• Non ci sono risultati.

OMe OMe MeO F 59 1-fluoro-1-(2,4-dimetossifenil)-2-(4-metossifenil)etene

La reazione è stata condotta in fiala sotto flusso di N2.

Ad una soluzione di PPh3 (62.4 mg, 0.238 mmoli) e Pd(OAc)2 (10.7 mg, 0.0476

mmoli) in toluene (17 ml) e EtOH (3.6 ml), sono stati aggiunti H2O (3.6 ml), K2CO3

(493 mg, 3.57 mmoli) e il composto 57. La reazione è stata mantenuta sotto agitazione magnetica, a t.a., per 15 minuti, dopodiché è stato aggiunto l’acido 2,4- dimetossifenilboronico commerciale 58. La miscela è stata mantenuta sotto agitazione magnetica a 100 °C, per 12h.

La miscela è stata diluita con Et2O e sottoposta a lavaggi con H2O e brine. La

fase organica è stata essiccata su Na2SO4 anidro, filtrata ed evaporata. Il grezzo

così ottenuto è stato purificato mediante cromatografia su colonna di gel di silice utilizzando, come eluente, una miscela toluene/esano 4:6. Le opportune frazioni, riunite ed evaporate, hanno fornito 128 mg (0.444 mmoli) del composto 59 puro (resa 37%), sottoforma di olio giallo.

1H-NMR (CDCl

3) δ (ppm): 3.83 (s, 3H); 3.85 (s, 3H); 3.91 (s, 3H); 6.38-6.60 (m,

3H); 6.85 (AA’XX’, 2H, JAX = 9.0 Hz, JAA’/XX’ = 2.5 Hz); 7.52 (d, 1H, J = 8.2 Hz);

[1] Cui Y-.M., Eriko Y., Yuko O., Takashi Y., Katsutoshi I., Kohei S., Tomohiko O., Design, synthesis and characterization of podocarpate derivatives as openers of BK channels. Bioorg. Med. Chem. Lett., 2008, 18, 5197–5200. [2] Nardi A., Calderone V., Olesen S.-P., Potassium Channel Openers: The

Case of BK Channel Activators. Letters in Drug Design & Discovery, 2006, 3, 210-218

[3] Ledoux J., Werner M.E., Brayden J.E. and Nelson M.T., Calcium-activated potassium channels and the regulation of vascular tone. Physiology, 2006, 21, 69-78.

[4] Schreiber M., Yuan A. and Salkoff L., Transplantable sites confer calcium sensitivity to BK channels. Nat Neurosci, 1999, 2, 416–421.

[5] Krishnamoorthy G., Shi J., Sept D., and Cui J. The NH2 terminus of RCK1

domain regulates Ca2+-dependent BKCa channel gating. J Gen Physiol.,

2005, 126, 227–241.

[6] Piskorowski R. and Aldrich R.W., Calcium activation of BK(Ca) potassium channels lacking the calcium bowl and RCK domains. Nature, 2002, 420, 499–502.

[7] Brenner R., Perez G.J., Bonev A.D., Eckman D.M., Kosek J.C., Wiler S.W., Patterson A.J., Nelson M.T. and Aldrich R.W., Vasoregulation by the β1 subunit of the calcium-activated potassium channel. Nature, 2000, 407, 870–876.

[8] Nardi A. and Olesen S.-P., BK Channel modulators: a comprehensive overview. Current Medicinal Chemistry, 2008, 15, 1126-1146.

[9] De Wet H., Allen M., Holmes C., Stobbart M., Lippiat J.D., Callaghan R., Modulation of the BK channel by estrogens: examination at single channel level. Mol. Membr. Biol; 2006, 23, 420-429.

[10] Dick G.M., Hunter A.C., Sanders K.M., Ethylbromide tamoxifen, a membrane-impermeant antiestrogen, activates smooth muscle calcium- activated large-conductance potassium channels from the extracellular side.

Mol. Pharmacol., 2002, 61, 1105-1113.

[11] Crowley J.J., Treistman S.N., Dopico A.M., Cholesterol antagonizes ethanol potentiation of human brain BKCa channels reconstituted into phospholipid bilayers.Mol. Pharmacol., 2003, 64, 365-372.

[12] Xiang D.T., Maria L.G., Stefan H.H. and Toshinori H., Reactive oxygen species impair Slo1 BK channel function by altering cysteine-mediated calcium sensing. Nature Structural & Molecular Biology, 2004, 11, 171-178. [13] Dimitropoulou C., White R.E., Fuchs L., Zhang H., Catravas J.D., Carrier

G.O., Angiotensin II relaxes microvessels via the AT(2) receptor and Ca2+-

activated K+ BK(Ca) channels. Hypertension, 2001, 37, 301–307.

[14] Candia S., Garcia M.L. and Latorre R., Mode of action of iberiotoxin, a potent blocker of the large conductance Ca2+-activated K+ channel.

Biophys. J. Biophysical Society, 1992, 63, 583-590.

[15] Yao J., Chen X., Li H., Zhou Y., Yao L., Wu G., Chen X., Zhang N., Zhou Z., Xu T., Wu H. and Ding J., BmP09, a "Long Chain" Scorpion Peptide Blocker of BK Channels. J. Biol. Chem., 2005, 280, 14819-14828.

[16] Adorante J.S., Woldemussie E., Ruiz G., WO09633719, 1996.

[17] Kwan C.Y., Achike F.I., Tetrandrine and related bis-benzylisoquinoline alkaloids from medicinal herbs: cardiovascular effects and mechanisms of action Acta Pharm. Sin., 2002, 23, 1057-1068.

[18] Giangiacomo K.M., Kamassah A., Harris G., McManus O.B., Mechanism of maxi-K channel activation by dehydrosoyasaponin-I. J. Gen. Physiol., 1998, 112, 485-501.

[19] Singh S., Goetz MA, Zink DL, Dombrowski AW, Polishook JD, Garcia ML, Schmalhofer W, McManus OB, Kaczorowski GJ., Maxikdiol: a novel dihydroxyisoprimane as an agonist of Maxi-K channels. J. Chem. Soc.

Perkin Trans., 1994, 1, 3349-3352.

[20] Rittenhouse A.R., Parker C.; Brugnara C., Morgan K.G., Alper S.L., Inhibition of maxi-K currents in ferret portal vein smooth muscle cells by the antifungal clotrimazole. Am. J. Physiol., 1997, 273, 45-56.

[21] Owada T., Tajima T., Toriumi Y., Akabane S., JP2007186480, 2007.

[22] Bentzen B.H., Nardi A., Calloe K., Madsen L.S., Olesen S.-P. and Morten G., NS11021 is a potent and specific activator of BK channels. Mol

Pharmacol, 2007, 72, 1033–1044.

[23] Hewawasam P., Meanwell N.A., Gribkoff V.K., Dworetzky S.I., Boissard C.G., Discovery of a novel class of BK channel openers: enantiospecific synthesis and BK channel opening activity of 3-(5-chloro-2-hydroxyphenyl)- 1,3-dihydro-3-hydroxy-6-(trifluoromethyl)-2h-indol-2-one. Bioorg. Med. Chem. Lett., 1997, 7, 1255-1260.

[24] Starrett J.E., Gillman K.W., Bocchino D.M., Bien J., Boissard C.G., Bozik M., Calandra V., Chen C.-P.H., Chen Y., Dangler C., Dischino D., Gao Q., Hansel S., Hewawasam P., Huang S., Kang S.-H., Lentz K., Lopez O., Pajor L., Pendri Y., Pilcher G., Rand P., Procencal D., Rao V., Sarsfield E., Schmitz W., Sit S.-Y., Wang H., Wu D., Xie K., Zhang L., Gribkoff V.K. In

227th ACS National meeting: Anaheim, CA, United States, 2004.

[25] Hewawasam P., Ding M., Chen N., King D., Knipe J., Pajor L., Ortiz A., Gribkoff V.K., Starrett, Synthesis of water-soluble prodrugs of BMS-191011: a maxi-K channel opener targeted for post-stroke neuroprotection. J.

Bioorg. Med. Chem. Lett., 2003, 13, 1695-1698.

[26] Nardi A.; Olesen S.P., Enhancing treatment of cancer and HIF-1 mediated disoders with adenosine A3 receptor antagonists. Expert Opin. Ther. Pat.,

2007, 17, 1215-1226.

[27] Harada H., Takuwa T., Okazaki T., Hirano Y., JP2003206230, 2003.

[28] Rauer H., Saeb W., Kramer B., Kraus J., Klemenz C., Garcia, G., WO03074047, 2003.

[29] Gao Y.-D., Shen, D.-M., WO2006044232, 2006.

[30] Ou H.-C., Chou F.-P., Sheen H.-M., Lin T.-M., Yang C.-H., Sheu W., Resveratrol, a polyphenolic compound in red wine, protects against oxidized LDL-induced cytotoxicity in endothelial cells, 2006, International

[31] Bhat K.P., Lantvit D., Christov K., Mehta R.G., Moon R.C., Pezzuto J.M., Estrogenic and antiestrogenic properties of resveratrol in mammary tumor models. Cancer Res, 2001, 61, 7456-7463.

[32] Minutolo F., Sala G., Bagnacani A., Bertini S., Carboni I., Placanica G., Prota G., Rapposelli S., Sacchi N., Macchia M. and Ghidoni R., Synthesis of a resveratrol analogue with high ceramide-mediated proapoptotic activity on human breast cancer cells. J. Med. Chem., 2005, 48, 6783-6786.

[33] Das S., Das D.K., Anti-Inflammatory Responses of Resveratrol.

Inflammation & Allergy - Drug Targets, 2007, 7, 168-173.

[34] Calderone V., Martelli A., Testai L., Martinotti E., Breschi M.C., Functional contribution of the endothelial component to the vasorelaxing effect of resveratrol and NS 1619, activators of the large-conductance calcium- activated potassium channels. Naunyn-Schmiedeberg’s Arch Pharmacol,

2007, 375, 73–80.

[35] Zhang A., Xiong W., Hilbert J.E., De Vita E.K., Bidlack J.M., Neumeyer J.L., 2-Aminothiazole-derived opioids. Bioisosteric replacement of phenols. J.

Med. Chem., 2004, 47, 1886-1888.

[36] Stauffer S.R., Katzenellenbogen B.S., Katzenellenbogen J.A., Acyclic amides as estrogen receptor ligands: synthesis, binding, activity and receptor interaction. J.Org. Chem., 2000, 8, 1293-1316.

[37] Billingsley K. and Buchwald S.L., Highly efficient monophosphine-based catalyst for the palladium-catalyzed Suzuki-Miyaura reaction of heteroaryl halides and heteroaryl boronic acids and esters. J. Am. Chem. Soc., 2007, 129, 3358-3366.

[38] Liso G., Trapani G., Reho A., Latrofa A., 2-Alkylaminobenzenethiols by ring cleavage of 2,3-dihydro-1,3-benzothiazoles with sodium borohydride. Synthesis 1985, 288-290.

[39] Xie X., Zhang T. Y., Zhang Z., Synthesis of Bulky and Electron-Rich MOP- type Ligands and Their Applications in Palladium-Catalyzed C-N Bond Formation. J. Org. Chem., 2006, 71, 6522-6529.

[40] Taniguchi N., Alkyl- or arylthiolation of aryl Iodide via cleavage of the S-S bond of disulfide compound by nickel catalyst and zinc. J. Org. Chem.,

2004, 69, 6904-6906.

[41] Fink B. E., Gavai A. V., Tokarski J. S., Goyal B., Misra R., Xiao H.-Y., Kimball S. D., Han W.-C., Norris D., Spires T. E., You D., Gottardis M. M., Lorenzi M. V., Vite G. D., Identification of a novel series of tetrahydrodibenzazocines as inhibitors of 17b-hydroxysteroid dehydrogenase type 3. Bioorg. Med. Chem. Lett., 2006, 16, 1532-1536. [42] Selva M., Tundo P., Foccardi T., Mono-N-methylation of functionalised

anilines with alkyl methyl carbonates over NaY Faujasites. 4. Kinetics and Selectivity. J. Org. Chem., 2005, 70, 2476-2485.

[43] Chang W.–C., Hu A.T., Duan J.–P., Rayabarapu D.K., Cheng C.–H., Color tunable phosphorescent light-emitting diodes based on iridium complexes

with substituted 2-phenylbenzothiozoles as the cyclometalated ligands, J.

Organomet. Chem., 2004, 689, 4882-4888.

[44] Ritchie C.D., Sager W.F., An examination of structure-reactivity relationships. Prog. Phys. Org. Chem., 1964, 2, 323-400.

[45] Hodson S.J., Bishop M.J., Speake J.D., Navas F., Garrison D.T., Bigham E.C., Saussy D.L., Liacos J.A., Irving P.E., Gobel M.J., Sherman B.W., 2- (Anilinomethyl)imidazolines as α1 adrenergic receptor agonists: the

discovery of α1a subtype selective 2‘-alkylsulfonyl-substituted analogues. J.

Med. Chem., 2002, 45, 2229-2239.

[46] Matsuoka H., Ohi N., Mihara M., Suzuki H., Miyamoto K., Maruyama N., Tsuji K., Kato N., Akimoto T., Takeda Y., Yano K., Kuroki T., Antirheumatic agents: novel methotrexate derivatives bearing a benzoxazine or benzothiazine moiety. J. Med. Chem., 1997, 40, 105-111.

[47] Oyaizu K., Mitsuhashi F., Tsuchida E., Palladium-catalyzed synthesis of oligo(methylthio)aniline and conversion to polyacene-type electrolytes bearing phenothiazinium repeating units. Macromol. Chem. Phys., 2002, 203, 1328-1336.

[48] Specklin R., Meybeck J., Process for the preparation of 2-amino-6- chlorophenyl-isopropylsulfide. Bull. Soc. Chim. Fr., 1951, 621-626.

[49] Papenfuhs T., Ger Pat 3, 528, 230, 1987, [Chem. Abstr. 1987, 106, 213936].

[50] Eddair S., Abdelhadi Z. and Rolando C., Fluorinated resveratrol and pterostilbene. Tetrahedron Letters, 2001, 42, 9127-9130.

[51] Xu J. and Burton Donald J., Stereoselective preparation of (E)- and (Z)-α- fluorostilbenes via palladium-catalyzed Cross-Coupling reaction of high E/Z ratio and (Z)-1-bromo-1-fluoroalkenes. J. Org. Chem., 2006, 71, 3743-3747. [52] Feutrill G.I., Mirrington R.N., Reactions with thioethoxide ion in

dimethilformamide. Aust. J. Chem., 1972, 25, 1719-1729.

[53] Al-Maharik N.I., Kaltia S., Mutikainen I. and Wahala K., Syntesis of C-C bridges bis-isoflavones. J. Org. Chem., 2000, 65, 2305-2308.

[54] Snow K.M. and Smith K.M., Total synteses of 8-formyl-8- demethylprotoporphyrin IX, 8-(hydroxymethyl)-8-demethylprotoporphyrin IX and 8-fluoromethyl analogs of protoporphyrin IX. J. Org. Chem., 1989, 54, 3270-3281.

Documenti correlati