• Non ci sono risultati.

Gli individui affetti dalla sindrome FRAX mostrano fenotipi clinici e risposte al trattamento farmacologici di tipo eterogeneo. Una possibile spiegazione potrebbe essere la variazione nella regolazione epigenetica del gene FMR1 e differenze nei livelli residui della proteina FMRP (mosaicismo). Non è del tutto chiaro come queste differenze a livello molecolare riflettano il fenotipo clinico globale.

Le cure attuali per la sindrome FRAX si focalizzano in modo particolare sul trattamento dei sintomi, per questo è necessario sviluppare trattamenti farmacologici terapeutici. L’identificazione di un ruolo chiave del mGluR5 nella fisiopatologia della sindrome FRAX è stato fondamentale. La ricerca delle terapie farmacologiche per la sindrome dell’ X fragile si è concentrata sugli antagonisti del recettore mGluR5.

Studi preclinici, con gli antagonisti del recettore mGluR5, suggeriscono che queste terapie potrebbero avere la capacità di curare i pazienti affetti dalla sindrome FRAX.

Allo scopo di rivelare le potenziali modifiche dei trattamenti terapeutici, negli esperimenti clinici sulla sindrome FRAX, sono necessarie scale di valutazione appropriate.

Nonostante la scala ABC-C e le sue sottoscale siano storicamente state selezionate come indicatori di rilevanza, negli esperimenti sulla FRAX, la validità clinica è stata messa in discussione. La nuova scala sviluppata per la FRAX sembra essere efficace come la scala ABC-C. Studi ulteriori saranno necessari per convalidare la correttezza della nuova scala ABC-C per la FRAX.

I dati clinici, in pazienti affetti da FRAX, mostrano risultati incoraggianti in seguito al trattamento con antagonisti mGluR5.

Attualmente sono attesi i risultati dalla fase III degli esperimenti clinici con Mavoglurant, se questi risultati confermeranno le ipotesi sviluppate a livello preclinico, in poco tempo avverrà la registrazione della prima terapia specifica per la sindrome del X fragile.

7.GLOSSARIO

ABC-C Aberrant Behavior Checklist-Community edition

ADHD Disturbo dell’attenzione e dell’iperattività

AMPA Acido α-amino-3-idrossi-5-metil-4-isossazolproprionico

ASD Autism spectrum disorder

ATP Adenosin trifosfato

BDNF Brain-derived neurotrophic factor

CaM Calmodulina

CaMKIV Calmodulina chinasi IV

CGG Citosina Guanina Guanina

cGMP Guanosin-monofosfato ciclico

cNOS Ossido nitrico sintetasi costitutiva

CRE Nuclear cAMP response element

CREB cAMP responsive element binding protein (proteina associata a CRE)

CSF Fluidi cerebro-spinali

EAA Amminoacido eccitatorio

ECT Terapia elettroconvulsiva

FDA Food and drug administration

FMR1 Fragile X mental retardation 1

FMRP Proteina espressa dal gene FMR1

FXTAS Fragile X associated tremor/ataxia syndrome

GABA Acido γ-ammino butirrico

GAD-65/67 Acido glutammico decarbossilasi 65/67 GLX Glutammato e glutammina

HAM-D Hamilton depression rating scale

KO Knockout

LTD Depressione a lungo termine

MAO Mono ammino ossidasi

MAPK Proteina chinasi mitocondriale

MDD Disordini di depressione maggiore

MMP-9 Matrix metallo-proteinase-9

MPEP 2-metil-6-feniletinil-piridina

MTEP 3-[(2-metil-1,3-tiazol-4-enil)etilenil]-piridina

mRNA RNA messaggero

NAA N-acetil aspartato

NE Noradrenalina

NMDA N- metil D aspartato

NO Ossido nitrico

NOS Enzima ossido nitrico sintetasi

nNOS Enzima neuronale N-ossido sintetasi calcio-calmodulina dipendente

nPGi Nucleus paragiganto cellularis

REM Rapid eye movement

RSK Chinasi ribosomiale S

SLA Sclerosi laterale amiotrofica

SNC Sistema nervoso centrale

8. BIBLIOGRAFIA

Abe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J. Biol. Chem. 267, 13361–13368.

Altamura CA, Mauri MC, Ferrara A, Moro AR, D’Andrea G, Zamberlan F (1993) Plasma and platelet excitatory amino acids in psychiatric disorders. Am. J. Psychiatry 150(11), 1731-1733.

Aman MG, Singh NN, Stewart AW, Field CJ (1985) The aberrant behavior checklist: a behavior rating scale for the assessment of treatment effects. Am. J. Ment. Defic. 89, 485-491.

Ampuero E, Rubio FJ, Falcon R, Sandoval M, Diaz-Veliz G, Gonzalez RE, Earle N, Dagnino- Subiabre A, Aboitiz F, Orrego F, Wyneken U (2010) Chronic fluoxetine treatment induces structural plasticity and selective changes in glutamate receptor subunits in the rat cerebral cortex. Neuroscience 169, 98–108.

Andlin-Sobocki P, Jonsson B, Wittchen HU, Olesen J (2005). Cost of disorders of the brain in Europe. Eur. J. Neurol. 12(Suppl.1), 1-27.

Attucci S, Carla V, Mannaioni G, Moroni F (2001) Activation of type 5 metabotropic glutamate receptors enhances NMDA responses in mice cortical wedges. Br. J. Pharmacol 132, 799-806.

Bagni C, Tassone F, Neri G, Hagerman R (2012) Fragile X syndrome: causes, diagnosis mechanisms, and therapeutics. J. Clin. Invest. 122, 4314-4322.

Bailey DB Jr, Raspa M, Bishop E, Holiday D (2009) No change in the age of diagnosis for fragile x syndrome: findings from a national parent survey. Pediatrics 124, 527-533.

Bailey Db Jr, Raspa M, Bishop E, et al (2012) Health and economic consequences of fragile Xsyndrome for caragivers. J. Dev. Behav. Pediatr. 33, 705-712.

Bauschwitz R (2007) GSK3 inihibitors and mGluR5 antagonists can produce an additive rescue of fragile X mouse phenotypes. Presented al the 10th International Fragile X Conferance; July 2007; Atlanta, GA, USA.

Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci. 27, 370–377.

Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH (2007). Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology 32, 1888–1902.

Berk M, H Plein & D Ferreira (2001) Platelet glutamate receptor supersensitivity in major depressive disorder. Clin. Neuropharmacol. 24, 129-132.

Berman, RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000). Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 47, 351-354.

Berry-Kravis E, Sumis A, Hervey C, Nelson M, Porges SW, Weng N, Weiler IJ, Greenough WT (2008) Open-label treatment trial of lithium to target the underlying defect in fragile X syndrome. J. Dev. Behav. Pediatr. 29, 293–302.

Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, Ethell IM (2009) Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J. Med. Genet. 46, 94–102.

Boothby LA, Doering PL, (2005) Acamprosate for the treatment of alcohol dependence. Clin. Ther. 27, 695-714.

Bowyer JF et al (1995) Nitric oxide regulation of methamphetamine-induced dopamine release in caudate/putamen. Brain Res. 699, 62-70.

Bradbury MJ, Giracello DR, Chapman DF, Holtz G, Schaffhauser H, Rao SP, Varney MA, Anderson JJ (2003). Metabotropic glutamate receptor 5 antagonist-induced stimulation of hypothalamic- pituitary-adrenal axis activity: interaction with serotonergic systems. Neuropharmacology 44, 562- 572.

Brennan BP, Hudson JI, Jensen JE, McCarthy J, Roberts JL, Prescot AP, et al (2010) Rapid enhancement of glutamatergic neurotransmission in bipolar depression following treatment with riluzole. Neuropsychopharmacology 35, 834–846.

Brouwer JR, Willemsen R, Oostra BA (2009) The FMR1 gene and fragile X-associated tremor/ataxia syndrome. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150B, 782–798.

Burket JA, Herndon AL, Winebarger EE, Jacome LF, Deutsch SI (2011) Complex effects of mGluR5 antagonism on sociability and stereotypic behaviors in mice: possible implications for the pharmacotherapy of autism spectrum disorders. Brain Res. Bull. 86, 152–158.

Cartmell J, Schoepp DD(2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J. Neurochem. 75, 889–907.

Chaki S, Yoshikawa R, Hirota S, Shimazaki T, Maeda M, Kawashima N, et al (2004) MGS0039: a potent and selective group II metabotropic glutamate receptor antagonist with antidepressant-like activity. Neuropharmacology 46, 457–467.

Chaki S, Ago Y, Agnieszka Palucha-Paniewiera, Francesco Matrisciano, Andrzej Pilc (2012) mGlu2/3 and mGlu5 receptors: Potential target for a novel antidepressant. Neuropharmacology doi:10.1016/j.neuropharm.2012.05.022

Cowen MS, Djouma E, Lawrence AJ (2005) The metabotropic glutamate 5 receptor antagonist 3-[(2- methyl-1,3-thiazol-4-yl)ethynyl]-pyridine reduces ethanol self-administration in multiple strains of alcohol-preferring rats and regulates olfactory glutamatergic systems. J. Pharmacol. Exp. Ther. 315, 590-600.

Cryan JF, Kelly PH, Neijt HC, Sansig G, Flor PJ, van Der Putten H (2003) Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. Eur. J. Neurosci. 17, 2409–2417.

D’Hulst C, De GN, Reeve SP, Van DD, De Deyn PP, Hassan BA, Kooy RF (2006) Decreased expression of the GABAA receptor in fragile X syndrome. Brain Res. 1121, 238–245.

Danysz W, Parsons CG, Bresnick I, Quack G (1996) Glutamate in CNS disorders. Drug News Perspect 8, 261-277.

den Broeder MJ, van der Linde H, Brouwer JR, Oostra BA, Willemsen R, Ketting RF (2009) Generation and characterization of FMR1 knockout zebrafish. PLoS One 4, e7910.

Deschwanden A, Karolewicz B, Feyissa AM, Treyer V, Ametamey SM, Johayem A, Burger C, Auberson YP, Sovago J, Stockmeier CA, Buck A, Hasler G (2011) Reduced metabotropic glutamate receptor 5 density in major depression determined by [(11)C]ABP688 PET and postmortem study. Am. J. Psychiatry 168, 727-734.

Dillon P, Copeland J, Jansen K (2003) Patterns of use and harms associated with non-medical ketamine use. Drug Alcohol Depend 69, 23–28.

Dölen G, Osterweil E, Rao BS, Smith GB, Auerbach BD, Chattarji S, Bear MF (2007) Correction of fragile X syndrome in mice. Neuron 56, 955–962.

Dubovsky SL et al (1989) Increased platelet intracellular calcium concentration in patients with bipolar affective disorders. Arch. Gen. Psychiatry 46, 632-638.

Dubovsky SL et al (1993) Calcium antagonists in manic-depressive illness. Neuropsychobiology 27, 184-192.

Durand D, Pampillo M, Caruso C, Lasaga M (2008) Role of metabotropic glutamate receptors in the control of neuroendcrine function. Neuropharmacology 55, 577–83.

Duvoisin RM, Zhang C, Pfankuch TF, et al (2005). Increased measures of anxiety and weight gain in mice lacking the group III metabotropic glutamate receptor mGluR7/8. Eur. J.Neurosci. 22(2), 425- 436.

Erickson CA, Stigler KA, Wink LK, et al (2011) A prospestive open-label study of aripiprazole in fragile X syndrome. Psychopharmacology (Berl) 216, 85-90.

Feinberg I, Schoepp DD, Hsieh KC, Darchia N, Campbell IG (2005) The metabotropic glutamate (mGLU)2/3 receptor antagonist LY341495 [2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3- (xanth-9-yl)propanoic acid] stimulates waking and fast electroencephalogram power and blocks the effects of the mGLU2/3 receptor agonist ly379268 [(-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6- dicarboxylate] in rats. J. Pharmacol. Exp. Ther. 312, 826-833.

Ferguson JM, Shingleton RN (2007) An open-label, flexible-dose study of memantine in major depressive disorder. Clin. Neuropharmacol. 30,136–44.

Ferrari F, Mercaldo V, Piccoli G, Sala C, Cannata S, Achsel T, Bagni C (2007) The fragile X mental retardation protein-RNP granules show an mGluR-dependent localization in the post-synaptic spines. Mol. Cell. Neurosci. 34, 343–354.

Foster AC, Fagg GE (1987) Taking apart NMDA receptors. Nature 329, 395-396.

Francis PT, et al (1989) Brain amino acid concentrations and Ca2+-dependent release in intractable depression assessed antemortem. Brain. Res. 494, 315-324.

Frye MA, Tsai GE, Huggins T, Coyle JT, Post RM (2007). Low cerebrospinal fluid glutamate and glycine in refractory affective disorder. Biol. Psychiatry 61, 162–166.

Gantois I, Pop AS, de Esch CE, et al (2013) Chronic administration of AFQ056/Mavoglurant restores social behavior in FMR1 Knockout mice. Behav. Brain Res. 239, 72-79.

Garber KB, Visootsak J, Warren ST (2008) Fragile X syndrome.Eur. J. Hum. Genet. 16, 666-672. Gass P (2011) mGluR5 Expression in rodent Models of Depression and Anxiety. Current Neuropharmacology 9, 23.

Gomez-Mancilla B, Berry-Kravis E, Hagerman R, von Raison F, Apostol G, Ufer M, Gasparini F, Jacquemont S (2014) Development of mavoglurant and its potential for the tretment of fragile X syndrome. Expert Opin. Investig. Drugs 23(1),125-134.

Greco B, Lopez S, van der Putten H, Flor PJ, Amalric M (2010) Metabotropic glutamate 7 receptor subtype modulates motor symptoms in rodent models of Parkinson's disease. J. Pharmacol. Exp. Ther. 332, 1064–1071.

Greenberg PE, Kessler RC, Birnbaum HG, Leong SA, Lowe SW, Berglund PA, Corey-Lisle PK (2003) The economic burden of depression in the United States: how did it change between 1990 and 2000? J. Clin. Psychiatry 64, 1465-1475

Griffiths JL, Lovick TA (2002) Co-localization of 5-HT(2A)-receptor-and GABA-immunoreactivity in neurones in the periaqueductal grey matter of the rat. Neurosci. Lett. 326, 151-154.

Hardigam, GE & H Bading (2002) Coupling of extrasynaptic NMDA receptors to a CREB shutt-off pathway is developmentally regulated. Biochim. Biophys. Acta 1600, 148-153.

Hashimoto K, Shimizu E, Iyo M (2005) Dysfunction of glia-neuron communication in pathophysiology of schizophrenia. Curr. Psychiatry Rev. 1,151–163.

Hashimoto K, Sawa A, Iyo M (2007) Increased levels of glutamate in brains from patients with mood disorders. Biol. Psychiatry 25, 1310–1316.

Hashimoto K. (2009a). Emerging role of glutamate in the pathophysiology of major depressive disorder. Brain. Res. Rev. 61, 105–123.

Hashimoto K (2010) Brain-derived neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions. Psychiatry Clin. Neurosci. 64, 590.

Hashimoto K (2011) The role of glutamate on tha action of antidepressants. Progress in neuro- psychopharmacology and biological psychiatry 35, 1558-1560.

Huber KM, Gallagher SM, Warren ST, Bear MF (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl. Acad. Sci. USA 99, 7746–7750.

Ian AP e Skolnick P (2003) Glutamate and Depression, clinical and preclinical studies N.Y. Acad. Sci 1003, 250-272.

Irwin SA, Patel B, Idupulapati M, et al (2001) Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am. J. Med. Genet. 98, 161–167.

Jacob W, Gravius A, Pietraszek M, Nagel J, Belozertseva I, Shekunova E, Malyshkin A, Greco S, Barberi C, Danysz W (2009). The anxiolytic and analgesic properties of fenobam, a potent mGlu5 receptor antagonist, in relation to the impairment of learning. Neuropharmacology 57, 97-108.

Jacquemont S, Curie A, des Portes V, Torrioli MG, Berry-Kravis E, Hagerman RJ, Ramos FJ, Cornish K, He YS, Paulding C, Neri G, Chen F, Hadjikhani N, Martinet D, Meyer J, Beckmann JS, Delange K, Brun A, Bussy G, Gasparini F, Hilse T, Floesser A, Branson J, Bilbe G, Johns D, Gomez-Mancilla B

(2011) Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci. Transl. Med. 3, 64ra1.

Jodo E, C Chiang & G Aston-Jones (1998) Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons. Neuroscience 83, 63-79.

Kanellopoulos AK, Semelidou O, Kotini AG, Anezaki M, Skoulakis EM (2012) Learning and memory deficits consequent to reduction of the fragile X mental retardation protein result from metabotropic glutamate receptor-mediated inhibition of cAMP signaling in Drosophila. J. Neurosci. 32, 13111–13124.

Karasawa J, Shimazaki T, Kawashima N, Chaki S (2005) AMPA receptor stimulation mediates the antidepressant-like effect of a group II metabotropic glutamate receptor antagonist. Brain. Res. 1042, 92–8.

Karasawa J, Yoshimizu T, Chaki S (2006) A metabotropic glutamate 2/3 receptor antagonist, MGS0039, increases extracellular dopamine levels in the nucleus accumbens shell. Neurosci. Lett. 393, 127–30.

Karolewicz B, Maciag D, O'Dwyer G, Stockmeier CA, Feyissa AM, Rajkowska G (2010) Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression. Int. J. Neuropsychopharmacol 13, 411–420.

Kessler RC, Merikangas KR, Wang PS (2007) Prevalence, comorbidity, and service utilization for mood disorders in the United States at the beginning of the twenty-first century. Annu. Rev. Clin. Psychol. 3, 137–158.

Khandjian EW, Fortin A, Thibodeau A, Tremblay S, Cote F, Devys D, Mandel JL, Rousseau F (1995) A heterogeneous set of FMR1 proteins is widely distributed in mouse tissues and is modulated in cell culture. Hum. Mol. Genet. 4, 783–789.

Kim JS, et al (1982) Increased serum glutamate in depressed patiens. Arch. Psychiatr. Nervenkr. 232, 299-304.

Klak K, Palucha A, Branski P, Sowa M, Pilc A (2007) Combined administration of PHCCC, a positive allosteric modulator of mGlu4 receptors and ACPT-I, mGlu III receptor agonist evokes antidepressant-like effects in rats. Amino Acids 32, 169–72.

Kollmar R, Markovic K, Thürauf N, Schmitt H, Kornhuber J (2008) Ketamine followed by memantine for the treatment of major depression. Aust NZ J Psychiatry 42, 170.

Kudoh A, Takahara Y, Katagai H, Takazawa T (2002) Small-dose ketamine improves the postoperative state of depressed patients. Anesth. Analg. 95, 114–8.

Kuhn R, (1958) The Treatment of Depressive States with G-22355 (Imipramine Hydrochloride). Am. J. Psychiatry 115, 459-464.

Kumari D, Usdin K (2001) Interaction of the transcription factors USF1, USF2, and alpha –Pal/Nrf-1 with the FMR1 promoter. Implications for fragile X mental retardation syndrome. J. Biol. Chem. 276, 4357–4364.

Kwan KY, Lam MM, Johnson MB et al (2012) Species-dependent posttranscriptional regulation of NOS1 by FMRP in the developing cerebral cortex. Cell. 149, 899–911.

Langa KM, Foster NL, Larson EB (2004) Mixed dementia: emerging concepts and therapeutic implications. Jama 292, 2901–2908.

Lapierre YD, Oyewumi LK (1982) Fenobam: Another Anxiolytic? Current Therapeutic Research 31, 95-101.

Lauterborn JC, et al (2000) Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J. Neurosci. 20, 8-21.

Law AJ & JF Deakin (2001) Asymmetrical reductions of hippocampal NMDA glutamate receptor mRNA in the psychoses. Neuroreport. 12, 2971-2974.

Lee SY, OK Kim & EE El-Fakahany (1995) Inhibition of neuronal nitric oxide synthase by antidepressants. Pharmacol. Comm. 7, 1-9.

Leigh MJ, Nguyen DV, Mu Y et al (2013) A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with fragile X syndrome. J. Dev. Behav. Pediatr. 34, 147-155. Levine J, Panchalingam K, Rapoport A, Gershon S, McClure RJ, Pettegrew JW (2000) Increased cerebrospinal fluid glutamine levels in depressed patients. Biol. Psychiatry. 47, 586–593.

Li X, Tizzano JP, Griffey K, Clay M, Lindstrom T, Skolnick P (2001) Antidepressant-like actions of an AMPA receptor potentiator (LY392098). Neuropharmacology 40, 1028–33.

Li X, Need AB, Baez M, Witkin JM (2006) Metabotropic glutamate 5 receptor antagonism is associated with antidepressant-like effects in mice. J. Pharmacol. Exp. Ther. 319, 254–259.

Liebrenz M, Borgeat A, Lesinger R, Stohler R (2007) Intravenous ketamine therapy in a patient with a treatment-resistant major depression. Swiss Med. Wkly. 137, 234–246.

Liebrenz M, Stohler R, Borgeat A (2009) Repeated intravenous ketamine therapy in a patient with a treatment-resistant major depression. World J. Biol. Psychiatry 10(4 Pt 2), 640–643.

Loomer HP, Saunders JC, Kline NS (1957) A clinic and pharmacodynamic evaluation of iproniazid as a psychic energizer. Psychiatry Res. Rep. 8, 129-141.

Lu YM, Jia ZP, Janus C, Henderson JT, Gerlai R, Wojtowicz JM, Roder JC (1997) Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J. Neurosci. 17, 5196-5205.

Lubs HA (1969) A marker X chromosome. Am. J. Hum. Genet. 21, 231–244.

Maes M, Verkerk R, Vandoolaeghe E, Lin A, Scharpe S (1998) Serum levels of excitatory amino acids, serine, glycine, histidine, threonine, taurine, alanine and arginine in treatment-resistant depression: modulation by treatment with antidepressants and prediction of clinical responsivity. Acta Psychiatr. Scand. 97, 302–308.

Malter HE, Iber JC, Willemsen R, de Graaff E,Tarleton JC, Leisti J, Warren ST, Oostra BA (1997) Characterization of the full fragile X syndrome mutation in fetal gametes. Nat Genet 15, 165–169 Marcus RN, Owen R, Kamen I, et al. (2009) Aplacebo-controlled, fixed-dose study of aripiprazole in children and adolescents with irritability associated with autistic disorder. J Am Acad Child 48, 1110- 1119.

Martin JP, Bell J (1943) A pedigree of mental defect showing sex-linkage. J Neurol Psychiatry 6,154– 157.

Matrisciano F, Storto M, Ngomba RT, Cappuccio I, Caricasole A, Scaccianoce S, Riozzi B, Melchiorri D, Nicoletti F (2002) Imipramine treatment up-regulates the expression and function of mGlu2/3 metabotropic glutamate receptors in the rat hippocampus. Neuropharmacology 42, 1008-15. Mauri MC et al. (1998) Plasma and platelet amino acid concentrations in patients affected by major depression and under fluvoxamine treatment. Neuropsychobiology 37, 124-129.

McEwen BS (2005) Glucocorticids, depression, and mood disorders: structural remodeling in the brain. Metabolism 54(5 Suppl.1), 20-23.

Michalon A, Sidorov M, Ballard TM, Ozmen L, Spooren W, Wettstein JG, Jaeschke G, Bear MF, Lindemann L (2012) Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron 74, 49–56.

Micheal N et al (2003) Neurotrophic effests of electrocon vulsive therapy : a proton magnetic resonance study of left amygdalar region in patiens with tretment-resistant depression. Neuropsychopharmacology 28, 720-725.

Mientjes EJ, Nieuwenhuizen I, Kirkpatrick L, Zu T, Hoogeveen-Westerveld M, Severijnen L, Rife M, Willemsen R, Nelson DL, Oostra BA (2006) The generation of a conditional Fmr1 knock out mouse model to study Fmrp function in vivo. Neurobiol Dis 21, 549–555.

Mines MA, Jopo RS (2011) Glycogen synthase kinase-3: a promising therapeutic target for fragile X syndrome. Front Mol Neurosci 4, 35.

Mitani H, Shirayama Y, Yamada T, Maeda K, Ashby Jr CR, Kawahara R (2006) Correlation between plasma levels of glutamate, alanine and serine with severity of depression. Prog Neuropsychopharmacol Biol Psychiatry. 30, 1155–1158.

Murck H et al. (2002) Increase in amino acids in the pons after sleep deprivation: a pilot study using proton magnetic resonance spestroscopy. Neuropsychobiology. 45, 120-123.

Musazzi L, Milanese M, Farisello P, Zappettini S, Tardito D, Barbiero VS, et al. (2006) Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants. PLoS ONE 2010;5:e8566.

Nacher J, McEwen BS. (2006) The role of N-methyl-D-aspartate receptors in neurogenesic. Hippocampus 16(3), 267-270.

Navarro JF, De Castro V, Martín-López M (2008) JNJ16259685, a selective mGlu1 antagonist, suppresses isolation-induced aggression in male mice. Eur J Pharmacol 586, 217–220.

Nibuya M, EJ Nestler & RS Duman (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J. Neurosci. 16, 2365-2372.

Niswender CM., Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Ann. Rev. Pharmacol. Toxicol. 50, 295-322.

Nowak G, Legutko B, Skolnick P, Popik P(1998) Adaptation of cortical NMDA receptors by chronic treatment with specific serotonin reuptake inhibitors. Eur. J. Pharmacol. 342, 367-370.

Nudmamud-Thanoi S, Reynolds GP (2004) The NR1 subunit of the glutamate/NMDA receptor in the superior temporal cortex in schizophrenia and affective disorders. Neurosci Lett 372, 173–177. Oberle I, Rousseau F, Heitz D, Kretz C, Devys D, Hanauer A, Boue J, Bertheas MF, Mandel JL (1991) Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome.Science 252, 1097–1102.

Oostra BA, Nelson DL (2006) Animal models of fragile X syndrome: mice and flies. In: Wells BD, Ashizawa T (eds) Genetic instabilities and neurological diseases. Elsevier, Amsterdam, pp 175–193. Ortoland GA et al (1983)A calcium hypothesis of antidepressant action. Med. Hypoth. 10, 207-221. Palucha-Poniewiera A, Tatarczynska E, Branski P, Szewczyk B, Wieronska JM, Klak K, et al. (2004) Group III mGlu receptor agonists produce anxiolytic- and antidepressant-like effects after central administration in rats. Neuropharmacol 46, 151–159.

Palucha-Poniewiera A, Klodzinska A, Stachowicz K, Tokarski K, Hess G, Schann S, et al. (2008) Peripheral administration of group III mGlu receptor agonist ACPT-I exerts potential antipsychotic effects in rodents. Neuropharmacology 55, 517–524.

Papp, M & E Moryl. (1994) Antidepressant activity of non-competitive and competitive NMDA receptor antagonists in a chronic mild stress model of depression. Eur. J. Pharmacol. 263, 1-7.

Paslakis G, Gilles M, Meyer-Lindenberg A, Deuschle M.(2010) Oral administration of the NMDA receptor antagonist S-ketamine as add-on therapy of depression: a case series. Pharmacopsychiatry 43, 33–35.

Pecknold JC, McClure DJ, Appeltauer L, Wrzesinski L, Allan T (1982) Treatment of anxiety using fenobam (a nonbenzodiazepine) in a double-blind standard (diazepam) placebo-controlled study. J Clin Psychopharmacol 2, 129–133.

Perkinton MS et al. (2002) Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erk1/2), Akt/PKB and CREB in striatal neurones. J. Neurochem 80, 239- 254.

Pfleiderer B et al (2003) Effective electroconvulsive therapy reverses glutamate/glutamine deficit in the left anterior cingulum of unipolar depressed patients. Psychiatry Res. 122, 185-192.

Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA, Caskey CT, Nelson DL (1991) Absence of

Documenti correlati