• Non ci sono risultati.

In figura 5.14, sono riportate le prime 15 tuple del risultato della suddetta query. Ad esempio la prima tupla descrive l’informazione che il segmento di strada way_id = 579803, il giorno 24 maggio 2011, (traj_day), è stato un tratto di strada che ha dato luogo a variazioni per ben 11 utenti del campione considerato. Tale tratto è raffigurato

Figura 5.14: Un insieme di segmenti di routine che hanno dato luogo a variazioni. in blu nella mappa in figura 5.15, e corrisponde a un segmento dell’autostrada A14, in direzione sud.

E’ interessante osservare che tale tratto il 24 maggio 2011 è stato oggetto di deviazione a causa della chiusura del tratto stesso, come documentato dallo stralcio di giornale 4

raffigurato in figura ??.

Figura 5.15: Rappresentazione del segmento 579803, che ha dato luogo a variazioni il giorno 24 maggio 2011.

Figura 5.16: Stralcio di giornale della rivista online Traporti-Italia.com, che documenta la chiusura del tratto di strada corrispondente al segmento 579803.

Capitolo 6

Conclusioni e lavori futuri

Nel presente lavoro di tesi è stata studiata e proposta una metodologia di estrazione di Mobility User Profile. Tale metodologia è stata applicata a un caso di studio reale utilizzando i dati di mobilità della società Octo Telematics SpA. Questo dataset contiene tutti i percorsi effettuati dagli utenti delle device che la Octo Telematics installa sui veicoli, a scopo assicurativo. L’attenzione è stata circoscritta al campione di dati della finestra temporale 1/05/2011 31/05/2011, e alla finestra spaziale costituita da un’area geografica centrata sulle regioni Toscana ed Emilia Romagna. Dalle analisi dei profili di utenti in mobilità, rappresentati attraverso traiettorie proiettate sui segmenti di strada, la metodologia proposta consente di derivare informazioni di varia natura, ad esempio problematiche di mobilità ordinaria. Dalle elaborazioni effettuate sul dataset a disposi- zione, sono state infatti individuati i tratti di strada che hanno determinato variazioni a routine a causa di interruzioni stradali, come riscontrato anche dall’informazioni sul web. Tale sperimentazione apre la strada alla costruzione di tools in grado di rilevare situazioni critiche di mobilità per orientare l’utenza a percorsi alternativi in maniera preventiva.

Tra gli sviluppi futuri prevediamo lo studio di una metodologia di analisi che con- sideri le scelte alternative effettuate dagli utenti. Una tale metodologia troverebbe ap- plicazione relativamente allo studio di percorsi alternativi che potrebbero rappresentare miglioramenti al traffico urbano.

Bibliografia

[1] Jean Damascène Mazimpaka and Sabine Timpf. Trajectory data mining: A review of methods and applications. Journal of spatial information science 13, (2016), pp. 61-99. doi:10.5311/JOSIS.2016.13.263.

[2] ZHENG, Y. Trajectory data mining: An overview. ACM Transactions on Intelligent Systems and Technology 6, 3 (2015), 1-41. doi:10.1145/2743025.

[3] GAFFNEY, S., AND SMYTH, P. Trajectory clustering with mixture of regression models. In KDD’ 99: Proc. Fifth International Conference on Knoledge Discovery and Data Mining (1999), ACM Press, pp.63-72. doi:10.1145/312129.312198. [4] ALON, J., SCLAROFF, S., KOLLIOS, G., AND PAVLOVIC, V. Discovering

clusters in motion time series data. In Proc. IEEE Computer Society Conferen- ce on Computer Vision and Pattern Recognition (2003), IEEE, pp. 375-381. doi:10.1109/cvpr.2003.1211378.

[5] HAN, JAN., KAMBER, M., AND PEI, J. Data Mining: concepts and techniques, 3rd ed. Morgan Kaufmann, 2012. doi:10.5860/choise.49-3305.

[6] ROKACH, L. A survey of clustering algorithms. in Data Mining and Knowledge Discovery Handbook, O Maimon and L. Rokach, Eds., 2nd ed. Springer, 2010, pp. 269-298. doi:10.1007/978-0-387-09823-4_14.

[7] ESTER, M., KRIEGEL, H.-P., SANDER, J., AND XU, X. A density-based algori- thm for discovering clusters in large spatial databases with noise. In textslKDD’96: Proc. Second International Conference on Knowledge Discovery and Data Mining (1996), pp. 226-231.

[8] F. Giannotti and D. Pedreschi, editors. Mobility, Data Mining and Privacy - Geographic Knowledge Discovery. Springer, 2008.

[9] ANKERST, M., BREUNIG, M. M., H.-P., AND SANDER, J. OPTICS: Orde- ring points to identify the clustering structure. In textslProc. ACM SIGMOD International Conference on Management of Data (1999), ACM Press, pp.49-60. doi:10.1145/304182.304187.

[10] J. Yuan, Y. Zheng, L. Zhang, X. Xie, and G.Sun. 2011b. Where to find my next passenger? In Proceedings of the 13th International Conference on Ubiquitous Computing. ACM, 109-118.

[11] J. Yuan, Y. Zheng, L. Zhang and X. Xie. 2013b. T-Finder: A recommender system for finding passengers and vacant taxis.IEEE Transaction on Knowledge and Data Engineering 25, 10 (2013), 2390-2403.

[12] NANNI, M., AND PEDRESCHI, D. Time-focused clustering of trajectories of mo- ving objects. In Machine Learning and Knowledge Discovery in Databases, LNC 6913, D. Gunopuos, T. Hofmann, D. Malerba, and M. Vazirgiannis, Eds. Springer Berlin Heidelberg, 2011, pp. 650-653. doi:10.1007/978-3-642-23808-6_49.

[13] Paolo Cintia, "Knowledge Discovery through Mobility Data Integration" Ph.D. Thesis. Dipartimento di Informatica, Dottorato di Ricerca in Informatica, Uni- versity of Pisa. etd-11222015-190539. https://etd.adm.unipi.it/theses/available/etd- 11222015-190539/unrestricted/thesis_paolo.pdf

[14] BIRANT, D., AND KUT, A. ST-DBSCAN: An algorithm for clustering spatial- temporal data. textslData and Knowledge Engineering 60, 1 (2007), 208-221. doi:10.1016/j.datak.2006.01.013.

[15] ZHENG, Y., CHEN, Y. LI, Q., XIE, X., AND MA, W.-Y. Understanding trans- portation modes based on gps data for web applications. ACM Transactions on the Web 4, 1 (2010), 1-36. doi:10.1145/2629592.

[16] BOLBOL, A., CHENG, T., TSAPAKIS, I., AND HAWORTH, J. Inferring hy- brid transportation modes from sparse GPS data using a moving window SVM

classification. Computers, Environment and Urban System 31, 6 (2012), 526-537. doi:10.1016/j.datak.2006.01.013.

[17] LEE, J.-G., HAN, J., AND LI, X. GONZALEZ, H. Traclass: Trakectory classifica- tion using hierarchical region based and trajectory-based clustering. Proceedings of the VLDB Endowment 1, 1 (2008), 1081-1094. doi:10.14778/1453856.1453972. [18] DODGE, S., WEIBEL, R., AND LAUTENSCHUTZ, A.-K. Towards a taxono-

my of movement patterns. Journal of Information Visualization 7 (2008), 240-252. doi:10.1057/palgrave.ivs.9500182.

[19] P. Cintia, R. Trasarti, J. A. D. Macedo, L. Almada, and C. Fereira, "A gravity model for speed estimation over road network," in Mobile Data Management (MDM), 2013 IEEE 14th International Conference on, vol. 2. IEEE, 2013, pp. 136?141.

[20] CAO, H., AMMOULIS, N., AND CHEUNG, D. W. Discovery of periodic patterns in spariotemporal sequences. IEEE Transactions on Knowledge and Data Engeneering 19, 4 (2007), 453-467. doi:10.1109/tkde.2007.1002

[21] MAMOULIS, N., CAO, H., KOLLIOS, G., HADJIELEFTHERIOU, M., TAO, Y., AND CHEUNG, D. W. Mining indexing, and querying historical spatiotemporal da- ta. In KDD ’04: PROC. 2004 ACM SIGKDD international conference on Knowledge discovery and data mining (2004), ACM, pp. 236-245. doi:10.1145/1014052.1014080. [22] LI, Z., DING, B., HAN, J., KAYS, R., AND NYE, P. Mining periodic behaviors for moving objects. In KDD ’10: Proc. 16th ACM SIGKDD international conferen- ce on Knowledge discovery and data mining (2010), ACM Press, pp. 1099-1108. doi:10.1145/1835804.1835942.

[23] KORNER, C., MAY, M., AND WROBEL, S. Spatiotemporal modeling and ana- lysis - introduction and overview. KI - Kunstliche Intelligenz 26, 3 (2012), 215-221 doi:10.1007/s13218-012-0215-2

[24] CAO, H., MAMOULIS, N., AND CHEUNG, D. W. Mining frequent spatio-temporal sequential patterns. In ICDM: Proc. Fifth IEEE International Conference on Data Mining (2005), IEEE Computer Society Press, pp. 82-89. doi:10.1109/icdm.2005.95.

[25] ORELLANA, D., BREGT, A. K., LIGTENBERG, A., AND WACHOWICZ, M. Exploring visitor movement patterns in natural recreational areas. Tourism Management 33, 3 (2012), 672-682. doi:10.1016/j.tourman.2011.07.010.

[26] GIANNOTTI, F., NANNI, M., PINELLI, F., AND PEDRESCHI, D. Tra- jectory pattern mining. In KDD’07: Proc. 13th International Conference on Knowledge Discovery and DataMining (2007), ACM Press, pp. 330-339. doi:10.1145/1281192.1281230.

[27] GIANNOTTI, F., NANNI, M., AND PEDRESCHI, D. Efficient mining of tempo- rally annotated sequences. In Proc. 2006 SIAM International Conference on Data Mining (2006), Society for Industrial & Applied Mathematics (SIAM), pp. 348-359. doi:10.1137/1.9781611972764.31.

[28] Roberto Trasarti, Fabio Pinelli, Mirco Nanni, Fosca Giannotti: Mining mobility user profiles for car pooling. KDD 2011: 1190-1198. doi: 10.1145/2020408.2020591 [29] BENKERT, M., GUDMUNDSSON, J., HUBNER, F., AND WOLLE, T.

Reporting flock patterns. Computational Geometry 41, 3 (2008), 111-125. doi:10.1016/j.comgeo.2007.10.003.

[30] V. Bogorny, C. A. Heuser, and L. O. Alvares. A conceptual data model for trajectory data mining. In GIScience, pages 1?15, 2010.

[31] X. Xiao, Y. Zheng, Q. Luo, and X. Xie. Finding similar users using category-based location history. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2010.

[32] WACHOWICZ, M., ONG, R., RENSO, C., AND NANNI, M., Finding mo- ving flock patterns among pedestrians through collective coherence. Interna- tional Journal of Geographical Information Science 25, 11 (2011), 1849-1864. doi:10.1080/13658816.2011.561209.

[33] JEUNG, H., YIU, M. L., ZHOU, X., JENSEN, C. S., AND SHEN, H. T. Discovery of convoys in trajectory databases. Proceedings of the VLDB Endowment 1, 1 (2008), 1068-1080. doi:10.14778/1453856.1453971.

[34] LI, X., PAN, G., WU, Z., QI, G., LI, S., ZHANG, D., ZHANG, W., AND WANG, Z. Prediction of urban human mobility using large-scale taxi traces and its applications. Frontiers of Computer Science 6, 1 (2012), 111-121. doi:10.1007/s11704-011-1192-6. [35] VIEIRA, M. R., BAKALOV, P., AND TSOTRAS, V. J. On-line discovery of flock patterns in spatio-temporal data. In GIS ’09: Proc. 17th ACM SIGSPATIAL Inter- national Conference on Advances in Geographic Information System (2009), ACM, pp. 286-295. doi:10.1145/1653771.1653812.

[36] JEUNG, H., SHEZN, H. T., AND ZHOU, X. Convoy queries in spatio- temporal databases. In ICDE’08: Proc. 2008 IEEE 24th International Confe- rence on Data Engineering (2008), IEEE Computer Society, pp. 1457-1459. doi:10.1109/ICDE.2008.4497588.

[37] LI, Z., HAN, J., JI, M., TANG, L.-A., YU, Y., DING, B., LEE, J.-G., AND KAYS, R. Moveming: Mining moving object data for discovery of animal movement pat- terns. ACM Transaction on Intelligente System and Technology 2, 4 (2011), 1-32. doi:10.1145/1989734.1989741.

[38] YU, Y., WANG, Q., KUANG, J., AND HE, J. TGCR: An efficient algorithm for mining swarm in trajectory databases. In Proc. 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services (2011), IEEE, pp. 90-95. doi:10119/icsdm.2011.5969011.

[39] ZHANG, D., LI, N., ZHOU, Z.-H., CHEN, C., SUN, L., AND LI, S. iBat: de- tecting anomalous taxi trajectories from GPS traces. in UbiComp ’11: Proc. 13th international conference on Ubiquitous computing (2011), ACM, pp. 99-108. doi: 10.1145/2030112.2030127.

[40] LEE, J.-G., HAN, J., AND LI, X. Trajectory outlier detection: A partition-and- detect framework. In ICDE 2008: Proc. International Conference on Data Mining (2008), IEEE, pp.140-149. doi:10.1109/icde.2008.4497422.

[41] LIU, L., QIAO, S., ZHANG, Y., AND HU, J. An efficient outlying trajectories mining approach based on relative distance. International Journal of Geographical Information Science 26, 10 (2012), 1789-1819. doi:10.1080/13658816.2012.654792.

[42] YUAN, G., XIA, S., ZHANG, L., AND, JI, C. Trajectory outlier det3ection algo- rithm based on structural features. Journal of Computational Information Systems 7, 11 (2011), 4137-4144.

[43] LI, X., HAN, J., KIM, S., AND GONZALEZ, H. ROAM: Rule- and motif-based anomaly detection in massive moving object data sets. In Proc. 2007 SIAM In- ternational Conference on Data Mining (2007), Society for Industrial and Applied Mathematics (SIAM), pp. 273-284. doi:10.1137/1.9781611972771.25.

[44] GIDOFALVI, G., AND DONG, F. When and where next: Individual mobility prediction. In MobiGIS’12; Proc. First ACM SIGSPATIAL International Work- shop on Mobile Geographic Information System (2012), ACM Press, pp. 57-64. doi:10.1145/2442810.2442821.

[45] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and M. Ma. 2008. Mining user similarity based on location history. In Proceedings of the 16th Annual ACM International Conference on Advances in Geographic Information Systems. ACM, 34.

[46] W.-C. Lee and J. Krumm. 2011. Trajectory preprocessing. Computing with Spatial Trajectories, Y. Zheng and X. Zhou (Eds.) Springer, 1-31.

[47] Zhenni Feng and Yanmin Zhu, A survey on Trajectory Data Mining: Techniques and Applications. IEEE Access (2016) doi:10.1109/ACCESS.2016.2553681.

[48] N. Pelekis, I. Kopanakis, C. Panagiotakis, and Y. Theodoridis, "Unsupervised tra- jectory sampling", in Proc. Mach. Learn. Knowl. Discovery Databases, Eur. Conf. (ECML PKDD), Barcelona, Spain, Sep, 2010, pp.17-33.

[49] H. Su et al., "Making sense of trajectory data: A partition-and-summarization ap- proach," in Proc. 31st IEEE Int. Conf. Data Eng. (ICDE), Seoul, South Korea, Apr. 2015, pp. 963-974

[50] H. Wang, K. Zheng, J. Xu, B. Zheng, X. Zhou, and S. W. Sadiq, "SharkDB: An in-memory column-oriented trajectory storage," in Proc. 23rd ACM Int. Conf. Inf. Knowl. Manage. (CIKM), Shanghai, China, Nov. 2014, pp. 1409-1418.

[51] H. Wang, K. Zheng, X. Zhou, and S. Sadiq, "SharkDB: An in-memory storage system for massive trajectory data", in Proc. ACM SIGMOD Int. Conf. Manage. Data, Melbourne, VIC, Australia, May/Jun. 2015, pp. 1099-1104.

[52] L. Giovannini, ?A novel map-matching procedure for low-sampling gps data with applications to traffic flow analysis,? 2011.

[53] N. Andrienko, G. Andrienko, G. Fuchs, and P. Jankowski, "Visual analytics metho- dology for scalable and privacy-respectful discovery of place semantics from episo- dic mobility data", in Proc. Eur. Conf. Mach. Learn. Knowl. Discovery Databases (ECML PKDD), Porto, Portugal, Sep. 2015, pp. 254-258.

[54] C. Costa, C. Laoudias, D. Zeinalipour-Tazti, and D. Gunopulos, "SmartTrace: Finding similar trajectories in smartphone network without disclosing the traces", in Proc. 27th Int. Conf. Data Eng. (ICDE), Hanover, Germany, Apr. 2011, pp. 1288-1291.

[55] N. Pelekis, A. Gkoulalas-Divanis, M. Vodas, D. Kopanaki, and Y. Theodoridis, "Privacy-aware querying over sensitive trajectory data", in Proc. 20th ACM Conf. Inf. Knowl. Manage. (CIKM), Glasgow, Scotland, Oct. 2011, pp. 895-904.

[56] L. Kong, L. He, X. Y. Liu, Y. Gu, M. Wu, and X. Liu, "Privacy-preserving com- pressive sensing for crowdsensing based trajectory recovery", in Proc. 35th IEEE Int. Conf. Distrib. Comput. Syst. (ICDCS), Columbus, OH, USA, Jun/Jul. 2015, pp. 31-40. [Online]. Available: http://dx.doi.org/10.1109/ICDCS.2015.12

[57] N. Pelekis, I. Kopanakis, I. Ntoutsi, G. Marketos, and Y. Theodoridis. Mining trajec- tory databases via a suite of distance operators. In ICDE Workshops, pages 575?584, 2007.

[58] G. Andrienko, N. Andrienko, S. Rinzivillo, M. Nanni, D. Pedreschi, and F. Gian- notti. Interactive Visual Clustering of Large Collections of Trajectories. VAST: Symposium on Visual Analytics Science and Technology, 2009.

[59] R.B. McMaster. 1986. A statistical analysis of mathematical measures of linear simplification. The American Cartographer 13, 2 (1986), 103-116.

Documenti correlati