

ƒ nodo = indice del nodo (nel file GEO) in cui entra la portata ƒ jtab = indice della tabella contenente la serie temporale delle

portate da imporre

ƒ xcost = costante moltiplicativa delle portate (per applicare solo una percentuale delle portate contenute nelle tabelle, utile quando si vuole frazionare l’idrogramma in più punti per un unico corso d’acqua)

ns Numero di nodi con scala delle portate assegnata

, ℎ , α, nodo, jtab [DA RIPETERE PER OGNUNO DEGLI ns NODI]

ƒ , ℎ , α sono tre parametri che descrivono la scala delle portate secondo la legge di potenze = (ℎ − ℎ )

ƒ nodo = indice del nodo (nel file GEO) in cui entra la portata ƒ jtab = indice della tabella contenente la serie temporale di (se

jtab>0); se jtab=0, il valore di resta costante e pari a quello assegnato

nms Numero di maglie speciali con tabella associata

m, jtipo, jab1, jtab2 [DA RIPETERE PER OGNUNA DELLE nms MAGLIE]

ƒ m = indice della maglia (nel file GEO) ƒ jtipo = tipo di maglia speciale

ƒ jtab1, jtab2 = indici delle tabelle

[jtipo=4 (maglia barriera) → jtab1= tabella quote del fondo, jtab2=0; jtipo=7 (maglia propeller) → jtab1= tabella della spinta (N),

jtab2=tabella della direzione (gradi) in cui spinge l’elica] nts Numero di tronchi speciali con tabella associata

m, jtipo, jab1, jtab2 [DA RIPETERE PER OGNUNO DEGLI nts TRONCHI]

ƒ m = indice del tronco (nel file GEO) ƒ jtipo = tipo di tronco speciale ƒ jtab1, jtab2 = indici delle tabelle

[jtipo=1 (tronco argine) → jtab1= tabella quote sfioro, jtab2=0; jtipo=2 (tronco barriera) → jtab1= tabella quote fondo, jtab2=0; jtipo=4 (tronco idrovora) → jtab1= tabella shift quote A/S, jtab2=0; jtipo=5 (tronco paratoia) → jtab1= tabella apertura paratoia, jtab2=0]

Dati relativi al vento Stringa di separazione

jwind Se jwind>0 viene considerato il vento, altrimenti no. Comunque i parametri di seguito elencati vengono letti dal modello.

, , jtab1, jtab2

ƒ ed sono due parametri per la stima dello sforzo prodotto dal vento secondo la relazione: = (1 − ) , con W=velocità del vento

MODELLAZIONE NUMERICA DELLA PROPAGAZIONE DELL'ONDA DI PIENA LUNGO IL TORRENTE MUSON DEI SASSI

74

velocità del vento

ƒ jtab2 = indice della tabella contenente la serie temporale delle direzioni del vento (angolo che il vettore velocità del vento forma con l’asse x)

Questi dati sono utilizzati solo se jwind>0.

Dati relativi all’infiltrazione Stringa di separazione

jfiltra Se jfiltra>0 viene considerato l’infiltrazione, altrimenti no. Comunque i parametri di seguito elencati vengono letti dal modello.

filtra0, filtra, zita0

ƒ filtra0 = velocità di infiltrazione iniziale

ƒ filtra= velocità di infiltrazione a terreno completamente saturo ƒ zita0 = spessore dello strato di immagazzinamento

Questi dati sono utilizzati solo se jfiltra>0.

Dati relativi al trasporto solido Stringa di separazione

jFONDO, jSOSP, Nper, Tsmooth

ƒ se jFONDO>0 viene considerato il trasporto solido al fondo, altrimenti no

ƒ se jSOSP>0 viene considerato il trasporto solido in sospensione, altrimenti no

ƒ Nper=fattore di amplificazione temporale dei processi di deposito o erosione (interessa solo l’evoluzione del fondo e non il trasporto solido)

ƒ Tsmooth=intervallo di tempo con cui si procede a lisciare le ondulazioni prodotte da fenomeni di instabilità.

Poro, Dgrain, Densrel, Ksvero, curv

ƒ Poro=porosità

ƒ Dgrain=diametro dei grani in millimetri ƒ Densrel=densità relativa del materiale solido

ƒ Ksvero=coefficiente di Strickler con cui valutare l’effettivo sforzo che produce trasporto

ƒ curv=parametro per effetto curvature (curv=10)

Cdry, Czero, perCstampa

ƒ Cdry=concentrazione che viene assegnata al nodo asciutto ƒ Czero=concentrazione iniziale dei sedimenti in sospensione,

utilizzato solo se non si usa un file di restart

ƒ perCstampa=coefficiente di amplificazione per i valori di concentrazione stampati

NcAss NcAss=numero di nodi con concentrazione assegnata nodo, jTAB [DA RIPETERE PER OGNUNO

DEGLI NcAss NODI]

ƒ nodo=nodo in cui si assegna la concentrazione

ƒ jTAB=indice della tabella contenente la serie temporale delle concentrazioni assegnate

Nfix Nfix=numero di nodi con quota del fondo fissa (equilibrio tra deposito ed erosione)

n1, n2, n3, ……., nNfix Indici dei nodi con quota del fondo fissa (vengono letti solo se Nfix>0)

Dati relativi al trasporto e diffusione Stringa di separazione Jdiffusione

Se Jdiffusione>0 viene simulato il trasporto e la diffusione di una sostanza conservativa o con decadimento esponenziale. Comunque i parametri di seguito elencati vengono letti

APPLICAZIONE DEL MODELLO PROPAGATORIO

Dzero, Ddry, Diff, Dperstampa, Decadi

ƒ Dzero=concentrazione iniziale della sostanza, utilizzato solo se non si usa un file di restart

ƒ Ddry=concentrazione che viene assegnata al nodo asciutto ƒ Diff=coefficiente di diffusione

ƒ Dperstampa=coefficiente di amplificazione per i valori di

concentrazione stampati- Decadi=coefficiente di decadimento per la sostanza

nD, nFD ƒ nD=numero di nodi con concentrazione assegnata

ƒ nFD=numero di nodi con flusso di concentrazione assegnata

nodo, jTAB, Xcost [DA RIPETERE PER OGNUNO DEGLI nD NODI, qualora nD>0]

ƒ nodo=nodo in cui si assegna la concentrazione

ƒ jTAB=indice della tabella contenente la serie temporale delle concentrazioni assegnate

ƒ Xcost=costante moltiplicativa delle concentrazioni

nodo, jTAB, Xcost [DA RIPETERE PER OGNUNO DEGLI nFD NODI, qualora nFD >0]

ƒ nodo=nodo in cui si assegna il flusso concentrazione (positivo se entrante)

ƒ jTAB=indice della tabella contenente la serie temporale dei flussi di concentrazioni assegnata

ƒ Xcost=costante moltiplicativa dei flussi di concentrazione

Dati relativi al moto ondoso Stringa di separazione

jWAVE Se jWAVE>0 viene simulato il moto ondoso. Comunque i parametri di seguito elencati vengono letti

periodo, fcRAD, fcVorb, CfricW

ƒ periodo=periodo dell’onda monocromatica ƒ fcRAD=fattore di correzione dei Radiation stress

ƒ fcVorb=fattore di correzione delle velocità orbitali al fondo ƒ CfricW =coefficiente di attrito per la dissipazione di energia

dell’onda che si propaga

jTABHw, jTABteta, jWaWind

ƒ jTABHw=indice della tabella con l’altezza d’onda al largo ƒ jTABteta=indice della tabella con la direzione dell’onda al largo ƒ jWaWind=1 considero l’effetto del vento, altrimenti (jWaWind=0), non lo

considero jjRS, dtpesoRS

jjRS=1, calcolo e considero i Radiation stress. Il contributo dei radiation stress è considerato gradualmente in un intervallo di tempo dtpesoRS.

JjVO, dtpesoVO

JjVO=1, calcolo e considero le velocità orbitali al fondo. Il contributo delle velocità orbitali al fondo è considerato gradualmente in un intervallo di tempo dtpesoVO.

nodWave Numero di nodi con altezza d’onda assegnata

n1, n2, n3, ……., nnodWave Indici dei nodi con altezza d’onda assegnata (letti solo se nodWave>0) iwave, dtpesoW ƒ se iwave=1, leggo da file i Radiation stress

ƒ dtpesoW=tempo di attivazione dei Radiation stress filenameTAU Nome del file contenente i Radiation stress

ibedwave, dtpesoH ƒ se ibedwave=1, leggo da file le velocità orbitali al fondo ƒ dtpesoH=tempo di attivazione delle velocità orbitali al fondo FilenameBWA Nome del file contenente le velocità orbitali al fondo

MODELLAZIONE NUMERICA DELLA PROPAGAZIONE DELL'ONDA DI PIENA LUNGO IL TORRENTE MUSON DEI SASSI

76

APPLICAZIONE DEL MODELLO PROPAGATORIO

MODELLAZIONE NUMERICA DELLA PROPAGAZIONE DELL'ONDA DI PIENA LUNGO IL TORRENTE MUSON DEI SASSI

78

5.2 Condizioni al contorno

Come accennato nel corso del precedente paragrafo, al fine di poter utilizzare il modello propagatorio è necessario definire, compatibilmente con il territorio modellato, le condizioni iniziali e al contorno del problema.

Con riferimento al file SIM, le condizioni iniziali vengono attribuite assegnando un livello di partenza tale da imporre un minimo tirante d’acqua all’interno dei corsi d’acqua, in modo però che il dominio non risulti completamente allagato (dovrà pertanto essere inferiore alla quota del fondo minima assegnata alle maglie); il livello viene inizialmente corretto sulla base delle caratteristiche morfologiche del terreno, considerato il forte gradiente di quote tra la parte alta (quota massima 152.03 m) e la parte bassa (quota minima 8.28 m) del reticolo di calcolo. Le condizioni così definite sono state utilizzate per raggiungere una situazione di regime, a moto permanente, in quanto saranno poi proprio le condizioni di moto permanente, lette dal corrispondente file BUP (file di backup) di restart, a diventare condizioni iniziali al tempo t=0 per le simulazioni a moto vario, come verrà illustrato più dettagliatamente nel paragrafo 5.3.

Una volta imposto lo stato iniziale in cui versa il dominio considerato, si vogliono assegnare le portate ed i livelli desiderati ai corsi d’acqua con lo scopo ultimo di osservare come la situazione si evolve in seguito all’introduzione di tali condizioni. L’entità delle stesse è variabile a seconda dello scenario che si vuole simulare (se moto permanente, moto vario, ecc.) ma in ogni caso le modalità di assegnazione delle condizioni al contorno non cambiano: sulla base della geometria realizzata, per ogni corso d’acqua entrante nel dominio deve essere assegnata almeno una condizione di immissione di portata, sotto forma di idrogramma che verrà riportato nel file SIM come tabella dati variabile nel tempo, mentre in corrispondenza di ogni corso d’acqua uscente dal dominio si dovranno assegnare un definito livello oppure una scala delle portate opportunamente ricostruita nella forma = (ℎ − ℎ ) (dove ℎ è la quota di Talweg oppure, se presente, la quota dello sfioratore rispetto allo zero IGM di riferimento, mentre ed α sono parametri empirici, coefficienti della curva che al meglio interpola i dati sperimentali di corrispondenza livello – portata).

Incentrando maggiormente l’attenzione al caso in esame, i valori di livelli e portate variabili nel tempo utilizzati, in mancanza di dati recenti a disposizione ed al fine di mantenere una certa coerenza con le fonti principali di dati finora adottate, sono stati estrapolati dallo studio sulla “Propagazione delle onde di piena lungo l’asta del Muson dei Sassi mediante modello bidimensionale” (Università degli Studi di Padova - Prof. Ing. Luigi D’Alpaos – Maggio 2006), cui già più e più volte si è fatto riferimento nel corso del presente elaborato. In particolare, viene considerato l’evento critico generato da precipitazioni con tempo di ritorno di 100 anni, utilizzandone i relativi idrogrammi di piena riferiti ai seguenti corsi d’acqua: torrenti del Bacino Montano; Avenale; fiumi cui affluiscono le acque dell’Interbacino di Castelfranco Veneto; Brentone; Brenton; Muson Vecchio; Vandura; Orcone; Tergola; Tergolino.

Sfruttando invece le code degli idrogrammi sopra citati, è stato possibile stimare dei valori attendibili di portata in condizioni di moto permanente, da utilizzare come base per le simulazioni a moto vario; per informazioni più specifiche a riguardo si rimanda comunque al paragrafo 5.3.

APPLICAZIONE DEL MODELLO PROPAGATORIO

Fig.5.3 Idrogrammi relativi alla parte alta del dominio

Fig.5.4 Idrogrammi relativi ad Avenale, Interbacino di Castelfranco Veneto (TV) e Muson Vecchio

0 20 40 60 80 100 120 0 12 24 36 48 60 72 Portata (m 3/s) tempo (ore)

Idrogrammi di Piena (Tr = 100 anni)

BacinoMontano Brentone Brenton 0 5 10 15 20 25 0 12 24 36 48 60 72 Portata (m 3/s) tempo (ore)

Idrogrammi di Piena (Tr = 100 anni)

Avenale

Interb.Castelfranco MusonVecchioNord

MODELLAZIONE NUMERICA DELLA PROPAGAZIONE DELL'ONDA DI PIENA LUNGO IL TORRENTE MUSON DEI SASSI

80

Fig.5.5 Idrogrammi dei corsi d'acqua affluenti a Camposampiero (PD)

Fig.5.6 Idrogrammi relativi ai corsi d'acqua che scorrono nella parte sud del dominio

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0 12 24 36 48 60 72 Portata (m 3/s) tempo (ore)

Idrogrammi di Piena (Tr = 100 anni)

VanduraNord VanduraCentro Tergolino 0.0 5.0 10.0 15.0 20.0 25.0 0 12 24 36 48 60 72 Portata (m 3/s) tempo (ore)

Idrogrammi di Piena (Tr = 100 anni)

OrconeNord OrconeSud Tergola

APPLICAZIONE DEL MODELLO PROPAGATORIO

Vengono quindi riassunte di seguito le condizioni al contorno applicate con riferimento agli elementi della geometria cui sono state assegnate.

CORSO D’ACQUA CONDIZIONI AL CONTORNO

INDICE NODALE GEO

ENTRANTI USCENTI IN OUT

Brenton - Pighenzo Brentone, 20% - 19145 -

Brentone, 30% 14737

Viazza Bacino Montano, 20% - 19678 -

Lastego Bacino Montano, 20% - 19689 -

Muson dei Sassi Bacino Montano, 50% Livello imposto: 15 m s.l.m.m. allo sbocco in Brenta 19718 254

Musonello Bacino Montano, 5% - 14874 -

Interbacino Castelfranco, 10% - 30891 - Avenale Avenale, 10% - 19747 - Avenale, 40% 15488 Avenale, 50% 13329 Interbacino Castelfranco, 90% 12401

Brenton – Ca’ Mula Brenton, 20% - 20302 -

Brenton, 50% 17209

Brentella - Livello imposto: 21 m s.l.m.m. - 8528

Muson Vecchio Muson Vecchio Nord, 50% Livello imposto: 18 m s.l.m.m. 9957 5795

Muson Vecchio Nord, 50% 8715

Vandura Vandura Nord, 50% - 9899 - Vandura Nord, 50% 7884 Vandura Centro, 98% 30888 Vandura Centro, 2% 30889 Vandura Sud, 100% 5114 Tergolino Tergolino, 50% - 6778 - Tergolino, 50% 5380 Orcone Orcone Nord, 50% - 8266 - Orcone Nord, 50% 7263 Orcone Sud, 50% 6720 Orcone Sud, 50% 5991

Tergola Tergola, 50% Livello imposto: 7 m s.l.m.m. 7716 100

Tergola, 50% 4346

Tergola Vecchio Tergola, 10% - 30890 -

MODELLAZ Per ognuno d in corrispond interamente corso d’acqu condizioni al ZIONE NUMER

dei corsi d’acq denza della s ai soli nodi d ua di apparte contorno son RICA DELLA PR qua considera sezione di chi isposti lungo enenza, sulla o state poste. Fig.5.7 In ROPAGAZION

ati, gli idrogram iusura del ba i confini del d base della p nquadramento NE DELL'ONDA 82 mmi a disposi acino idrografi dominio ma, c porzione di b o delle condizio A DI PIENA LU izione rappres co corrispond come è possib bacino sotteso ni al contorno UNGO IL TORR sentano l’entit dente; non so bile osservare o in corrispon applicate RENTE MUSO tà delle portat ono stati pert e, suddivisi lu ndenza dei p

ON DEI SASSI

e sviluppatesi anto applicati ngo l’asta del unti in cui le i i l e

APPLICAZIONE DEL MODELLO PROPAGATORIO

Documenti correlati