• Non ci sono risultati.

We point out that most of the results of this paper can be adapted to more general operators. In particular, one can replace the regional fractional

p-Laplacian and the nonlocal term on the boundary with more general opera-tors satisfying suitable growth hypotheses. This will be object of a forthcoming paper.

Acknowledgements

The authors have been supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilit`a e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Funding Information Open access funding provided by Universit`a degli Studi di Roma La Sapienza within the CRUI-CARE Agreement.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and re-production in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regu-lation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visithttp://creativecommons.

org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-tional claims in published maps and institujurisdic-tional affiliations.

References

[1] Abe, S., Thurner, S.: Anomalous diffusion in view of Einstein’s 1905 theory of Brownian motion. Phys. A 356, 403–407 (2005)

[2] Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Springer, Berlin (1996)

[3] Barbu, V.: Nonlinear semigroups and differential equations in Banach spaces.

Noordhoff International Publishing, Leiden (1976).. (Translated from the Roma-nian)

[4] Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces, 4th edn. Springer Monographs in Mathematics, Springer (2012)

[5] Biegert, M.: A priori estimate for the difference of solutions to quasi-linear elliptic equations. Manuscripta Math. 133, 273–306 (2010)

[6] Bonforte, M., Grillo, G.: Ultracontractive bounds for nonlinear evolution equa-tions governed by the subcritical p-Laplacian, Progr. Nonlinear Differential Equations Appl., 61, Trends in partial differential equations of mathematical physics, 15–26, Birkh¨auser, Basel (2005)

[7] Br´ezis, H.: Propri´et´es r´egularisantes de certains semi-groupes non lin´eaires. Israel J. Math. 9, 513–534 (1971)

[8] Brezzi, F., Gilardi, G.: Fundamentals of PDE for numerical analysis. In:

Kardestuncer, H., Norrie, D.H. (eds.) Finite Element Handbook. McGraw-Hill Book Co., New York (1987)

[9] Browder, F.E.: Remarks on nonlinear interpolation in Banach spaces. J. Funct.

Anal. 4, 390–403 (1969)

[10] Cipriani, F., Grillo, G.: Uniform bounds for solutions to quasilinear parabolic equations. J. Differ. Equ. 177, 209–234 (2001)

[11] Cipriani, F., Grillo, G.: Nonlinear Markov semigroups, nonlinear Dirichlet forms and applications to minimal surfaces. J. Reine. Angew. Math. 562, 201–235 (2003)

[12] Claus, B., Warma, M.: Realization of the fractional Laplacian with nonlocal exterior conditions via forms method. J. Evol. Equ. (2020).https://doi.org/10.

1007/s00028-020-00567-0

[13] Creo, S., Lancia, M.R., Nazarov, A.I.: Regularity results for nonlocal evolution Venttsel’ problems. Fract. Calc. Appl. Anal. 23(5), 1416–1430 (2020)

[14] Creo, S., Lancia, M.R., V´elez-Santiago, A., Vernole, P.: Approximation of a nonlinear fractal energy functional on varying Hilbert spaces. Commun. Pure Appl. Anal. 17, 647–669 (2018)

[15] Creo, S., Lancia, M.R., Vernole, P.: Convergence of fractional diffusion processes in extension domains. J. Evol. Equ. 20, 109–139 (2020)

[16] Creo, S., Lancia, M.R., Vernole, P.: M-convergence of p-fractional energies in irregular domains. J. Convex Anal. 28, 2 (2021). (in press)

[17] Creo, S., Durante, V.R.: Convergence and density results for parabolic quasi-linear Venttsel’ problems in fractal domains. Discrete Contin. Dyn. Syst. Ser. S 12, 65–90 (2019)

[18] Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge (1989)

[19] Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

[20] Dr´abek, P., Milota, J.: Methods of nonlinear analysis. Birkh¨auser Adv. Texts, Birkh¨auser, Basel, Applications to Differential Equations (2007)

[21] Dubkov, A.A., Spagnolo, B., Uchaikin, V.V.: L`evy flight superdiffusion: An in-troduction. Int. J. Bifurc. Chaos 18, 2649–2672 (2008)

[22] Gal, C.G., Warma, M.: Bounded solutions for nonlocal boundary value problems on Lipschitz manifolds with boundary. Adv. Nonlinear Stud. 16, 529–550 (2016) [23] Gal, C.G., Warma, M.: Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions. Evol. Equat. Control Theory 5, 61–103 (2016) [24] Gal, C.G., Warma, M.: Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete Contin. Dyn.

Syst. 36, 1279–1319 (2016)

[25] Gal, C.G., Warma, M.: Nonlocal transmission problems with fractional diffusion and boundary conditions on non-smooth interfaces. Commun. Partial Differ.

Equ. 42, 579–625 (2017)

[26] Gorenflo, R., Mainardi, F., Vivoli, A.: Continuous-time random walk and para-metric subordination in fractional diffusion. Chaos, Solitons Fractals 34, 87–103 (2007)

[27] Guan, Q.Y.: Integration by parts formula for regional fractional Laplacian. Com-mun. Math. Phys. 266, 289–329 (2006)

[28] Guan, Q.Y., Ma, Z.M.: Boundary problems for fractional Laplacians. Stoch.

Dyn. 5, 385–424 (2005)

[29] Jara, M.: Nonequilibrium scaling limit for a tagged particle in the simple exclu-sion process with long jumps. Commun. Pure Appl. Math. 62, 198–214 (2009) [30] Jones, P.W.: Quasiconformal mapping and extendability of functions in Sobolev

spaces. Acta Math. 147, 71–88 (1981)

[31] Jonsson, A.: Besov spaces on closed subsets ofRn. Trans. Am. Math. Soc. 341, 355–370 (1994)

[32] Jonsson, A., Wallin, H.: Function spaces on subsets of Rn, Part 1, Math. Reports, vol. 2, Harwood Acad. Publ., London (1984)

[33] Jonsson, A., Wallin, H.: The dual of Besov spaces on fractals. Stud. Math. 112, 285–300 (1995)

[34] Lancia, M.R., V´elez-Santiago, A., Vernole, P.: Quasi-linear Venttsel’ problems with nonlocal boundary conditions on fractal domains. Nonlinear Anal. Real World Appl. 35, 265–291 (2017)

[35] Lancia, M.R., V´elez-Santiago, A., Vernole, P.: A quasi-linear nonlocal Venttsel’

problem of Ambrosetti-Prodi type on fractal domains. Discrete Contin. Dyn.

Syst. 39, 4487–4518 (2019)

[36] Lancia, M.R., Vernole, P.: Irregular heat flow problems. SIAM J. Math. Anal.

42, 1539–1567 (2010)

[37] Lancia, M.R., Vernole, P.: Semilinear fractal problems: approximation and reg-ularity results. Nonlinear Anal. 80, 216–232 (2013)

[38] Lancia, M.R., Vernole, P.: Venttsel’ problems in fractal domains. J. Evol. Equ.

14, 681–712 (2014)

[39] Lancia, M.R., Vernole, P.: Semilinear Venttsel’ problems in fractal domains.

Appl. Math. 5(12), 1820–1833 (2014)

[40] Maligranda, L.: Some remarks on Orlicz’s interpolation theorem. Stud. Math.

95, 43–58 (1989)

[41] Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1969)

[42] Mellet, A., Mischler, S., Mouhot, C.: Fractional diffusion limit for collisional kinetic equations. Arch. Ration. Mech. Anal. 199, 493–525 (2011)

[43] Murthy, M.R.V., Stampacchia, G.: Boundary value problems for some degenerate-elliptic operators. Ann. Mat. Pura Appl. 80, 1–122 (1968)

[44] Schneider, W.R.: Grey noise. In: Albeverio, S., Casati, G., Cattaneo, U., Merlini, D., Moresi, R. (eds.) Stochastic Processes, pp. 676–681. Physics and Geometry, Teaneck, NJ, USA, World Scientific (1990)

[45] Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs 49. American Mathematical Society, Providence, RI (1997)

[46] Valdinoci, E.: From the long jump random walk to the fractional Laplacian. Bol.

Soc. Esp. Mat. Apl. SeMA 49, 33–44 (2009)

[47] V´elez-Santiago, A.: Quasi-linear variable exponent boundary value problems with Wentzell-Robin and Wentzell boundary conditions. J. Funct. Anal. 266, 560–615 (2014)

[48] V´elez-Santiago, A., Warma, M.: A class of quasi-linear parabolic and elliptic equations with nonlocal Robin boundary conditions. J. Math. Anal. Appl. 372, 120–139 (2010)

[49] Warma, M.: The p-Laplace operator with the nonlocal Robin boundary condi-tions on arbitrary open sets. Ann. Mat. Pura Appl. 193, 771–800 (2014) [50] Warma, M.: A fractional Dirichlet-to-Neumann operator on bounded Lipschitz

domains. Commun. Pure Appl. Anal. 14, 2043–2067 (2015)

[51] Warma, M.: The fractional Neumann and Robin type boundary conditions for the regional fractional p-Laplacian. NoDEA Nonlinear Differential Equations Appl., 23 (2016), Art. 1, 46 pp

[52] Warma, M.: On a fractional (s, p)-Dirichlet-to-Neumann operator on bounded Lipschitz domains. J. Elliptic Parabol. Equ. 4, 223–269 (2018)

Simone Creo and Maria Rosaria Lancia

Dipartimento di Scienze di Base e Applicate per l’Ingegneria Sapienza Universit`a di Roma

Via A. Scarpa 16 00161 Roma Italy

e-mail: maria.lancia@sbai.uniroma1.it

Simone Creo

e-mail: simone.creo@sbai.uniroma1.it

Received: 28 July 2020.

Accepted: 27 March 2021.

Documenti correlati