• Non ci sono risultati.

Trascrizione – sintesi dell’RNA

Nel documento 1 Indice degli argomenti (pagine 61-64)

2.5 Acidi nucleici: DNA ed RNA

2.5.6 Trascrizione – sintesi dell’RNA

In questa fase l’informazione genetica viene copiata (trascritta) dal DNA su di una molecola di RNA. Il processo di trascrizione avviene grazie all’enzima RNA-polimerasi. Nelle cellule eucarioti ci sono tre diverse molecole di RNA-polimerasi, che occupano diversi siti. Ciascuno di questi enzimi è responsabile della trascrizione di una differente classe di geni.

L’RNA-polimerasi I, che risiede nel nucleolo, è responsabile della trascrizione dei geni per la produzione di tutto l’RNA ribosomiale (o rRNA). Questo è l’enzima con la più elevata attività di sintesi.

L’RNA-polimerasi II, localizzata nel nucleoplasma (la parte di nucleo che esclude il nucleolo), responsabile della sintesi del precursore dell’RNA messaggero (mRNA).

l’RNA-polimerasi III, l’enzima con l’attività minore, anch’essa presente nel nucleoplasma, che sintetizza l’RNA di trasporto (tRNA).

Nella fase di inizio l’RNA-polimerasi si lega alla doppia catena del DNA, aprendola in corrispondenza di una particolare sequenza, chiamata promotore. Il promotore è una speciale sequenza di nucleotidi che non verrà trascritta, situata sul DNA all’inizio del gene.

Successivamente l’RNA-polimerasi scorre lungo il DNA rompendo i ponti Idrogeno tra le basi azotate complementari ed aprendo la doppia elica come una cerniera. In questo modo una delle due catene viene esposta alla copiatura e fa da stampo per la sintesi di una molecola di RNA messaggero ad essa complementare. Mentre l’RNA-polimerasi scorre sul filamento-stampo del DNA vengono agganciati ad esso dei ribonucleotidi complementari. Quando, durante la trascrizione, nel DNA si incontreranno particolari sequenze di basi alla fine del gene (terminatore) si avrà il termine della trascrizione. Il filamento di RNA messaggero si stacca ed il DNA si richiude e si riavvolge

Poiché i due filamenti si legano tramite appaiamento delle basi azotate complementari, questi sono tra loro antiparalleli. La direzione di lettura del DNA è 3'→5' mentre quella di trascrizione è 5'→3'.

Il prodotto della trascrizione è denominato trascritto primario e consiste probabilmente in un filamento di RNA che si estende dal promotore al terminatore. Non si ha dimostrazione di ciò perché esso è molto instabile e quindi difficile da isolare.

La fase cruciale della produzione delle diverse forme di RNA è la maturazione a partire dai precursori.

I complessi trascritti primari degli rRNA e tRNA di procarioti ed eucarioti vengono modificati in forme mature più semplici. Gli mRNA dei procarioti non subiscono quasi mai modificazioni, mentre l’assemblaggio dell’mRNA degli eucarioti è piuttosto complesso.

Negli eucarioti la trascrizione genera dei precursori nucleari degli mRNA (trascritti primari) caratterizzati dalla presenza di modificazioni chimiche all’estremità 5' e dalla presenza di zone non codificanti (introni). Tali precursori vengono in seguito convertiti negli mRNA maturi attraverso un processo (splicing) che prevede la rimozione degli introni e il ricongiungimento delle parti codificanti (esoni). Lo splicing avviene grazie a un apparato enzimatico complesso in grado di riconoscere sequenze specifiche presenti nelle zone di giunzione esone-introne, di rimuovere gli introni e di ricongiungere correttamente tra loro i vari esoni

Una volta maturati, gli mRNA, come le subunità ribosomiche e i tRNA, passano nel citoplasma per svolgere la loro funzione nella sintesi proteica.

L’RNA messaggero (mRNA) rappresenta la classe di RNA più eterogenea; infatti è costituita da filamenti contenenti tanti codoni quanti sono gli amminoacidi delle proteine da loro codificate.

RNA messaggeri codificanti per piccole proteine sono costituiti da alcune centinaia di nucleotidi, quelli codificanti per proteine grandi ne comprendono varie migliaia. Ogni mRNA è caratterizzato dal codone d’inizio (spesso AUG, specifico per l’amminoacido metionina). I tre codoni UAA, UGA e UAG rappresentano invece il segnale di terminazione della sintesi della catena polipeptidica. La precisione nell’andamento lineare dei ribonucleotidi in gruppi di tre, non solo determina il corretto allineamento degli amminoacidi in una proteina, ma anche un esatto punto di inizio e di conclusione della sua sintesi.

L’RNA di trasporto (tRNA) trasferisce ai ribosomi i vari amminoacidi che, uniti tra loro con legame peptidico, formano le proteine. Molti trascritti primari che originano dai geni per i tRNA sono discretamente più lunghi rispetto alle piccole molecole mature che si riversano nel citoplasma e che contengono molte basi modificate. Come tutte le macromolecole trasportate dal nucleo al citoplasma, anche i tRNA maturi vengono trasportati attraverso i pori nucleari, probabilmente associati a proteine specifiche che ne facilitano il passaggio. Una volta giunti nel citoplasma, i tRNA maturi si presentano come molecole piccole, costituite da 75-80 nucleotidi che si appaiano tra loro in zone specifiche con ponti idrogeno tra basi complementari, interrotte da tratti a singolo filamento. Tale situazione determina una particolare conformazione a “trifoglio”, caratteristica per tutti i tRNA. Nella cellula, tuttavia, questa molecola ha una complessa organizzazione a forma di L rovesciata e contorta a spirale, poiché le due anse laterali del trifoglio si avvicinano tra loro formando l’angolo fra i bracci della L. L’estremità 3' del filamento polinucleotidico di tutti i tRNA sopravanza quella 5' di tre nucleotidi uguali (C-C-A): tale sequenza rappresenta il sito accettore dell’amminoacido che, una volta attivato dall’enzima amminoacilsintetasi, si posiziona sul tRNA. Si distinguono circa venti tRNA, ciascuno specifico per un determinato amminoacido.

La parte più caratteristica della molecola del tRNA è l’ansa terminale, detta anticodone poiché porta tre basi complementari ai codoni degli mRNA.

Gli RNA ribosomiali (rRNA) costituiscono una famiglia di molecole che, assemblate insieme a più di 50 diverse proteine, formano i ribosomi. I ribosomi sono gli organuli citoplasmatici che utilizzano le informazioni genetiche dell’RNA messaggero e gli amminoacidi portati dagli RNA di trasporto per assemblare le proteine. Sono costituiti da due subunità classificate in termini di Svedberg (S), una misura del coefficiente di sedimentazione di particelle in sospensione sottoposte a centrifugazione (gli organuli cellulari vengono separati tramite centrifugazione in base alla loro diversa densità). La lunghezza delle molecole di rRNA, la qualità delle proteine costituenti ciascuna subunità e di conseguenza la grandezza di queste ultime varia tra procarioti ed eucarioti.

In base ai loro coefficienti di sedimentazione, i ribosomi sono stati suddivisi in due classi: - I ribosomi 70 S sono caratteristici dei procarioti e sono formati da una subunità 30 S e da una 50 S.

- I ribosomi 80 S sono caratteristici degli eucarioti e sono formati da una subunità 40 S e da una 60 S

Negli eucarioti i geni che codificano per gli rRNA sono localizzati nel nucleolo, che si evidenzia come un corpicciolo sferico situato nel nucleo. Tale conformazione è dovuta all’intensa attività trascrizionale che si attua al livello di questi geni e dal quasi contemporaneo assemblaggio degli RNA alle proteine ribosomiali.

Nel documento 1 Indice degli argomenti (pagine 61-64)

Documenti correlati