• Non ci sono risultati.

Topoisomerasi I, geni di riparazione del DNA e regolazione del ciclo

2.3 Irinotecano

2.3.5 Topoisomerasi I, geni di riparazione del DNA e regolazione del ciclo

Sappiamo come la topoisomerasi I (TOP I) sia un enzima fondamentale nel ciclo cellulare. Infatti è responsabile dello svolgimento del DNA durante la trascrizione e la replicazione. Il metabolita attivo di CPT-11, SN-38, inibisce la funzione della TOP I tramite la formazione del complesso TOP I / SN-38.

Gli scienziati che studiano le cellule tumorali che presentano resistenza di CPT- 11, hanno trovato che una possibile causa di bassa sensibilità al farmaco può essere associata alla presenza di mutazioni o bassa espressione del gene Top1 (113; 114). Infatti l’impatto che ha la presenza di diverse varianti genetiche di TOP1 può essere causa di resistenza primaria ai farmaci (115).

La conoscenza delle cause della resistenza ai farmaci che portano al fallimento del trattamento con CPT-11, offre l’opportunità di programmare un trattamento più efficace, prevedendo gli effetti della terapia per ogni singolo paziente.

Uno dei fattori molecolari coinvolti nella farmacodinamica di CPT-11 è XRCC1 che svolge un ruolo fondamentale nella riparazione per escissione di base formando un complesso con proteine di riparazione del DNA compresi PARP1 e DNA polimerasi β (116).

Hoskins et al (117) hanno studiato un gruppo di 107 pazienti (europei) con CRC avanzato, trattato con CPT-11. Hanno condotto un’analisi dell’impatto della variante genetica 1196G> A (Arg399Gln) del gene XRCC1 sull’efficacia della terapia con CPT- 11. In tale studio si evince come i pazienti che mostrano una risposta favorevole al trattamento, abbiano più comunemente ha il genotipo 1196GG.

I pazienti omozigoti per un aplotipo XRCC1 (CCGG-G) sono stati, in particolare, coloro che hanno mostrato una risposta oggettiva alla terapia rispetto agli altri pazienti (83% vs 30%, p = 0,02) (117). Una possibile spiegazione di questi risultati

31

è data dal fatto che la presenza dell’allele nella sequenza genica 1196G di XRCC1 è condizionata dalla presenza di arginina nel sequenza 399ARG della proteina XRCC1 che porta ad un DNA con più debole capacità di riparazione, rispetto a quello con la glutamina (399Gln) nella sequenza 1196A. Tuttavia, questi risultati, derivati da studi in vivo, non sono stati confermati in numerosi studi in vitro, che hanno mostrato unanimemente che la presenza di glutammina nel codone 399 è associata con una ridotta capacità di riparazione del DNA.

32

3 CONCLUSIONI E SVILUPPI FUTURI

Concludendo, si può affermare che studi di farmacogenetica potrebbero in futuro essere in grado di predire eventuali risultati della chemioterapia in pazienti affetti da cancro del colon-retto; per esempio, alcuni risultati derivanti da uno studio effettuato sull’irinotecano hanno dimostrato che la riduzione di dosaggio del farmaco per individui omozigoti per il gene UGT1A1*28 ha modificato la risposta farmacologica. Tuttavia, questi risultati sono ancora di difficile interpretazione.

Ci sono indubbiamente vari problemi, tra cui spicca la frequente presenza di un disequilibrio nel collegare con meccanismo causa-conseguenza i vari alleli tra loro, il che rende difficile discernere quale effettivamente sia l’allele da prendere in considerazione per prevedere la cosiddetta “chemio-sensibilità”, ossia l’impatto in negativo che un farmaco chemioterapico potrebbe avere sull’organismo in termini di eventi avversi ed effetti collaterali più o meno gravi.

Subentrano inoltre altre problematiche, tra cui le differenze etniche, che non rendono possibile eseguire un’analisi standardizzata dell’intera popolazione affetta, e anche le differenze inter-etnia che si accumulano con la progressione della differenziazione genetica, e che causano dunque aumento esponenziale dei fenomeni di polimorfismo.

Un’altra problematica riguardante gli studi farmacogenetici, sta nel fatto che alcuni tipi di polimorfismo non predicono soltanto l’efficacia dei chemioterapici, ma anche la prognosi dei pazienti affetti da cancro, in particolar modo per tutto ciò che riguarda i meccanismi riparativi del DNA controllati dai geni: alcuni meccanismi polimorfici di riparazione dell’acido nucleico possono predisporre alla cancerogenesi, ma potrebbero anche migliorare la risposta farmacologica alle terapie una volta che il

33

cancro si sia già sviluppato. Poiché non è facile distinguere i due ambiti, si ha maggiore difficoltà nell’effettuare studi in questo senso.

In generale, è importante sottolineare che attualmente non si ha ancora la possibilità di prevedere con certezza le differenze farmacogenetiche che derivano dai vari tipi di polimorfismo genetico, ma la ricerca mira a sviluppare modelli di pretrattamenti per cancro colorettale che siano predittivi il più possibile, e in cui devono essere considerati sia fattori genetici che non genetici, come per esempio lo stadio del tumore e la tollerabilità di eventuali farmaci a seconda del singolo individuo.

Inoltre, nella maggior parte dei casi, la terapia prevede la somministrazione di farmaci diversi, cosa che rende complicato stabilire quale sia il gruppo di test farmaco genetici da effettuare.

34

BIBLIOGRAFIA

1. Colorectalcancer. D. Cunningham, W. Atkin, H. J. Lenz et al. 9719, s.l. : The Lancet, 2010, Vol. 375. 1030–1047.

2. Hereditary and familial colon cancer. K. W. Jasperson, T. M. Tuohy, D. W.

Neklason, and R. W.Burt. 6, s.l. : Gastroenterology, 2010, Vol. 138. 2044-20-58.

3. Diet and cancerprevention: contributions from the European Prospective

Investigation into Cancer and Nutrition (EPIC) study. C. A. Gonzalez, E. Riboli, K.

Overvad et al. 14, s.l. : European Journal of Cancer, 2010, Vol. 46. 2555-2562.

4. The presence of large serrated polyps increases risk for colorectal cancer. S.

Hiraoka, J. Kato, S. Fujiki et al. 5, s.l. : Gastroenterology, 2010, Vol. 139. 1503-

1510.

5. Male sex and smoking have a larger impact on the prevalence of colorectal

neoplasia than family history of colorectal cancer. M. Hoffmeister, S. Schmitz, E.

Karmrodt et al. 10, s.l. : Clinical Gastroenterology and Hepatology, 2010, Vol. 8.

870-876.

6. The comparison of the clinical manifestations and risk factors of colorectal cancer

and adenomas: results from a colonoscopybased study in southern Chinese. L. Huang,

X. Wang, W. Gong, Y. Huang, and B. Jiang. 11, s.l. : International Journal of

Colorectal Disease, 2010, Vol. 25. 1343-1351.

7. Meat consumption and riskof colorectal cancer: a meta-analysis of prospective

studies. Wolk, S. C. Larsson and A. 11, s.l. : International Journal of Cancer, 2006,

Vol. 119. 2657-2664.

8. Evidence for colorectal cancer screening. Bretthauer, M. 4, s.l. : Best Practice & Research Clinical Gastroenterology, 2010, Vol. 24. 417-425.

9. Dietary fiber and colorectal cancer risk: a nested case-control study using food

diaries. C. C. Dahm, R. H. Keogh, E. A. Spencer et al. 9, s.l. : Journal of the National

Cancer Institute, 2010, Vol. 102. 614-626.

10. Colorectal cancer incidence and postmenopausal hormone use by type, recency,

and duration in cancer prevention study II. J. S. Hildebrand, E. J. Jacobs, P. T.

Campbell et al. 11, s.l. : Cancer Epidemiology Biomarkers and Prevention, 2009,

Vol. 18. 2835-2841.

11. Pooled analyses of 13 prospective cohort studies on folate intake and colon

cancer. D.-H. Kim, S. A. Smith-Warner, D. Spiegelman et al. 11, s.l. : Cancer Causes

and Control, 2010, Vol. 21. 1919-1930.

12. The role of epigenetics in colorectal cancer. F., Coppedè. 2014, Expert Rev Gastroenterol Hepatol.

13. Systemic treatment ofcolorectal cancer. Mayer, B. M. Wolpin and R. J. 5, s.l. : Gastroenterology, 2008, Vol. 134. 1296-1310.

14. Colon cancer. R. Labianca, G. D. Beretta, B. Kildani et al. 2, s.l. : Critical Reviews in Oncology/Hematology, 2010, Vol. 74. 106-133.

15. A systematic review andmeta-analysis of familial colorectal cancer risk.

Houlston, L. E. Johns and R. S. 10, s.l. : American Journal of Gastroenterology,

2001, Vol. 96. 2992-3003.

16. Genetics, cytogenetics, and epigenetics of colorectal cancer. Migliore L, Migheli

F, Spisni R, Coppedè F. s.l. : J Biomed Biotechnol., 2011. 792362.

17. Familial adenomatous polyposis. E. Half, D. Bercovich, and P. Rozen. 1, s.l. : Orphanet Journal of Rare Diseases, 2009, Vol. 4. 22.

35 18. Gardner syndrome: skin manifestations, differential diagnosis and management.

Khachemoune, E. Juhn and A. 2, s.l. : American Journal of Clinical Dermatology,

2010, Vol. 11. 117-122.

19. The adenomatous polyposis coli tumor suppressor and Wnt signaling in the

regulation of apoptosis. Ahmed, H. Benchabane and Y. s.l. : Advances in

Experimental Medicine and Biology, 2009, Vol. 656. 75-84.

20. Correlations between mutation site in APC and phenotype of familial

adenomatous polyposis (FAP): a review of the literature. Vasen, M. H. Nieuwenhuis

and H. F. A. 2, s.l. : Critical Reviews in Oncology/Hematology, 2007, Vol. 61. 153-

161.

21. MUTYH-associated polyposis. Jones, J. R. Sampson and N. 2, s.l. : Best Practice and Research: Clinical Gastroenterology, 2009, Vol. 23. 209-218.

22. Inherited variants of MYH associated with somatic G:C→T:A mutations in

colorectal tumors. N. Al-Tassan, N. H. Chmiel, J.Maynard et al. 2, s.l. : Nature

Genetics, 2002, Vol. 30. 227-232.

23. Review of the Lynch syndrome: history, molecular genetics, screening, differential

diagnosis, and medicolegal ramifications. H. T. Lynch, P. M. Lynch, S. J. Lanspa, C. L.

Snyder, J. F. Lynch, and C. R. Boland. 1, s.l. : Clinical Genetics, 2009, Vol. 76. 1-18.

24. Muir-Torre syndrome: a rare but important disorder. H. H. Hare, N.

Mahendraker, S. Sarwate, and K. Tangella. 4, s.l. : Cutis, 2008, Vol. 82. 252-256.

25. Peutz- Jeghers syndrome: diagnostic and therapeutic approach. M. Kopacova, I.

Tacheci, S. Rejchrt, and J. Bures. 43, s.l. : World Journal of Gastroenterology, 2009,

Vol. 15. 5397-5408.

26. Peutz- Jeghers syndrome: a systematic review and recommendations for

management. A. D. Beggs, A. R. Latchford, H. F. A. Vasen et al. 7, s.l. : Gut, 2010,

Vol. 59. 975-986.

27. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase.

D. E. Jenne, H. Reimann, J. I. Nezu et al. 1, s.l. : Nature Genetics, 1998, Vol. 18. 38-

43.

28. Hamartomatous polyposis syndromes. Howe, D. Calva and J. R. 4, s.l. : Surgical Clinics of North America, 2008, Vol. 88. 779-817.

29. Risk of colorectal cancer in juvenile polyposis. L. A. A. Brosens, A. Van Hattem,

L. M. Hylind et al. 7, s.l. : Gut, 2007, Vol. 56. 965-967.

30. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. J. R. Howe, S. Roth, J.

C. Ringold et al. 5366, s.l. : Science, 1998, Vol. 280. 1086-1088.

31. Germline mutations of the gene encoding bone morphogenetic protein receptor

1A in juvenile polyposis. J. R. Howe, J. L. Bair, M. G. Sayed et al. 2, s.l. : Nature

Genetics, 2001, Vol. 28. 184-187.

32. Germline bone morphogenesis protein receptor 1Amutation causes colorectal

tumorigenesis in hereditary mixed polyposis syndrome. P. Y. Cheah, YU. H. Wong, Y.

P. Chau et al. 12, s.l. : American Journal of Gastroenterology, 2009, Vol. 104. 3027-

3033.

33. An ancestral Ashkenazi haplotype at the HMPS/CRAC1 locus on 15q13-q14 is

associated with hereditary mixed polyposis syndrome. E. E. M. Jaeger, K. L.

Woodford-Richens, M. Lockett et al. 5, s.l. : American Journal of Human Genetics,

2003, Vol. 72. 1261-1267.

34. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and

thyroid cancer syndrome. D. Liaw, D. J. Marsh, J. Li et al. 1, s.l. : Nature Genetics,

1997, Vol. 16. 64-67.

36

Stemme, E. Jaramillo, and A. Lindblom. 3, s.l. : Endoscopy, 2006, Vol. 38. 266-270.

36. Hyperplastic polyposis in Pathology and Genetics of Tumors of the Digestive

System. J. Jass, S. R. Hamilton and L. A. Aaltonen. Lyon, France : International

Agency for Research on Cancer, 2000. 135-136.

37. Pharmacogenetics in chemotherapy of colorectal cancer. H. Tanja, Lieke, H. J.

Guchelaar, and H. Gelderblom. 23, s.l. : Best Practice & Research Clinical

Gastroenterology, 2009, Vol. 2. 257-273.

38. Pharmacogenetics research on chemotherapy resistance in colorectal cancer over

the last 20 years. Panczyk, M. 92, s.l. : World journal of gastroenterology, 2014, Vol.

20. 9775.

39. Identification and functional analysis of single nucleotide polymorphism in the

tandem repeat sequence of thymidylate synthase gene. Kawakami K, Watanabe G.

s.l. : Cancer Res, 2003, Vol. 63. 6004-6007.

40. Thymidylate synthase gene polymorphism determines response and toxicity of 5-

FU chemotherapy. Pullarkat ST, Stoehlmacher J, Ghaderi V, et al. s.l. :

Pharmacogenomics J, 2001, Vol. 1. 65-70.

41. Polymorphism in the thymidylate synthase promoter enhancer region in

colorectal cancer. Marsh S, McKay JA, Cassidy J, Mcleod H. 6, s.l. : Int J Oncol,

2001, Vol. 19. 383.

42. Thymidylate synthase gene polymorphism predicts response to capecitabine in

advanced colorectal cancer. Park DJ, Stoehlmacher J, Zhang W, et al. 9, s.l. : Int J

Colorectal Dis, 2002, Vol. 17. 46.

43. Polymorphisms in the thymidylate synthase and dihydropyrimidine

dehydrogenase genes predict response and toxicity to capecitabine-raltitrexed in colorectal cancer. Salgado J, Zabalegui N, Gil C, et al. 8, s.l. : Oncol Rep, 2007, Vol.

17. 325.

44. Thymidylate synthase gene polymorphism determines response and toxicity of 5-

FU chemotherapy. Pullarkat ST, Stoehlmacher J, Ghaderi V, Xiong YP, Ingles SA,

Sherrod A, Warren R, Tsao-Wei D, Groshen S, Lenz HJ. s.l. : Pharmacogenomics J,

2001, Vol. 1. 67-70.

45. Searching expressed sequence tag databases: discovery and confirmation of a

common polymorphism in the thymidylate synthase gene. Ulrich CM, Bigler J,

Velicer CM, Greene EA, Farin FM, Potter JD. s.l. : Cancer Epidemiol Biomarkers

Prev, 2000, Vol. 9. 1381-1385.

46. A 6 bp polymorphism in the thymidylate synthase gene causes message instability

and is associated with decreased intratumoral TS mRNA levels. Mandola MV,

Stoehlmacher J, Zhang W, Groshen S, Yu MC, Iqbal S, Lenz HJ, Ladner RD. s.l. :

Pharmacogenetics, 2004, Vol. 14. 319-327.

47. Polymorphism in the 3’-untranslated region of the thymidylate synthase gene and

sensitivity of stomach cancer to fluoropyrimidine- based chemotherapy. Lu JW, Gao

CM, Wu JZ, Cao HX, Tajima K, Feng JF. s.l. : J Hum Genet, 2006, Vol. 51. 155-160.

48. Thymidylate synthase gene polymorphism predicts toxicity in colorectal cancer

patients receiving 5-fluorouracil-based chemotherapy. Lecomte T, Ferraz JM,

Zinzindohoue F, et al. 8, s.l. : Clin Cancer Res, 2004, Vol. 10. 58880.

49. Pharmacogenetics of capecitabine in advanced breast cancer patients. Largillier

R, Etienne-Grimaldi MC, Formento JL, et al. 502, s.l. : Clin Cancer Res, 2006, Vol.

12. 5496.

50. A haplotype of the methylenetetrahydrofolate reductase gene predicts poor tumor

response in rectal cancer patients receiving preoperative chemoradiation.

37 2006, Vol. 16. 817.

51. Thymidylate synthase and methylenetetrahydrofolate reductase gene

polymorphism in normal tissue as predictors of fluorouracil sensitivity. Jakobsen A,

Nielsen JN, Gyldenkerne N, et al. 9, s.l. : J Clin Oncol, 2005, Vol. 23. 1365.

52. Thymidylate synthase and methylenetetrahydrofolate reductase gene

polymorphisms and toxicity to capecitabine in advanced colorectal cancer patients.

Sharma R, Hoskins JM, Rivory LP, et al. 25, s.l. : Clin Cancer Res, 2008, Vol. 14.

817.

53. Pharmacogenetic profiling in patients with advanced colorectal cancer treated

with first-line FOLFOX-4 chemotherapy. Ruzzo A, Graziano F, Loupakis F, et al. 54,

s.l. : J Clin Oncol, 2007, Vol. 25. 1247.

54. Which gene is a dominant predictor of response during FOLFOX chemotherapy for

the treatment of metastatic colorectal cancer, the MTHFR or XRCC1 gene? Suh KW,

Kim JH, Kim DY, et al. 85, s.l. : Ann Surg Oncol, 2006, Vol. 13. 1379.

55. Implications of dihydropyrimidine dehydrogenase on 5-fluorouracil

pharmacogenetics and pharmacogenomics. Mattison LK, Soong R, Diasio RB. s.l. :

Pharmacogenomics , 2002, Vol. 3. 485-492.

56. Population study of dihydropyrimidine dehydrogenase in cancer patients.

Etienne MC, Lagrange JL, Dassonville O, Fleming R, Thyss A, Renée N, Schneider M, Demard F, Milano G. s.l. : J Clin Oncol, 1994, Vol. 12. 2248-2253.

57. A rapid and inexpensive method for anticipating severe toxicity to fluorouracil

and fluorouracil-based chemotherapy. Ciccolini J, Mercier C, Evrard A, Dahan L,

Boyer JC, Duffaud F, Richard K, Blanquicett C, Milano G, Blesius A, Durand A, Seitz JF, Favre R, Lacarelle B. s.l. : Ther Drug Monit, 2006, Vol. 28. 678-685.

58. Lethal outcome of a patient with a complete dihydropyrimidine dehydrogenase

(DPD) deficiency after administration of 5-fluorouracil: frequency of the common IVS14 þ1G > A mutation causing DPD deficiency. Van Kuilenburg AB, Muller EW,

Haasjes J, et al. 53, s.l. : Clin Cancer Res, 2001, Vol. 7. 1149.

59. Prevalence of a common point mutation in the dihydropyrimidine dehydrogenase

(DPD) gene within the 50-splice donor site of intron 14 in patients with severe 5- fluorouracil (5-FU)-related toxicity compared with controls. Raida M, Schwabe W,

Hausler P, et al. 9, s.l. : Clin Cancer Res, 2001, Vol. 7. 2832.

60. Role of genetic and nongenetic factors for fluorouracil treatment-related severe

toxicity: a prospective clinical trial by the German 5-FU Toxicity Study Group.

Schwab M, Zanger UM, Marx C, et al. 2131, s.l. : J Clin Oncol, 2008, Vol. 26. 8.

61. Antitumor activity of a new platinum complex, oxalato (< i> trans-l</i>-1, 2-

diaminocyclohexane) platinum (II): new experimental data. Tashiro, T., Kawada, Y.,

Sakurai, Y., & Kidani, Y. 43, s.l. : Biomedicine & pharmacotherapy, 1989, Vol. 4.

251-260.

62. Oxaliplatin, tetraplatin, cisplatin, and carboplatin: spectrum of activity in drug-

resistant cell lines and in the cell lines of the National Cancer Institute's Anticancer Drug Screen panel. Rixe, O., Ortuzar, W., Alvarez, M., Parker, R., Reed, E., Paull,

K., & Fojo, T. 12, s.l. : Biochemical pharmacology, 1996, Vol. 52. 1855-1865.

63. Oxaliplatin: mechanism of action and antineoplastic activity. Raymond, E.,

Faivre, S., Woynarowski, J. M., & Chaney, S. G. 2, s.l. : In Seminars in oncology,

1998, Vol. 25. 4-12.

64. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal

cancer: a randomized GERCOR study. Tournigand, C., André, T., Achille, E., Lledo,

G., Flesh, M., Mery-Mignard, D., ... & de Gramont, A. 22, s.l. : Journal of Clinical

38 65. ERCC1 and ERCC2 polymorphisms predict clinical outcomes of oxaliplatin-based

chemotherapies in gastric and colorectal cancer: a systemic review and meta-

analysis. Yin M, Yan J, Martinez-Balibrea E, Graziano F, Lenz HJ, Kim HJ, Robert

J, Im SA, Wang WS, Etienne-Grimaldi MC, Wei Q. s.l. : Clin Cancer Res, 2011, Vol.

17. 1632-1640.

66. XPD and XRCC1 genetic polymorphisms are prognostic factors in advanced non-

small-cell lung cancer patients treated with platinum chemotherapy.

Gurubhagavatula S, Liu G, Park S, Zhou W, Su L, Wain JC, Lynch TJ, Neuberg DS, Christiani DC. s.l. : J Clin Oncol, 2004, Vol. 22. 2594-2601.

67. Which gene is a dominant predictor of response during FOLFOX chemotherapy for

the treatment of metastatic colorectal cancer, the MTHFR or XRCC1 gene? Suh KW,

Kim JH, Kim do Y, Kim YB, Lee C, Choi S. s.l. : Ann Surg Oncol, 2006, Vol. 13. 1379-

1385.

68. Pharmacogenetic profiling in patients with advanced colorectal cancer treated

with first-line FOLFOX-4 chemotherapy. Ruzzo A, Graziano F, Loupakis F, Rulli E,

Canestrari E, Santini D, Catalano V, Ficarelli R, Maltese P, Bisonni R, Masi G, Schiavon G, Giordani P, Giustini L, Falcone A, Tonini G, Silva R, Mattioli R, Floriani I, Magnani M. s.l. : J Clin Oncol, 2007, Vol. 25. 1247-1254.

69. Predictive biomarkers of chemotherapy efficacy in colorectal cancer: results from

the UK MRC FOCUS trial. Braun MS, Richman SD, Quirke P, Daly C, Adlard JW,

Elliott F, Barrett JH, Selby P, Meade AM, Stephens RJ, Parmar MK, Seymour MT.

s.l. : J Clin Oncol, 2008, Vol. 26. 2690-2698.

70. Association between glutathione S-transferase P1, T1, and M1 genetic

polymorphism and survival of patients with metastatic colorectal cancer.

Stoehlmacher, J., Park, D. J., Zhang, W., Groshen, S., Tsao-Wei, D. D., Mimi, C. Y., & Lenz, H. J. 94, s.l. : Journal of the National Cancer Institute, 2002, Vol. 12. 936-

942.

71. Genetic polymorphism and function of glutathione S-transferases in tumor drug

resistance. Lo HW, Ali-Osman F. s.l. : Curr Opin Pharmacol, 2007, Vol. 7. 367-374.

72. Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue

enzyme activity and population frequency distribution. Watson MA, Stewart RK,

Smith GB, Massey TE, Bell DA. s.l. : Carcinogenesis, 1998, Vol. 19. 275-280.

73. Influence of GSTP1 I105V polymorphism on cumulative neuropathy and outcome

of FOLFOX-4 treatment in Asian patients with colorectal carcinoma. Chen YC, Tzeng

CH, Chen PM, Lin JK, Lin TC, Chen WS, Jiang JK, Wang HS, Wang WS. s.l. : Cancer

Sci, 2010, Vol. 101. 530-535.

74. Glutathione-S-transferase pi (GSTP1) codon 105 polymorphism is not associated

with oxaliplatin efficacy or toxicity in advanced colorectal cancer patients. Kweekel

DM, Gelderblom H, Antonini NF, Van der Straaten T, Nortier JW, Punt CJ, Guchelaar HJ. s.l. : Eur J Cancer, 2009, Vol. 45. 572-578.

75. Determination of ERCC2 Lys751Gln and GSTP1 Ile105Val gene polymorphisms in

colorectal cancer patients: relationships with treatment outcome. Le Morvan V,

Smith D, Laurand A, Brouste V, Bellott R, Soubeyran I, Mathoulin-Pelissier S, Robert J. s.l. : Pharmacogenomics, 2007, Vol. 8. 1693-1703.

76. Pharmacogenetic predictors of adverse events and response to chemotherapy in

metastatic colorectal cancer: results from North American Gastrointestinal Intergroup Trial N9741. McLeod HL, Sargent DJ, Marsh S, Green EM, King CR,

Fuchs CS, Ramanathan RK, Williamson SK, Findlay BP, Thibodeau SN, Grothey A, Morton RF, Goldberg RM. s.l. : J Clin Oncol, 2010, Vol. 28. 3227-3233.

39

response in colorectal cancer patients. Etienne-Grimaldi MC, Milano G,

Maindrault-Goebel F, Chibaudel B, Formento JL, Francoual M, Lledo G, André T, Mabro M, Mineur L, Flesch M, Carola E, de Gramont A. s.l. : Br J Clin

Pharmacol, 2010, Vol. 69. 58-66.

78. Pharmacogenetic assessment of toxicity and outcome in patients with metastatic

colorectal cancer treated with LV5FU2, FOLFOX, and FOLFIRI: FFCD 2000-05. Boige

V, Mendiboure J, Pignon JP, Loriot MA, Castaing M, Barrois M, Malka D, Trégouët DA, Bouché O, Le Corre D, Miran I, Mulot C, Ducreux M, Beaune P, Laurent-Puig P. s.l. : J Clin Oncol, 2005, Vol. 28. 2556-2564.

79. Pharmacogenomic testing in current clinical practice: implementation in the

clinical laboratory. Wu AHB, Yeo KTJ. New York : Humana Press, 2011.

80. Single-agent irinotecan or FOLFIRI as second-line chemotherapy for advanced

colorectal cancer; results of a randomised phase II study (DaVINCI) and meta- analysis. Clarke SJ, Yip S, Brown C, van Hazel GA, Ransom DT, Goldstein D,

Jeffrey GM, Tebbutt NC, Buck M, Lowenthal RM, Boland A, Gebski V, Zalcberg J, Simes RJ. s.l. : Eur J Cancer, 2011, Vol. 47. 1826-1836.

81. Pharmacogenetics of human carboxylesterase 2, an enzyme involved in the

activation of irinotecan into SN-38. Charasson V, Bellott R, Meynard D, Longy M,

Gorry P, Robert J. s.l. : Clin Pharmacol Ther, 2004, Vol. 76. 528-535.

82. Pharmacogenomic assessment of carboxylesterases 1 and 2. Marsh S, Xiao M, Yu

J, Ahluwalia R, Minton M, Freimuth RR, Kwok PY, McLeod HL. s.l. : Genomics,

2004, Vol. 84. 661-668.

83. Determinants of CPT-11 and SN-38 activities in human lung cancer cells. van

Ark-Otte J, Kedde MA, van der Vijgh WJ, Dingemans AM, Jansen WJ, Pinedo HM, Boven E, Giaccone G. s.l. : Br J Cancer, 1998, Vol. 77. 2171-2176.

84. Determinants of the cytotoxicity of irinotecan in two human colorectal tumor cell

lines. Pavillard V, Agostini C, Richard S, Charasson V, Montaudon D, Robert J.

s.l. : Cancer Chemother Pharmacol, 2002, Vol. 49. 329-335.

85. Functional characterization of three naturally occurring single nucleotide

polymorphisms in the CES2 gene encoding carboxylesterase 2 (HCE-2). Kubo T, Kim

SR, Sai K, Saito Y, Nakajima T, Matsumoto K, Saito H, Shirao K, Yamamoto N, Minami H, Ohtsu A, Yoshida. s.l. : Drug Metab Dispos, 2005, Vol. 33. 1482-1487.

86. Metabolic fate of irinotecan in humans: correlation of glucuronidation with

diarrhea. Gupta E, Lestingi TM, Mick R, et al. 5, s.l. : Cancer Res, 1994, Vol. 54.

3723.

87. UGT1A1 haplotypes associated with reduced glucuronidation and increased

serum bilirubin in irinotecan-administered Japanese patients with cancer. Sai K,

Saeki M, Saito Y, et al. 15, s.l. : Clin Pharmacol Ther, 2004, Vol. 75. 501.

88. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a

balanced polymorphism for regulation of bilirubin metabolism? Beutler E, Gelbart

T, Demina A. 4, s.l. : Proc Natl Acad Sci U S A, 1998, Vol. 95. 8170.

89. Prophylaxis of irinotecan-induced diarrhea with neomycin and potential role for

UGT1A1*28 genotype screening: a double-blind, randomized, placebo-controlled study. de Jong FA, Kehrer DF, Mathijssen RH, et al. 54, s.l. : Oncologist, 2006, Vol.

11. 944.

90. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of

severe neutropenia of irinotecan. Innocenti F, Undevia SD, Iyer L, et al. 8, s.l. : J

Clin Oncol, 2004, Vol. 22. 1382.

91. Influence of genetic variants in UGT1A1 and UGT1A9 on the in vivo

40 Pharmacol, 2004, Vol. 44. 854.

92. The role of UGT1A1*28 polymorphism in the pharmacodynamics and

pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. Toffoli

G, Cecchin E, Corona G, et al. 8, s.l. : J Clin Oncol, 2006, Vol. 24. 3061.

93. Genetic variation in bilirubin UPD-glucuronosyltransferase gene promoter and

Gilbert’s syndrome. Monaghan G, Ryan M, Seddon R, et al. 81, s.l. : Lancet, 1996,

Vol. 347. 578.

94. Clinical and pharmacogenetic factors associated with irinotecan toxicity.

Kweekel DM, Guchelaar HJ, Gelderblom H. 7, s.l. : Cancer treatment reviews, Vol.

Documenti correlati