• Non ci sono risultati.

Heat shock protein 90 (Hsp90 – proteina dello shock termico 90), una delle più abbondanti proteine nelle cellule eucariote, è un chaperone ATP dipendente che gioca un ruolo centrale regolando la stabilizzazione, l’attivazione e la degradazione di una gamma di proteine [97]. Queste proteine “clienti” includono proteine riconosciute come sovra-espresse o mutanti oncogeniche come C-RAF, B-RAF, ERBB2, AKT, telomerasi ed il gene p53. Alcune di queste proteine sono associate con le sei caratteristiche dei tumori [98-99], e perciò Hsp90 è emersa come un bersaglio molto attraente per i nuovi agenti terapeutici contro il cancro. Il progresso in quest’area è stato ampiamente revisionato negl’ultimi cinque anni. Specifici inibitori delle Hsp90 sono ora entrati negli studi clinici. Un lavoro interessante sugli inibitori di Hsp90 è stato fatto con due prodotti naturali: il radicicol e la

56

geldanamicina, che si legano entrambi alla tasca di legame dell’ATP

nel dominio N-terminale delle proteine [100 a,b].

Radicicol

La struttura che si lega con le proteine sia del radicicol che della geldanamicina è stata studiata attraverso cristallografia a raggi X [101] e in soluzione con spettroscopia NMR [102].

Se radicicol fu originariamente isolato da funghi Monocillum Nordinii più di 50 anni fa, e successivamente da Nectria Radicicola e dalla pianta associata al fungo Chaetomium Chiversii [97]; ha attirato l’interesse di chimici sintetici ed è stato il soggetto di tre sintesi totali [103 a,b,c,d,e,g]. E’ uno dei più potenti inibitori di Hsp90 in vitro, mentre ha una scarsa attività in vivo, ed è un membro della più vasta classe di prodotti naturali conosciuti come lattoni dell’acido resorcilico, molti dei quali presentano una potente attività biologica. La perdita dell’attività in vivo di radicicol è presumibilmente il risultato del suo epossido reattivo e della porzione dienonica, anche se il suo derivato ossimico potrebbe avere una piccola attività in vivo [104]. In una ricerca su altri analoghi biologicamente attivi, Danishefsky e collaboratori hanno sviluppato una nuova serie di inibitori basati sul ciclopropanradicicol [105], compreso il triazol-ciclopropanradicicol descritto recentemente [106].

57

Triazol-ciclopropanradicicol NP261

E’ stato riportato uno studio sulla struttura del legame del radicicol legato nella tasca dell’ATP nel dominio N-terminale di Hsp90 di lievito (Figura 10) [97]. Nella stessa pubblicazione è stat riportata l’attività biologica di alcuni analoghi del radicicol, e di una serie di nuovi macrolattoni resorcilici con anelli e conformazioni diverse.

Figura 10. Interazioni di legame del radicicol con Hsp90 di lievito.

Uno di questi analoghi, NP261, non solo ha mostrato di essere un importante inibitore di Hsp90 che si lega al dominio N-terminale della proteina, che è deplezione delle proteine clienti con up-regulation di Hsp70, ma il suo legame con le proteine avviene in maniera del tutto

58

simile a quella del prodotto naturale strutturalmente più complesso (Figura 11).

Figura 11. Interazioni di legame di NP261, un lattone a 14 membri, con Hsp90 di lievito.

In questo modo entrambi i composti adottano una simile conformazione ripiegata con le stesse interazioni di legame a idrogeno che coinvolgono l’estere salicilico e gruppi i fenolici, il carbossilato della catena laterale di Asp79, il gruppo ammidico della catena principale della Gly83, l’ossidrile della catena laterale di Thr171, il carbossile della catena principale di Leu34, e conservate molecole di acqua (figure ab e aab). Sebbene la struttura del radicicol mostri chiaramente il coinvolgimento dell’ossigeno epossidico nel legame a idrogeno con il gruppo ε- amminico della catena laterale di Lys44, la perdita relativamente minima del doppio dell’attività in vitro dell’analogo NP261, suggerisce che questa interazione, sebbene utile, non è essenziale [97]. Da questo studio è stato possibile ottenere utili informazioni per la progettazione e per la sintesi di nuovi macrlolattoni resorcilici, nei quali la presenza di eteroatomi potrebbero essere importanti per un potenziale legame con la

59

catena laterale di Lys44, in modo tale da incrementare la potenza degli inibitori.

60

BIBLIOGRAFIA

1) Ashraf A. Khalil, Nihal F. Kabapy, Sahar F. Deraz, Christopher Smith,

Biochimica et Biophysica Acta 1816, 2011, 89–104.

2) M.J. Schlesinger, M. Ashburner, A. Tissiers, Heat Shock Proteins: From Bacteria to Man, Cold Spring Harbor Laboratory Press, New York, 1982.

3) D.J. Kuhn, E.L. Zeger, R.Z. Orlowski, Proteosome inhibitors and modulators of heat shock protein function, Update Cancer Ther. 1

2006, 91–116.

4) a. S. Lindquist, E.A. Craig, The heat-shock proteins, Annu. Rev Genet

22, 1998, 631–677. b. J.J. Cotto, R.I. Morimoto, Stress-induced activation of the heat-shock response: cell and molecular biology of heat-shock factors, Biochem. Soc. Symp. 64, 1999, 105–118. c. T. Lebret, R.W. Watson, J.M. Fitzpatrick, Heat shock proteins: their role in urological tumours, J. Urolog. 169, 2003, 338–346.

5) [6] C. Sarto, P. Binz, P. Morcarelli, Heat shock proteins in human cancer, Electrophoresis 21, 2000, 1218–1226.

6) [12] C. Didelot, D. Lanneau, M. Brunet, A. Joly, A. De Thonel, G. Chiosis, C. Garrido, Anti-cancer therapeutic approaches based on intracellular and extracellular heat shock proteins, Curr. Med. Chem. 14, 2007, 2839–2847.

7) E. Schmitt, M. Gehrmann, M. Brunet, G. Multhoff, C. Garrido,

Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy, J. Leukoc. Biol. 81, 2007, 15–27.

8) K.W. Lanks, Temperature-dependent oligomerization of HSP85 in

vitro, J. Cell. Physiol. 140, 1989, 601–607.

9) P. Kopecek, K. Altmannova, E. Weigl, Stress proteins: nomenclature, division and functions, Biomed. Papers 145, 2001, 39–47.

10) H. Sakamoto, T. Mashima, K. Yamamoto, T. Tsuruo, Modulation of

heat-shock protein 27 (HSP27) anti-apoptotic activity by

methylglyoxal modification, J. Biol. Chem. 277, 2002, 45770–45775.

11) J.W. van Heijst, H.W. Niessen, R.J. Musters, V.W. van Hinsbergh, K.

Hoekman, C.G. Schalkwijk, Argpyrimidine-modified heat shock protein 27 in human non-small cell lung cancer: a possible mechanism for evasion of apoptosis, Cancer Lett. 241, 2006, 309–319.

61

12) S.B. Qian, H. McDonough, F. Boellmann, D.M. Cyr, C. Patterson, CHIP-mediated stress recovery by sequential ubiquitination of substrates and HSP70, Nature 440, 2006, 551–555.

13) M. Sherman, G. Multhoff, Heat shock proteins in cancer, Ann. N. Y. Acad. Sci. 1113 (2007) 192–201.

14) Z. Li, J. Dai, H. Zheng, B. Liu, M. Caudill, An integrated view of the roles and mechanisms of heat shock protein gp96–peptide complex in eliciting immune response, Front. Biosci. 7, 2002, d731–d751.

15) Bernd Bukau, Jonathan Weissman, and Arthur Horwich, Molecular

Chaperones and Protein Quality Control, Cell 125, May 5, 2006 ©2006 Elsevier Inc.

16) Giorgi, C., D. De Stefani, A. Bononi, R. Rizzuto, and P. Pinton. Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int J Biochem Cell Biol. 2009, 41:1817-27. 17) Dancourt, J., and C. Barlowe. Protein sorting receptors in the early

secretory pathway. Annu Rev Biochem. 2010, 79:777-802.

18) Palade, G. Intracellular aspects of the process of protein synthesis. Science, 1975, 189:347-358.

19) Ma Y, Hendershot LM. ER chaperone functions during normal and stress conditions. J Chem neuroanat. 2004; 28(1-2):51-65

20) Schroder, M., and Kaufman, R.J. The mammalian unfolded protein response. Annu. Rev. Biochem. 2005, 74, 739–789.

21) Romisch, K. Endoplasmic reticulum-associated degradation. Annu.

Rev. Cell Dev. Biol. 2005, 21, 435–456.

22) Kimata, Y., Oikawa, D., Shimizu, Y., Ishiwata-Kimata, Y., and Kohno,

K. A role for BiP as an adjustor for the endoplasmic reticulum stress- sensing protein Ire1. J. Cell Biol. 2004, 167, 445–456.

23) Credle, J.J., Finer-Moore, J.S., Papa, F.R., Stroud, R.M., and Walter, P. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc. Natl. Acad. Sci. 2005, USA 102, 18773–18784.

24) Hoseki, J., R. Ushioda, and K. Nagata. Mechanism and components of

endoplasmic reticulum-associated degradation. J Biochem. 2010, 147:19-25.

25) Vashist, S., and Ng, D.T. Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J. Cell Biol. 2004, 165, 41–52.

26) Vabulas, R.M., and Hartl, F.U.. Protein synthesis upon acute nutrient restriction relies n proteasome function. Science 2005, 310, 1960– 1963.

62

27) a. Molinari, M., Calanca, V., Galli, C., Lucca, P., and Paganetti, P.

Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 2003, 299, 1397–1400. b. Oda, Y., Hosokawa, N., Wada, I., and Nagata, K. EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 2003, 299, 1394–1397.

28) Cormier, J.H., Pearse, B.R., and Hebert, D.N. Yos9p: a sweettoothed bouncer of the secretory pathway. Mol. Cell 2005, 19, 717–719.

29) a. Romisch, K. Endoplasmic reticulum-associated degradation. Annu.

Rev. Cell Dev. Biol. 2005, 21, 435–456. b. Romisch, K. Cdc48p is UBX-linked to ER ubiquitin ligases. Trends Biochem. Sci. 2006, 31, 24–25.

30) Arrasate, M., Mitra, S., Schweitzer, E.S., Segal, M.R., and Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and risk of neuronal death. Nature 2004, 431, 805–810.

31) Silveira, J.R., Raymond, G.J., Hughson, A.G., Race, R.E., Sim, V.L., Hayes, S.F., and Caughey, B. The most infectious prion protein particles. Nature 2005, 437, 257–261.

32) a. Bence, N., Sampat, R., and Kopito, R.R. Impairment of the

ubiquitin-proteasome system by protein aggregation. Science 2001 292, 1552–1555. b. Bennett, E.J., Bence, N.F., Jayakumar, R., and Kopito, R.R. Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol. Cell 2005, 17, 351–365.

33) Venkatraman, P., Wetzel, R., Tanaka, M., Nukina, N., and Goldberg, A.L. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol. Cell 2004, 14, 95–104.

34) Bjørkøy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Øvervatn, A., Stenmark, H., and Johansen, T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 2005, 171, 603–614. 35) Jiang, J., Prasad, K., Lafer, E.M., and Sousa, R. Structural basis of

interdomain communication in the Hsc70 chaperone. Mol. Cell 2005, 20, 513–524.

36) Montgomery, D.L., Morimoto, R.I., and Gierasch, L.M. Mutations in the substrate binding domain of the Escherichia coli 70 kDa molecular chaperone DnaK which alter substrate affinity or interdomain coupling. J. Mol. Biol. 1999, 286, 915–932.

63

37) Vogel, M., Bukau, B., and Mayer, M.P. Allosteric regulation of Hsp70

chaperones by a proline switch. Mol. Cell 2006, 21, 359–367.

38) Shomura, Y., Dragovic, Z., Chang, H.C., Tzvetkov, N., Young, J.C., Brodsky, J.L., Guerriero, V., Hartl, F.U., and Bracher, A. Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol. Cell 2005, 17, 367– 379.

39) Steel, G.J., Fullerton, D.M., Tyson, J.R., and Stirling, C.J. Coordinated activation of Hsp70 chaperones. Science 2004, 303, 98–101.

40) a. Shaner, L., Wegele, H., Buchner, J., and Morano, K.A. The yeast

Hsp110 Sse1 functionally interacts with the Hsp70 chaperones Ssa and Ssb. J. Biol. Chem. 2005,280, 41262–41269. b. Yam, A.Y., Albanese, V., Lin, H.T., and Frydman, J. Hsp110 cooperates with different cytosolic HSP70 systems in a pathway for de novo folding. J. Biol. Chem. 2005, 280, 41252–41261.

41) Gautschi, M., Lilie, H., Funfschilling, U., Mun, A., Ross, S., Lithgow, T., Rucknagel, P., and Rospert, S. (2001). RAC, a stable ribosome- associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin. Proc. Natl. Acad. Sci. USA 98, 3762–3767.

42) Hundley, H., Eisenman, H., Walter, W., Evans, T., Hotokezaka, Y., Wiedmann, M., and Craig, E. (2002). The in vivo function of the ribosome-associated Hsp70, Ssz1, does not require its putative peptidebinding domain. Proc. Natl. Acad. Sci. USA 99, 4203–4208. 43) Huang, P., Gautschi, M., Walter, W., Rospert, S., and Craig, E.A. The

Hsp70 Ssz1 modulates the function of the ribosome-associated J- protein Zuo1. Nat. Struct. Mol. Biol. 2005, 12, 497–504.

44) Otto, H., Conz, C., Maier, P., Wolfle, T., Suzuki, C.K., Jeno, P., Rucknagel, P., Stahl, J., and Rospert, S. (2005). The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proc. Natl. Acad. Sci. USA 102, 10064–10069.

45) Hundley, H., Walter, W., Bairstow, S., and Craig, E.A. Human Mpp11J protein: ribosome-tethered molecular chaperones are ubiquitous. Science 2005, 308, 1032–1034.

46) Sauer, R.T., Bolon, D.N., Burton, B.M., Burton, R.E., Flynn, J.M., Grant, R.A., Hersch, G.L., Joshi, S.A., Kenniston, J.A., Levchenko, I., et al. Sculpting the proteome with AAA+ proteases and disassembly machines. Cell 2004, 119, 9–18.

47) Lee, C., Schwartz, M.P., Prakash, S., Iwakura, M., and Matouschek, A. ATP-dependent proteases degrade their substrates by processively

64

unraveling them from the degradation signal. Mol. Cell 2001, 7, 627– 637.

48) Hinnerwisch, J., Fenton, W.A., Farr, G.W., Furtak, K., and Horwich, A.L. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 2005, 121, 1029–1041. 49) Hersch, G.L., Burton, R.E., Bolon, D.N., Baker, T.A., and Sauer, R.T.

Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine. Cell 2005, 121, 1017–1027. 50) Wenjie Luo, Weilin Sun, Tony Taldone, Anna Rodina and Gabriela

Chiosis Molecular Neurodegeneration 2010, 5:24.

51) Klettner A: The induction of heat shock proteins as a potential strategy to treat neurodegenerative disorders. Drug News Perspect 2004, 17:299-306.

52) Brown I: Heat Shock Proteins and Protection of the Nervous System.

Ann N Y Acad Sci 2007, 1113:147-158.

53) Muchowski PJ, Wacker JL: Modulation of neurodegeneration by

molecular chaperones. Nat Rev Neurosci 2005, 6:11-22.

54) a. 7. Waza M, Adachi H, Katsuno M, Minamiyama M, Tanaka F,

Doyu M, Sobue G: Modulation of Hsp90 function in

neurodegenerative disorders: a molecular-targeted therapy against disease-causing protein. J Mol Med 2006, 84:635-646. b. Luo W, Rodina A, Chiosis G: Heat shock protein 90: translation from cancer to Alzheimer's disease treatment? BMC Neurosci 2008, 9(Suppl2):S7. 55) Anckar J, Sistonen L: Heat shock factor 1 as a coordinator of stress and

developmental pathways. Adv Exp Med Biol 2007, 594:78-88.

56) Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R: Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 1998, 94:471-480.

57) Williams AJ, Paulson HL: Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci 2008, 31:521-528.

58) Muchowski PJ, Schaffar G, Sittler A, Wanker EE, Hayer-Hartl MK, Hartl FU: Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc Natl Acad Sci USA 2000, 97:7841-7846.

59) Krobitsch S, Lindquist S: Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Natl Acad Sci USA 2000, 97:1589-1594.

65

60) Wacker JL, Huang SY, Steele AD, Aron R, Lotz GP, Nguyen Q, Giorgini F, Roberson ED, Lindquist S, Masliah E, Muchowski PJ: Loss of Hsp70 exacerbates pathogenesis but not levels of fibrillar aggregates in a mouse model of Huntington's disease. J Neurosci 2009, 29:9104-9114.

61) Cummings CJ, Mancini MA, Antalffy B, De Franco DB, Orr HT,

Zoghbi HY: Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 1998, 19:148-154.

62) Katsuno M, Sang C, Adachi H, Minamiyama M, Waza M, Tanaka F, Doyu M, Sobue G: Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease. Proc Natl Acad Sci USA 2005, 102:1606-1680.

63) Dou F, Netzer WJ, Tanemura K, Li F, Hartl FU, Takashima A, Gouras

GK, Greengard P, Xu H: Chaperones increase association of tau protein with microtubules. Proc Natl Acad Sci USA 2003, 100:721- 726.

64) Evans CG, Wisen S, Gestwicki JE: Heat shock proteins 70 and 90 inhibit early stages of amyloid β-(1-42) aggregation in vitro. J Biol Chem 2006, 281:33182-33191.

65) Ansar S, Burlison JA, Hadden MK, Yu XM, Desino KE, Bean J, Neckers L, Audus KL, Michaelis ML, Blagg BS: A non-toxic Hsp90 inhibitor protects neurons from Aβ-induced toxicity. Bioorg Med Chem Lett 2007, 17:1984-1990.

66) Kumar P, Ambasta RK, Veereshwarayya V, Rosen KM, Kosik KS,

Band H, Mestril R, Patterson C, Querfurth HW: CHIP and HSPs interact with beta-APP in a proteasome-dependent manner and influence Abeta metabolism. Hum Mol Genet 2007, 16:848-864.

67) Kouchi Z, Sorimachi H, Suzuki K, Ishiura S: Proteasome inhibitors induce the association of Alzheimer's amyloid precursor protein with Hsc73. Biochem Biophys Res Commun 1999, 254:804-810.

68) Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM:

Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 2002, 295:865-868.

69) Flower TR, Chesnokova LS, Froelich CA, Dixon C, Witt SN: Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson's disease. J Mol Biol 2005, 351:1081-1100.

70) Huang C, Cheng H, Hao S, Zhou H, Zhang X, Gao J, Sun QH, Hu H,

66

formation via interactions with diverse intermediates. J Mol Biol 2006, 364:323-336.

71) Luk KC, Mills IP, Trojanowski JQ, Lee VM: Interactions between Hsp70 and the hydrophobic core of alpha-synuclein inhibit fibril assembly. Biochemistry 2008, 47:12614-1225.

72) Luo W, Dou F, Rodina A, Chip S, Kim J, Zhao Q, Moulick K, Aguirre

J, Wu N, Greengard P, Chiosis G: Roles of heat shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc Natl Acad Sci USA 2007, 104:9511-9516.

73) Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, Dunmore J,

Ash P, Shoraka S, Zlatkovic J, Eckman CB, et al.: The high-affinity

HSP90-CHIP complex recognizes and selectively degrades

phosphorylated tau client proteins. J Clin Invest 2007, 117:648-658.

74) Auluck PK, Bonini NM: Pharmacological prevention of Parkinson

disease in Drosophila. Nat Med 2002, 8:1185-1186.

75) Shen HY, He JC, Wang Y, Huang QY, Chen JF: Geldanamycin

induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. J Biol Chem 2005, 280:39962- 39969.

76) Waza M, Adachi H, Katsuno M, Minamiyama M, Sang C, Tanaka F, Inukai A, Doyu M, Sobue G: 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat Med 2005, 11:1088-1095.

77) Fujikake N, Nagai Y, Popiel HA, Okamoto Y, Yamaguchi M, Toda T:

Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. J Biol Chem 2008, 283:26188-26197.

78) Thomas M, Harrell JM, Morishima Y, Peng HM, Pratt WB, Lieberman

AP: Pharmacologic and genetic inhibition of hsp90-dependent trafficking reduces aggregation and promotes degradation of the expanded glutamine androgen receptor without stress protein induction. Hum Mol Genet 2006, 15:1876-1883.

79) Moriwaki Y, Kim YJ, Ido Y, Misawa H, Kawashima K, Endo S,

Takahashi R: L347P PINK1 mutant that fails to bind to Hsp90/Cdc37 chaperones is rapidly degraded in a proteasome-dependent manner. Neurosci Res 2008, 61:43-48.

80) Falsone SF, Kungl AJ, Rek A, Cappai R, Zangger K: The molecular chaperone Hsp90 modulates intermediate steps of amyloid assembly of the Parkinson-related protein alpha-synuclein. J Biol Chem 2009, 284:31190-31199.

67

81) Kabuta T, Furuta A, Aoki S, Furuta K, Wada K: Aberrant interaction between Parkinson diseaseassociated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. Biol Chem

2008, 283:23731-23738.

82) Kosik KS, Shimura H: Phosphorylated tau and the neurodegenerative foldopathies. Biochim Biophys Acta 2005, 1739:298-310. 46.

83) Lau LF, Schachter JB, Seymour PA, Sanner MA: Tau protein

phosphorylation as a therapeutic target in Alzheimer's disease. Curr Top Med Chem 2002, 4:395-415.

84) Goedert M, Jakes R: Mutations causing neurodegenerative tauopathies.

Biochim Biophys Acta 2005, 1739:240-250.

85) Dou F, Chang X, Ma D: Hsp90 Maintains the Stability and Function of

the Tau Phosphorylating Kinase GSK3β. Int J Mol Sci 2007, 8:51-60.

86) Tortosa E, Santa-Maria I, Moreno F, Lim F, Perez M, Avila J: Binding

of Hsp90 to Tau Promotes a Conformational Change and Aggregation of Tau Protein. J Alzheimers Dis 2009, 17:319-325.

87) Taldone T, Gozman A, Maharaj R, Chiosis G: Targeting Hsp90: small

molecule inhibitors and their clinical development. Curr Opin Pharmacol 2008, 8:370-374.

88) Woodhead AJ, Angove H, Carr MG, Chessari G, Congreve M, Coyle

JE, Cosme J, Graham B, Day PJ, Downham R, Fazal L, Feltell R, Figueroa E, Frederickson M, Lewis J, McMenamin R, Murray CW, O'Brien MA, Parra L, Patel S, Phillips T, Rees DC, Rich S, Smith DM, Trewartha G, Vinkovic M, Williams B, Woolford AJ. J Med Chem.

2010 Aug 26;53(16):5956-69.

89) Biamonte, M. A.; Van de Water, R.; Arndt, J. W.; Scannevin, R. H.; Perret, D.; Lee, W.-C. Heat shock protein 90: inhibitors in clinical trials. J. Med. Chem. 2010, 53, 3–17.

90) Pearl, L. H.; Prodromou, C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem. 2006, 75, 271– 294.

91) Chiosis, G.; Neckers, L. Tumor selectivity of Hsp90 inhibitors: the explanation remains elusive. Chem. Biol. 2006, 1, 279–284.

92) Kamal, A.; Thao, L.; Sensintaffar, J.; Zhang, L.; Boehm, M. F.; Fritz, L. C.; Burrows, F. J. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003, 425, 407–410. 93) Le Brazidec, J.-Y.; Kamal, A.; Busch, D.; Thao, L.; Zhang, L.;

Timony, G.; Grecko, R.; Trent, K.; Lough, R.; Salazar, T.; Khan, S.; Burrows, F.; Boehm, M. F. Synthesis and biological evaluation of a

68

new class of geldanamycin derivatives as potent inhibitors of Hsp90. J. Med. Chem. 2004, 47, 3865–3873.

94) a. Soga, S.; Shiotsu, Y.; Akinaga, S.; Sharma, S. V. Development of

radicicol analogues. Curr. Cancer Drug Targets 2003, 3, 359–369. b. Neckers, L.; Schulte, T. W.; Mimnaugh, E. Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest. New Drugs 1999, 17, 361–373. c. Ge, J.; Normant, E.; Porter, J. R.; Ali, J. A.; Dembski, M. S.; Gao, Y.; Georges, A. T.; Grenier, L.; Pak, R. H.; Patterson, J.; Sydor, J. R.; Tibbitts, T. T.; Tong, J. K.; Adams, J.; Palombella, V. J. Design, synthesis, and biological evaluation of hydroquinone derivatives of 17-amino-17- demethoxygeldanamycin as potent, watersoluble inhibitors of Hsp90. J. Med. Chem. 2006, 49, 4606–4615. d. Kaur, G.; Belotti, D.; Burger, A. M.; Fisher-Nielson, K.; Borsotti, P.; Riccardi, E.; Thillainathan, J.; Hollingshead, M.; Sausville, E. A.; Giavazzi, R. Antiangiogenic

properties of 17-(dimethylaminoethylamino)- 17-

demethoxygeldanamycin: an orally bioavailable heat shock protein 90 modulator. Clin. Cancer Res. 2004, 10, 4813–4821. e. Schulte, T. W.; Neckers, L. M. The benzoquinone ansamycin 17-allylamino-17- demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother. Pharmacol.

1998, 42, 273–279.

95) a. Brough, P. A.; Barril, X.; Borgognoni, J.; Chene, P. et All.,

Combining hit identification strategies: fragment-based and in silico approaches to orally active 2-aminothieno[2,3-d]pyrimidine inhibitors of the Hsp90 molecular chaperone. J. Med. Chem. 2009, 52, 4794– 4809. b. Eccles, S. A.; Massey, A.; Raynaud, F. I.; Sharp, S. Y.; et All., NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res. 2008, 68, 2850–2860. c. Brough, P. A.; Aherne, W.; Barril, X.; Borgognoni, J. et All., 4,5-Diarylisoxazole Hsp90 chaperone inhibitors: potential therapeutic agents for the treatment of cancer. J. Med. Chem. 2008, 51, 196–218. d. Bao, R.; Lai, C. J.; Qu, H.; Wang, D.; et All., CUDC-305, a novel synthetic HSP90 inhibitor with unique pharmacologic properties for cancer therapy. Clin. Cancer Res. 2009, 15, 4046–4057. e. Huang, K. H.; Veal, J. M.; Fadden, R. P.; Rice, J. W. et All., Discovery of novel 2-aminobenzamide inhibitors of heat shock protein 90 as potent, selective and orally active antitumor agents. J. Med. Chem. 2009, 52, 4288–4305. f. Lundgren, K.; Zhang, H.; Brekken, J.; Huser, N. et All., BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90. Mol. Cancer Ther. 2009, 8, 921–929.

69

96) Murray, C. W. Callaghan, O.; Chessari, G.; Congreve, M.; Cowan, S.;

Coyle, J. E.; Downham, R.; Figueroa, E.; Frederickson, M.; Graham, B.; McMenamin, R.; O’Brien, M. A.; Patel, S.; Phillips, T. R.; Williams, G.; Woodhead, A. J.; Woolford, A. J.-A.; Fragment-based drug discovery applied to Hsp90. Discovery of two lead series with high ligand efficiency. J. Med. Chem. DOI: 10.1021/jm100059d.

97) James E. H. Day, Swee Y. Sharp, Martin G. Rowlands, Wynne

Aherne, Paul Workman, and Christopher J. Moody Chem. Eur. J.

2010, 16, 2758 – 2763.

98) L. H. Pearl, C. Prodromou, P. Workman, Biochem. J. 2008, 410, 439.

99) P. Workman, Cancer Lett. 2004, 206, 149.

100) a. C. Prodromou, S. M. Roe, R. O_Brien, J. E. Ladbury, P. W. Piper, L. H. Pearl, Cell 1997, 90, 65. b. M. M. U. Ali, S. M. Roe, C. K. Vaughan, P. Meyer, B. Panaretou, P. W. Piper, C. Prodromou, L. H. Pearl, Nature 2006, 440, 1013.

101) S. M. Roe, C. Prodromou, R. O_Brien, J. E. Ladbury, P. W. Piper, L. H. Pearl, J. Med. Chem. 1999, 42, 260.

102) A. Dehner, J. Furrer, K. Richter, I. Schuster, J. Buchner, H. Kessler, ChemBioChem 2003, 4, 870..

103) a. M. Lampilas, R. Lett, Tetrahedron Lett. 1992, 33, 773. b. M. Lampilas, R. Lett, Tetrahedron Lett. 1992, 33, 777. c. I. Tichkowsky, R. Lett, Tetrahedron Lett. 2002, 43, 3997. d. I. Tichkowsky, R. Lett, Tetrahedron Lett. 2002, 43, 4003. e. R. M. Garbaccio, S. J. Stachel, D. K. Baeschlin, S. J. Danishefsky, J. Am. Chem. Soc. 2001, 123, 10903.

104) T. Agatsuma, H. Ogawa, K. Akasaka, A. Asai, Y. Yamashita, T. Mizukami, S. Akinaga, Y. Saitoh, Bioorg. Med. Chem. 2002, 10, 3445. 105) a. K. Yamamoto, R. M. Garbaccio, S. J. Stachel, D. B. Solit, G.

Chiosis, N. Rosen, S. J. Danishefsky, Angew. Chem. 2003, 115, 1318; Angew. Chem. Int. Ed. 2003, 42, 1280. b. Z. Q. Yang, X. D. Geng, D. Solit, C. A. Pratilas, N. Rosen, S. J. Danishefsky, J. Am. Chem. Soc.

2004, 126, 7881. c. X. D. Geng, Z. Q. Yang, S. J. Danishefsky, Synlett 2004, 1325.

70

RINGRAZIAMENTI

E’ difficile salutare e, soprattutto, menzionare tutti dopo un’esperienza così bella e lunga allo stesso tempo…inizierei ringraziando la prof.ssa Lapucci, nonché mia relatrice, che mi ha seguito durante tutti i miei studi, supportandomi ed aiutandomi nello svolgimento della tesi; ringrazierei i ragazzi con cui sono stato qui il primo

Documenti correlati