• Non ci sono risultati.

- 60 -

Il potenziale di membrana dei mitocondri cardiaci utilizzati negli

esperimenti è stato misurato per via indiretta (uptake di TPP+) ed è ri-

sultato pari a -180 mV.

Questo valore, corrispondendo esattamente a quello fisiologico, ci ha dato conferma della validità del metodo di isolamento.

La Naringenina (Fig.11) ha portato ad una depolarizzazione con- centrazione-dipendente della membrana interna dei mitocondri car- diaci, che si attesta ad un livello pari a 22±4 mV per la concentrazione 100 µM del flavonoide.

Sebbene una depolarizzazione dell’ordine dei 20 mV potrebbe sem- brare modesta, precedenti studi sperimentali hanno dimostrato che una depolarizzazione di tale entità è comunque sufficiente a garantire un

significativo effetto sui movimenti del Ca2+ ed una conseguente atti-

vità cardioprotettiva (Calderone et al., 2010).

Fig. 11 - [*] La significatività è calcolata sull’ultima concentrazione di !aringenina (100 µM).

- 61 -

Allo scopo di verificare che tale depolarizzazione fosse legata al-

l’attivazione di flussi di K+, l’effetto depolarizzante della Naringe-

nina è stato valutato in un buffer al mannitolo, privo cioè dello ione K+.

Se l’attività depolarizzante della Naringenina fosse stata legata al-

l’apertura di canali diversi da quelli del K+ , l’utilizzo del buffer al

mannitolo non avrebbe influenzato minimamente l’entità della de- polarizzazione che, dunque, sarebbe stata uguale al controllo.

Invece, la somministrazione della Naringenina in assenza di K+nel-

l’ambiente extramitocondriale ha determinato un effetto depolariz- zante significativamente inferiore al controllo (10±4 mV con Naringenina 100 µM) confermando, così, che i canali ionici mitocon-

driali coinvolti sono quelli al K+. Infine, per avere la certezza che fra

tutti i canali del K+espressi a livello mitocondriale quelli coinvolti nel

meccanismo di protezione cardiaca fossero canali BK, la depolariz- zazione del potenziale di membrana indotta dalla Naringenina è stata misurata in presenza di due noti BK-bloccanti selettivi, l’IbTx e la Pax, alle concentrazioni rispettivamente di 100 nM e 10 µM.

I due BK-bloccanti hanno antagonizzato pressoché totalmente la risposta depolarizzante della Naringenina, indicando il coinvolgi- mento dei canali BK mitocondriali.

- 62 -

3.3 - C

O!CLUSIO!I

L’indagine sperimentale eseguita ci ha permesso di verificare l’ef- ficacia anti-ischemica del flavonoide Naringenina e di correlare tale effetto al coinvolgimento di canali BK espressi a livello mitocon- driale.

I risultati mostrano, dunque, un interessante meccanismo farma- codinamico della Naringenina, responsabile dell’effetto cardiopro- tettivo in modo sinergico, se non addirittura predominante, rispetto alle proprietà antiossidanti già ben note per i flavonoidi del genere Citrus.

Tali conclusioni concordano perfettamente con i risultati ottenuti da precedenti studi sperimentali (Moonkyu et al., 2007).

- 63 -

B

IBLIOGRAFIA

.

Aguilar-Bryan L., 1995, “Cloning of the β cell high-affinity sul-

fonylurea receptor: a regulator of insulin secretion”, Science, 268, 423-426.

.

Aguilar-Bryan L., Clement J.P.I.V., Gonzales G., Kunjilwar K., BabenkoA., Bryan J., 1998, “Toward understanding the assembly

and structure of KATPchannels”,Physiol. Rev., 78, 227-245.

.

Ashcroft F.M., Gribble F.M., 1998, “Correlating structure and

function in ATP-sensitive K+channels”, Trends Neurosci., 21, 288-

294.

.

Biagi G., Calderone V., Giorgi I., Livi O., Scartoni V., Baragatti B., Martinotti E., 2000, “5-(4’-Substituted-2’-nitroanilino)-

1,2,3-triazoles as new potential potassium channel activators”, Eur. J. Med. Chem., 35, 715-720.

.

Biagi G., Giorgi I., Livi O., Scartoni V., Barili P.L., Calderone V., Martinotti E., 2001, “!ew 5-substituted-1-(2-

hydroxybenzoyl)-benzotriazoles, potassium channel activators”, Farmaco, 56, 827-834.

.

Bolton T.B., Mac Kenzie I., Aaronson P.I., 1998, “Voltage-de-

pendent calcium channels in smooth muscle cells”, J. Cardiovasc. Pharmacol., 12, [Suppl 6], S3-S7.

- 64 -

.

Breschi M.C., Calderone V., MartelliA., Minutolo F., Rapposelli S.,Testai L., Tonelli F., and Aldo Balsamo, 2006,“!ew benzopy-

ran-based openers of the mitochondrial ATP-sensitive potassium channel with potent anti-ischemic properties”, J. Med. Chem., 49, 7600-7602.

.

Brookes S.P.,YoohY., Robotham J.L.,Anders M.W., Shen S.S.,

2004, “Calcium, ATP, and ROS: a mitochondrial love-hate trian- gle” Am. J. Cell. Physiol., 287, C817-C833.

.

Busija D.W., Lacza Z., Rajapakse !., Shimizu K., Kis B., Bari F., Domoki F., Horiguchi T., 2004, “Targeting mitochondrial ATP-

sensitive potassium channel – a novel approach to neuroprotec- tion”, Brain Res. Rev., 46, 282-294.

.

Butera J.A., Antane S.A., Hirth B., Lennox J.R., Sheldon J.H., !orton !.W., Warga D., Argentieri T.M., 2001, “Synthesis and

potassium channel opening activity of substituted 10H-benzo[4,5] furo[3,2-b]indole and 5,10-dihydro-indeno[1,2-b] indole-1- carboxylic acids”, Bioorg. Med. Chem. Lett, 11, 2093-2097.

.

Calderone V., Martinotti E., 2000, “Potassium channels: KATPin

vascular smooth muscle”, Pharmacol. Commun, 6, 247-253.

.

Calderone V., 2002, “Large-conductance, Ca2+-activated K+chan-

nels: Function, Pharmacology and Drugs”, Curr. Med. Chem., 9, 1385-1395.

- 65 -

.

Calderone V., Testai L., Martelli A., Rapposelli S., Digiacomo M., Breschi M.C., BalsamoA., 2010, “Anti-ischemic properties of

a new spiro-cyclic benzopyran activator of the cardiac mitoKATP

channel”, Biochem. Pharmacol., 79, 39-47.

.

Calderone V., Testai L., Martelli A., Rapposelli S. and Breschi A.M, 2007, “Activators of cardiac mitochondrial ATP-sensitive

potassium channel: promising drugs for anti-ischaemic therapy”, Curr. Topics Pharmacol., 11, 1..

.

Chun-Mei Cao, Qiang Xia, Qin Gao, Mao Chen and Tak-Ming Wong, 2005, “Calcium-activated potassium channel triggers car-

dioprotection of ischemic preconditioning”, JPET, 312, 644-650.

.

Coghlan M.J., Carrol W.A., Gopalakrishnan M., 2001, Recent

developments in the biology and medicinal chemistry of potassium channel modulators: uptade from a decade of progress”, J. Med. Chem., 44, 11, 1627-1653.

.

Connern CP and Halestrap AP, 1994, “Recruitment of mito-

chondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive non-specific channel”, Biochem J. 302, 321-324.

.

Douglas R.M., Lai J.C., Bian S., Cummins L., Moczydlowski E., Haddad G.G., 2006, “The calcium-sensitive large-conduc-

- 66 -

tochondrial membrane of rat brain”, Neuroscience, 13, 1249- 1261.

.

Doyle D.A., Morais Cabral J., Pluetzner R.A., Kuo A., Gulbis J.M., Cohen S.L., Chait B.T., Mackkinnon R., 1998, “The struc-

ture of potassium channel: molecular basis of K+ conduction and

selectivity”, Science, 280, 69-77.

.

Franger C.M., Ghanshani S., Logsdon !.J., Rauer H., Kalman K., Zhou J., Beckingham K., Chandy K.G., Cahalan M.D., Aiyar J., 1999, “Calmodulin mediates calcium-dependent activa-

tion of the intermediate conductance KCa channel, IKCa1”, J. Biol.

Chem., 274, 5746-5754.

.

Fujita A. and Kurachi Y., 2000, “Molecular aspects of ATP-sen-

sitive K+ channels in the cardiovascular system and K+ channel

openers”, Pharmacol. Ther., 85, 39-53.

.

Garlid KD., 2000, “Opening mitochondrial K(ATP) in the heart-

what happens and what does not happen”, Basic Res. Cardiol., 95, 275-279.

.

Garlid KD., Paucek P., 2003, “Mitochondrial potassium trans-

port: the K+cycle”, Biochim. Biophys Acta , 1606, 23-41.

.

Garlid KD, Paucek P.,Yarov-Yarovoy V., Sun X., Schindler PA., 1996, “The mitochondrial KATP channel as a receptor for potas-

- 67 -

.

Garlid KD., Paucek P., Yarov-Yarovoy V., Murray H!., Dar- benzio RB., D’Alonzo AJ., Lodge !J., Smith MA. And Grover GJ., 1997, “Cardioprotective effect of diazoxide and its interaction

with mitochondrial ATP-sensitive K+channels: possible mechanism

of cardioprotection”, Circ. Res., 81, 1072-1082.

.

Garlid KD., Santos DS., Xie ZY., Costa AD., Paucek P., 2003,“

The mitochondrial potassium channel in cardiac function and car- dioprotection”, Biochim. Biophys Acta, 1606, 1-21.

.

Giangiacomo K.M., Garcia-Calvo M., Knaus H.G., Mullmann T.J., Garcia M.L., McManus O., 1995, “Functional reconstitution

of the large-conductance, calcium-activated potassium channel pu- rified from bovine aortic smooth muscle”, Biochem., 34, 15849- 15862.

.

Griffbok V.K., Starret J.E., Dworesky S.I., 2001, “Maxi-K potas-

sium channels: form, function and modulation of a class endoge- nous regulators of intracellular calcium”, Neurosc., 7, 166-177.

.

Griffiths E.J. e Halestrap A.P., 1993, “Protection by cyclosporin

A of ischemia/reperfusion-induced damage in isolated rat hearts”, J. Mol. Cell. Cardiol. 25, 1461-1469.

.

Hewawasam P., Starrett J.E., Swartz S.G., 1999, “Preparation

of 4-aryl-3-aminoquinoline-2-ones as potassium channel modula- tors”, IPA, WO 9909983.

- 68 -

.

Hlle B., 1986, “Ionich channel of excitable membranes”, Harvey

Lect, 82, 47-69.

.

Jiang Y A., Lee A., Chen J., Ruta V., Cadene M., Chait BT., McKinnon R., 2003, “ X-ray structure of a voltage-dependent K+

channel”, Nature, 423, 33-41.

.

Yang Y B., Ruta V., Chen J., Lee A., McKinnon R., 2003, The

principle of gating charge movement in a voltage-dependent K+

channel”, Nature 423, 42-46.

.

Kane G.C., Liu X.K., Yamada S., Olson T.M., Terzie A., 2005,

“Cardiac KATPchannels in health and disease”, J. Mol. Cell. Car-

diol., 38, 937-943.

.

Kang SH, Park WS., Kim !., Youm JB., Warda M., Ko JH., et al., 2007, “Mitochondrial Ca2+-activated K+ channels more effi-

cienty reduce mitochondrial Ca2+ overload in rat ventricular my-

ocytes”, Am. J. Physiol Heart Circ Physiol., 293, H307-H313.

.

Kolher M., Hirschberg B., Bond C.T., Kinzie J.M., Marrion !.V., Maylie J., Adelman J.P., 1996, "Small-conductance cal-

cium-activated potassium channels from mammalian brain", Sc., 273, 1709-1714.

.

KuboY., Baldwin T.J., JanY.!., Jan L.Y., 1993, “Primary struc-

ture and functional expression of a mouse invar rectifier potassium channel”, Nature, 362, 127-133.

- 69 -

.

Kulawiak B., Kudin A.P., Szewczyk A., Kunz W.S., 2008,“BK

channel opener inhibit ROS production of isolated rat brain mito- chondria”, Exp. Neurol., 212, 543-547.

.

Li H.F., Chen S.A., Wu S.!., 2000, “Evidence for the stimulatory

effect of resveratrol on Ca2+-activated K+current in vascular en-

dothelial cells”,Cardiovasc. Res., 45, 1035-1045.

.

Li Y., Starret J.E., Meanwell !. A., Johnson G., Harte W.E., Dworetzky S.J., Boissard C.G., Gribkoff V.K., 1997, Bioorg.

Med. Chem. Lett., 7, 759-762.

.

Liu J., Kam KW., Zhou JJ., Yan WY., Chen M., Wu S., and Wong TM., 2004, “ Effect of heat shock protein 70 activation by

metabolic inhibition preconditioning or {kappa}-opioid receptor stimolation on Ca2+ homeostasis in rat ventricular myocytes sub-

jected to ischemic insults”, J. Pharmacol. Exp. Ther , 310, 606-613.

.

Minor D.L., 2001, “Potassium channels: life in the post-structural

world”, Curr. Opin. Struct. Biol., 11, 404-414.

.

Moonkyu K., Jong-Hoon K., Chongwoon C., Hwan-Suck C., Chang-Woon K.,Yangseok K., Minkyu S., Moochang H., Hyunsu B., 2007, “Anti-ischemic effect ofAurantii Fructus on contractile dy-

sfunction of ischemic and reperfused rat heart”, JEP, 111, 584-591.

.

Munaron L. and Lovisolo D., 2003. Fisiologia della cellula, Bol-

- 70 -

.

!agano !., ImaizumiY., Hirano M., Watanabe M., 1996, “Ope-

ning of Ca(2+)-dependent K(+) channels by nordihydroguaiaretic acid in porcine coronary arterial smooth muscol cells”, Jpn J. Phar- macol., 70, 281-284.

.

O’Rourke B., 2004, “Evidence for mitochondrial K+channels and

their role in cardioprotection” Circ. Res., 94, 420-432.

.

Olesen S.P. and Watjen F., 1992, “Benzimidazolone derivatives,

their preparation and use”, EPA, EP 0477819.

.

Olesen S.P., Moldt P., Pedersen O., 1994, “Urea and amide de-

rivatives and their use in the control of cell membrane potassium chennels”, IPA, WO 9422807.

.

Ondeyka J.G., Ball R.G., Garcia M.L., DombrowskiA.W., Sab- nis G., Kaczorowski G. J., Zink D.L., Bills G.F., Goetz M.A., SchmalhoferW.A., Singh S.B., 1995, “Acarotane sesquiterpene as

a potent modulator of the Maxi-K channel from Arthrinium phae- sospermum”, Boiorg. Med. Chem. Lett., 5, 733-734.

.

Papazian D.M., Schawarz T.L., Tempel B.L., JanY.!. Jan L.Y.,

1987, “Cloning of genomic and complementary D!A from shaker, a putative potassium- channel gene from Drosophila”, Science, 237, 749-753.

.

Petersen O.H., Maruyama Y., 1984, “Calcium-activated potas-

- 71 -

.

Rapposelli S., Calderone V., Cirilli R., Digiacomo M., Faggi C., La Torre F., Manganaro M., Martelli A. and Testai L., 2009,

“Enantioselectivity in cardioprotection induced by (S)-2,2- dime- thyl-!-(4’-acetamido-benzyl)-4-spiromorpholone-chromane”, J. Med. Chem., 52, 1477-1480.

.

Robitaille R. and Charton M.P. , 1992, “Presynaptic calcium sig-

nal and trasmitter release are modulated by calcium-activated potassium channels”, J. Neurosci., 21, 297-305.

.

Rundfelt C., 1999, “Potassium channels and neurodegenerative

deseases: drug news perspects”, 12, 99-104.

.

Sakamoto K., Ohya S., Muraki K. And Imaizumi Y., 2008, “A

novel opener of large-conductance Ca2+-activated K+(BK) channel

reduces ischemic injury in rat cardiac myocytes by activating mi- tochondrial KCa channel”, J. Pharmacol. Sci. 108, 135-139.

.

Saponara S., Testai L., Iozzi D., Martinotti E., Martelli A., Chericoni S., Sgaragli G., Fusi F. and Calderone V., 2006, “(+/)-

!aringenin as large conductance Ca2+-activated K+ (BK

Ca) chan-

nel opener in vascular smooth muscle cells”, Br. J. Pharmacol., 149, 1013-1021

.

Schulz R., Post H., Vahlhaus C., Heusch G., 1998,“Ischemic pre-

conditioning in pigs: a graded phenomenon: its relation to adeno- sine and bradykinin”, Circ., 98, 1022-1029.

- 72 -

.

Scornik F.S., Codina J., Birnbaumer L., Toro L., 1993, “Modu-

lation of coronary smooth muscle KCa channels by Gs alpha in-

dipendent of phosphorilation by protein kinase A”, Am. J. Physiol. 265, H1460-H1465.

.

Shieh F.S., Coghlan M., Sullivan J.P. Gopalakrishnan M., 2000,

“Potassium channels: molecular defect, deseas and therapeutic op- portunities”, Pharmacol. Rev., 52, 557-593.

.

Singh S.B., Goetz M.A., Zink D.L., Dombrowski A.W., Poli- shook J.D., Garcia M.L., SchmalhoferW., McManus O.B., Kac- zorowski G.J., 1994, “Maxikdiol: a novel dihydroxyisoprimane as

a agonist of Maxi-K channels”, J. Chem. Soc., Perkin Trans.1, 3349.

.

SkalskaJ.,BednarczykP.,PiwonskaM.,KulawiakB.,Wilczynsky G.,DolowyK.,KudinA.P.,KunzW.S.andSzewczykA.,2009,“Cal-

cium ions regulate K+uptake into brain mitochondria: the evidence for

a novel potassium channel”, Int. J. Mol. Sci., 10, 1104-1120.

.

Starret J.E., Fworetzky S.I., Gribkoff V.K., 1996, “Modulators

of large-conductance calcium-activated potassium (BK) channel as potential therapeutics targets”, Curr. Pharm. Des., 2, 413-428.

.

Stretton D., Miura M., Belvisi M.G., Barnes P.G., 1992, “Cal-

cium activated potassium channels mediate prejunctional inhibi- tion of peripherical sensory nerves”, Proc. Natl. Acad. Sci. USA, 89 1325-1329.

- 73 -

.

Syme C.A., GerlachA.C., SinghA.K., Devor D.C., 2000, “Phar-

macological activation of cloned intermediate and small conduc- tance Ca2+-activated K+ channels”, Am. J. Physiol., 278,

C570-C581.

.

Taniguchi J., Furakawa K.I., Shigekawa M., 1993, “Maxi-K+

channels are stimolated by cyclic guanosine monophosphate-de- pendent protein kinasi in canine coronary artery smooth muscle cells”, Pflugers Arch., 423, 167-172.

.

Vergara C., La Torre R., Marrio !V.,Adelman JP., 1998,“ Cal-

cium-activated potassium channels”, Curr. Opin. Neurobiol., 8, 321-329.

.

Von Cuong D., Kim !., Joo H., Joum J.B., Choung J.Y., Lee Y., Park W.S., Kim E., Park J.S., Han S., 2005, “Subunit composi-

tion of ATP-sensitive potassium channels in moitochondria of rat hearts”, Mitoch., 5, 121-133.

.

Wang X., Inukai T., Greer M., Greer S., 1994, “Evidence that

Ca2+-activated K+ channels partecipate in the regulation of pitu-

itary prolactin secretion”, Brain Res., 662, 83-87.

.

Williams D.L.Jr., Kats G.M., Roy-Contancin L., Reuben J.P.,

1988, “Guanosine 5’-monophosphate modulates gating of high- conductance Ca2+-activated K+channels in vascular smooth mus-

- 74 -

.

Wulff H., Miller M.J., Hansel W., Grissmer S., Cahalan M.D., Chandy K.G., 2000, “ Design of potent and selective inhibitor of

the intermediate-conductance Ca2+-activated K+channel, IK

Ca1: a

potential immunosuppressant”, Proc. Natl. Acad. Sci., 97, 8151- 8156.

.

Xia X. M., Ding J., Lingle C., 1999, “ Molecular basis for the in-

activation of Ca2+- and voltage dependent BK channels in adrenal

chromaffin cells and rat insulinoma tumor cells”, J. Neurosci., 19, 5255-5264.

.

Xu W., Liu Y., Wang S., McDonald T., Van Eyk JE., Sidor A et al., 2002, “Cytoprotective role of Ca2+-activated K+chan-

nels in the cardiac inner mitochondrial membrane”, Science, 298, 1029-1033.

.

Yokoshiki H., Sunagawa M., Seki T., Sperelakis !., 1998,“ATP-

sensitive K+channels in pancreatic, cardiac, and vascular smooth

muscle cells”, Am. J. Physiol. Cell Physiol., 274, C25-C37.

.

Zhang SZ., Gao Q., Cao CM., Bruce IC., Xia Q., 2006,“In-

volvement of the mitochondrial calcium uniporter in cardioprotec- tion by ischemic preconditioning”, Life Sci., 78, 738-745.

.

Zhang W.M., Jin W.Q., Wong T.M., 1996,“Multiplicity of kappa

opioid receptor binding in the rat cardiac sarcolemma”, J. Mol. Cell. Cardiol., 28, 1547-1554.

- 75 -

Siti web:

http://www.accademiapontaniana.it http://molecularlab.it

“Quei cancelli che regolano le cellule”, in Molecular lab, ov./o6

Treccaniscuola:

http://62.77.55.137/site/scuola/nellascuola/area-biologia/archivio/ioni/ baruscotti-htm

Documenti correlati