• Non ci sono risultati.

Prima di poter impostare il calcolo del conrollore ottimo, `e necessario pro- gettare il sistema di controllo, ossia decidere la posizione e il tipo di sensori e il sistema di attuazione. Inoltre `e necessario impostare il modello matematico del sistema sul quale si baser`a il progetto del controllore.

A.4. Progetto del controllore

Sul modello del velivolo sono stati posti 9 accelerometri, come mostrato in fig. (A.3) 0 5 10 15 20 25 30 35 40 −5 0 5 10 15 20 25 Accelerometer position

Figure A.3 Location of accelerometers.

Oltre alle misure di accelerazione anche le velocit`a e le posizioni derivanti dall’integrazione di queste misure sono state considerate. Si `e supposto di avere a disposizione la completa conoscenza dei movimenti rigidi dell’aereo, si assume quindi che il velivolo `e dotato di un sistema di navigazione inerziale che si suppone essere abbastanza preciso da poterne trascurare la dinamica. Anche le rotazioni delle superfici di controllo vengono misurate, e la dinamica del sensore viene trascurata.

La normativa stabilita dall’European Aviation Safety Agency (EASA) prevede che il velivolo sia in grado di sopportare raffiche della forma 1-cos:

vg = (U gust 2 1 − cos πs H  0 < s ≤ 2H 0 s > 2H (A.8)

dove s `e la distanza di penetrazione nella raffica, H `e il gradiente della raffica, e Ugust `e la velocit`a della raffica, che varia al variare della quota e del gradiente della raffica.

Il progetto del controllore viene effettuato basandosi su una raffica deter- ministica di lunghezza H = 50 m, i risultati ottenuti sono mostratin in fig. (A.4)

Si pu`o notare come una riduzione del picco pari a circa il 18% sia stata raggiunta.

Calcoli eseguiti con diversi valori di lunghezze di raffica e di velocit`a di volo hanno dimostrato la capacit`a del controllore di adattarsi alle varie condizioni di volo.

A.4. Progetto del controllore 0 1 2 3 −1 −0.5 0 0.5 1 1.5x 10 6 time [s] M x [Nm] Open loop LQG SOF

(a) Wing root Bending moment.

0 1 2 3 −6 −4 −2 0 2 4 6 8x 10 4 time [s] M x [Nm]

(b) Horizontal tail plane root Bending moment. −1 −0.5 0 0.5 1 1.5 x 106 −5 0 5 10 x 104 Mx [Nm] M y [Nm] Open loop LQG SOF

(c) Wing root bending and torsion.

−5 0 5 x 104 −2 −1 0 1 2x 10 4 Mx [Nm] M y [Nm] Open loop LQG SOF

(d) Horizontal tail plane bending and torsion. 0 1 2 3 −4 −3 −2 −1 0 1 time [s] δ a [deg] LQG SOF

(e) Aileron deflection angle.

0 1 2 3 −1 −0.5 0 time [s] δ e [deg] LQG SOF

(f ) Elevator deflection angle. Figure A.4 Response to discrete gust. H = 50 m, V∞= 220 m/s.

Bibliography

[1] AAVV. Certification specifications for large aeroplanes cs-25. amendment 7 ed., European Aviation Safety Agency, October 2009. Annex to ED Decision 2009/013/R. [2, 79]

[2] E. L. Allgower and K. Georg. Numerical continuation methods, volume 13. Springer-Verlag Berlin, 1990. [51]

[3] R. Bartels and G. Stewart. Algorithm 432: solution of the matrix equation AX + XB = C. Comm. ACM, 15:820–826, 1972. [56, 57, 107] [4] P. Benner, V. Mehrmann, V. Sima, S. Van Huffel, and A. Varga:. SLICOT - A Subroutine Library in Systems and Control Theory. NICONET Report

97-3, 1997. [64, 114]

[5] S. P. Bhattacharyya. Robust Stabilization Against Structured Perturba- tions. New York: Springer–Verlag, 1987. [73]

[6] S. Bingulac, N. Cuk, and M. Calovic. Calculation of optimum feed- back gains for output-constrained regulators. Automatic Control, IEEE Transactions on, 20(1):164–166, 1975. [47]

[7] S. Boyd, C. Barrat, and S. Norman. Linear Controller Design: Limits of Performance Via Convex Optimization. Proceedings of the IEEE, 78(3):529–574, 1990. [48]

[8] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory. Siam Studies in Applied Mathematics, 1994. [4, 65, 66, 68, 69, 70, 71]

[9] M. A. Branch, F. T. Coleman, and Y. Li. A Subspace, Interior, And Conjugate Gradient Method For Large-Scale Bound-Constrained Mini- mization Problems. SIAM J. SCI. COMPUT, 21(1):1–23, 1999. [50] [10] Y.-Y. Cao, J. Lam, and Y. X. Sun. Static Output Feedback Stabilization:

An ILMI Approach. Automatica, 34(12):1641–1645, 1998. [73, 74] [11] L. Cavagna, S. Ricci, and L. Travaglini. Structural Sizing and Aeroelastic

Optimization in Aircraft Conceptual Design using NeoCASS suite. 13-th AIAA Multidisciplinary Analysis Optimization Conference, 2010. [6, 110] [12] L. Cavagna, S. Ricci, and L. Travaglini. NeoCASS: An integrated tool for structural sizing, aeroelastic analysis and MDO at conceptual design level. Progress in Aerospace Sciences, 47:621–635, 2011. [6, 110]

[13] E. G. Collins, W. M. Haddad, and S. S. Ying. Reduced–order dynamic compensation using the hyland–bernstein optimal projection equations. In Proceedings of the American Control Conference Seattle, Washington, June 1995. [47]

[14] M. Dardel and F. Bakhtiari-Nejad. Limit cycle oscillation control of wing with static output feedback control method. Aerospace Science and Technology, 24(1):147–160, 2013. [47]

[15] B. N. Datta. Numerical methods for linear control systems: design and analysis. Elsevier Academic Press: San Diego, CA, U.S.A., London, U.K., 2004. [55, 56, 114]

[16] M. C. de Oliveira and J. C. Geromel. Numerical comparison of out- put feedback design methods. In Proceedings of the American Control Conference Albuquerque, New Mexico June 1997, June 1997. [72] [17] J. Doyle and G. Stein. Robustness with observers. Automatic Control,

IEEE Transactions on, 24(4):607–611, 1979. [90]

[18] L. El Ghauoi, F. Oustry, and M. AitRami. A cone complementarity linearization algorithm for static output–feedback and related problems. Automatic Control, IEEE Transactions on, 42(8):1171–1176, 1997. [71, 72, 73, 74]

[19] B. Etkin. Turbulent wind and its effect on flight. Journal of Aircraft, 18(5):327–345, 1981. [2]

[20] B. Etkin. Dynamics of atmospheric flight. Courier Dover Publications, 2012. [14, 111]

Bibliography

[21] K. J. Fidkowski, F. Engelsen, K. E. Willcox, and I. M. Kroo. Stochas- tic gust analysis techniques for aircraft conceptual design. In 2th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria BC, Canada, 2008. [88]

[22] J. C. Geromel, C. C. de Souza, and R. E. Skelton. Static Output Feedback Controllers: Stability and Convexity. Automatic Control, IEEE Transactions on, 43(1):120–125, 1998. [72]

[23] J. C. Geromel, P. L. D. Peres, and S. R. Souza. Convex analysis of output feedback control problems: robust stability and performance. Automatic Control, IEEE Transactions on, 41(7):997–1003, 1996. [73, 74]

[24] Y. JW, T. TA, and P. RJ. Design of long-endurance unmanned airplanes incorporating solar and fuel cell propulsion. Technical report, NASA Langley Technical Report Server, 1984. [2]

[25] M. Karpel, B. Moulin, and P. C. Chen. Dynamic Response of Aeroser- voelastic Systems to Gust Excitation. Journal of Aircraft, 42:1264–1272, 2005. [13]

[26] H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. Wiley Interscience, New York, 1972. [38, 40, 43]

[27] W. Levine and M. Athans. On the determination of the optimal constant output feedback gains for linear multivariable systems. Automatic Control, IEEE Transactions on, 15(1):44–48, 1970. [4, 47, 113]

[28] D. J. Lucia. The sensorcraft configurations: A non-linear aeroservoe- lastic challenge for aviation. In AIAA 2005-1943, 46th AIAA/AS- ME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2005. [2]

[29] P. Mantegazza and C. Cardani. Continuation and direct solution of the flutter equation. Computers & Structures, 8(2):185–192, 1978. [17] [30] D. McLean. Gust-alleviation control systems for aircraft. In Proceedings

of the Institution of Electrical Engineers, volume 125, pages 675–685, 1978. [3]

[31] Y. Miyazawa and E. Dowell. Robust control system design with multiple model approach and its application to active flutter control. In AIAA 1989-3578, Guidance, Navigation and Control Conference, 1989. [4]

[32] D. Moerder and A. Calise. Convergence of a numerical algorithm for calculating optimal output feedback gains. Automatic Control, IEEE Transactions on, 30(9):900–903, 1985. [47, 110, 113]

[33] J. J. Mor´e and C. Sorensen, D. Computing a trust region step. SIAM J. Sci. Statist. Comput., 4:553–572, 1983. [50]

[34] M. J. Patil and D. H. Hodges. Output Feedback Control of the Nonlinear Aeroelastic Response of a Slender Wing. Journal of Guidance, Control, and Dynamics, 25(2):302–308, 2002. [4]

[35] S. B. Pope. Turbulent flows. Cambridge university press, 2000. [82] [36] R. F. Porter, D. W. Hall, and R. D. Vergara. Extended analytical study

of the free-wing/free-trimmer concept. Technical report, NASA, CR-3135, 1979. [3]

[37] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Springer Berlin Heidelberg, second edition, 2007. [56]

[38] S. Ricci and A. Scotti. Gust response alleviation on flexible aircraft using multi-surface control. In AIAA 2010-3117, 51st AIAA/AS- ME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2010. [3]

[39] M. Ripepi and P. Mantegazza. Improved Matrix Fraction Approximation of Aerodynamic Transfer Matrices. AIAA Journal, 51(5):1156–1173, 2013. [22, 26, 111]

[40] W. P. Rodden and E. H. Johnson. MSC/NASTRAN Aeroelastic Analysis User’s Guide. The MacNeal-Schwendler Corp., Los Angeles, 1994. [7, 9] [41] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: anal-

ysis and design. John Wiley and Sons, 2nd ed., 2005. [46]

[42] V. L. Syrmos, C. T. Abdallah, P. Dorato, and K. Grigoriadis. Static Output Feedback — A Survey. Automatica, 33(2):125–137, 1997. [4] [43] V. Vesel`y. Static output feedback controller design. Kybernetika,

37(2):205–221, 2001. [4]

[44] G. A. Vio and J. E. Cooper. Optimisation of the composite sensorcraft structure for gust alleviation. In AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper, volume 6017, 2008. [3]

Bibliography

[45] J. Welstead and G. L. Crouse. Segmented-freewing concept for gust alleviation. Journal of Aircraft, 47(3):1047–1059, 2010. [3]

[46] S. J. Wright and J. N. Holt. An Inexact Levenberg–Marquardt Method for Large Sparse Nonlinear Least Squares. ANZIAM Journal, 26(4):387–403, 1985. [49]

[47] Z. Wu, L. Chen, and C. Yang. Study on gust alleviation control and wind tunnel test. Science China Technological Sciences, 56(3):762–771, 2013. [3]

[48] J. C. Yeager. Implementation and testing of turbulence models for the f18-harv simulation. Lockheed Martin Engineering & Sciences, NASA CR-1998-206937, 1998. [82]

[49] K. Zhou, J. Doyle, and K. Glover. Robust and optimal control. Pretience Hall, Upper Saddle River, NJ, 1996. [45, 60]

Documenti correlati